Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Prins-Friedel-Crafts Cyclization: Synthesis of Diversely Functionalized Six- Membered Oxacycles

Author(s): Snigdha Roy*

Volume 25 , Issue 5 , 2021

Published on: 13 January, 2021

Page: [635 - 651] Pages: 17

DOI: 10.2174/1385272825666210114105020

Price: $65

Abstract

Prins cyclization is a well-established synthetic protocol to generate a wide range of important oxygen heterocycles. It is a cyclization reaction performed by an oxocarbenium ion that undergoes an intramolecular pi-bond attack to construct a new carbon-carbon bond. When this cyclization process is conjugated with Friedel-Crafts reaction, it further expands the synthetic potential by fabricating two different carbon-carbon bonds in one single reaction. Different acid catalysts mediated the coupled Prins-Friedel-Crafts reaction which is conducted both in stepwise as well as in tandem fashion. In the stepwise route, three different reacting components were utilized whereas, the tandem methodology required proper modification of the initial substrate molecule. An array of allylic, propargylic, other related alkenols, and carbonyl reactants were employed to carry out the cyclization process. Several oxygenated heterocycles equipped with diverse functionalities were constructed in a stereoselective manner which again reinforced the significance of this cyclization protocol undoubtedly. The present mini-review highlights the utilization of different one-pot stepwise Prins-Friedel-Crafts reactions and the subsequent development of cascade Prins- Friedel-Crafts cyclization process to furnish intricate molecular architectures of vital six-membered oxacycles.

Keywords: Prins-Friedel-Crafts reaction, homoallylic alcohol, homopropargylic alcohol, oxocarbenium ion, acid catalyst, six-membered oxygen heterocycles.

Graphical Abstract
[1]
Prins, H.J. Condensation of formaldehyde with some unsaturated compounds. Chem. Weekbl., 1919, 16, 1072-1073.
[2]
Bach, T.; Löbel, J. Selective Prins reaction of styrenes and formaldehyde catalyzed by 2,6-di-tert-butylphenoxy(difluoro)borane. Synthesis, 2002, 2002(17), 2521-2526.
[http://dx.doi.org/10.1055/s-2002-35645]
[3]
Yadav, J.S.; Reddy, B.V.S.; Reddy, M.S.; Niranjan, N.; Prasad, A.R. Lewis acidic chloroaluminate ionic liquids: novel reaction media for the synthesis of 4-chloropyrans. Eur. J. Org. Chem., 2003, 2003(9), 1779-1783.
[http://dx.doi.org/10.1002/ejoc.200210638]
[4]
Yadav, J.S.; Reddy, B.V.S.; Gupta, M.K.; Biswas, S.K. Rapid and efficient protocol for the synthesis of 4-chlorotetrahydropyrans using niobium(V) chloride. Synthesis, 2004, 2004(16), 2711-2715.
[http://dx.doi.org/10.1055/s-2004-831220]
[5]
Tian, G-Q.; Shi, M. Brønsted acid-mediated stereoselective cascade construction of functionalized tetrahydropyrans from 2-(arylmethylene)-cyclopropylcarbinols and aldehydes. Org. Lett., 2007, 9(12), 2405-2408.
[http://dx.doi.org/10.1021/ol0709026] [PMID: 17503842]
[6]
Liu, F.; Loh, T-P. An efficient method allows the construction of 2,6-cis-4,5-dibromo-tetrasubstituted tetrahydropyran rings with well-controlled stereochemistry in good yields. Org. Lett., 2007, 9, 2063-2066.
[http://dx.doi.org/10.1021/ol070506n] [PMID: 17458976]
[7]
Liu, G-Q.; Cui, B.; Xu, R.; Li, Y.M. Preparation of trans-2-substituted-4-halopiperidines and cis-2-substituted-4-halotetrahydropyrans via AlCl3-catalyzed Prins reaction. J. Org. Chem., 2016, 81(12), 5144-5161.
[http://dx.doi.org/10.1021/acs.joc.6b00725] [PMID: 27214117]
[8]
Arundale, E.; Mikeska, L.A. The olefin-aldehyde condensation. The Prins reaction. Chem. Rev., 1952, 51, 505-555.
[http://dx.doi.org/10.1021/cr60160a004]
[9]
Dolby, L. The Mechanism of the Prins reaction. I. The structure and stereochemistry of a new alcohol from the acid-catalyzed reaction of cyclohexene and formaldehyde. J. Org. Chem., 1962, 27, 2971-2975.
[http://dx.doi.org/10.1021/jo01056a001]
[10]
Adams, D.R.; Bhatnagar, S.R. The Prins reaction. Synthesis, 1977, 1977(10), 661-672.
[http://dx.doi.org/10.1055/s-1977-24523]
[11]
Yadav, J.S.; Reddy, B.V.S.; Kumar, G.G.K.S.N.; Aravind, S. The ‘aqueous’ Prins cyclization: a diastereoselective synthesis of 4-hydroxytetrahydropyran derivatives. Synthesis, 2008, 2008(3), 395-400.
[http://dx.doi.org/10.1055/s-2007-1000932]
[12]
Tadpetch, K.; Rychnovsky, S.D. Rhenium(VII) catalysis of Prins cyclization reactions. Org. Lett., 2008, 10(21), 4839-4842.
[http://dx.doi.org/10.1021/ol8019204] [PMID: 18816133]
[13]
Chavre, S.N.; Choo, H.; Lee, J.K.; Pae, A.N.; Kim, Y.; Cho, Y.S. 5- And 6-exocyclic products, cis-2,3,5-trisubstituted tetrahydrofurans, and cis-2,3,6-trisubstituted tetrahydropyrans via Prins-type cyclization. J. Org. Chem., 2008, 73(19), 7467-7471.
[http://dx.doi.org/10.1021/jo800967p] [PMID: 18761436]
[14]
Stekrovaa, M.; Mäki-Arvelaa, P.; Kumara, N.; Behravesha, E.; Ahoa, A.; Balmea, Q.; Volchob, K.P.; Salakhutdinov, N.F.; Murzina, D.Y. Prins cyclization: synthesis of compounds with tetrahydropyran moiety over heterogeneous catalysts. J. Mol. Catal. Chem., 2015, 410, 260-270.
[http://dx.doi.org/10.1016/j.molcata.2015.09.021]
[15]
Subba Reddy, B.V.; Reddy, M.R.; Reddy, S.G.; Sridhar, B.; Kumar, S.K. Tandem Prins cyclization for the stereoselective synthesis of the 4,5-diarylhexahydropyrano[3,4-c]chromene skeleton of calyxins I and J. Eur. J. Org. Chem., 2015, 2015(14), 3103-3108.
[http://dx.doi.org/10.1002/ejoc.201500117]
[16]
Pérez, S.J.; Purino, M.; Miranda, P.O.; Martín, V.S.; Fernández, I.; Padrón, J.I. Prins cyclization catalyzed by a Fe(III)/trimethylsilyl halide system: the oxocarbenium ion pathway versus the [2+2] cycloaddition. Chemistry, 2015, 21(43), 15211-15217.
[http://dx.doi.org/10.1002/chem.201502488] [PMID: 26471437]
[17]
Liu, L.; Kaib, P.S.J.; Tap, A.; List, B. A general catalytic asymmetric Prins cyclization. J. Am. Chem. Soc., 2016, 138(34), 10822-10825.
[http://dx.doi.org/10.1021/jacs.6b07240] [PMID: 27547839]
[18]
Overman, L.E.; Pennington, L.D. Strategic use of pinacol-terminated Prins cyclizations in target-oriented total synthesis. J. Org. Chem., 2003, 68(19), 7143-7157.
[http://dx.doi.org/10.1021/jo034982c] [PMID: 12968864]
[19]
Clarke, P.A.; Santos, S. Strategies for the formation of Tetrahydropyran rings in the synthesis of natural products. Eur. J. Org. Chem., 2006, 2006(9), 2045-2053.
[http://dx.doi.org/10.1002/ejoc.200500964]
[20]
Hiebel, M-A.; Pelotier, B.; Piva, O. Total synthesis of (+/−)-diospongin A via Prins reaction. Tetrahedron, 2007, 63, 7874-7878.
[http://dx.doi.org/10.1016/j.tet.2007.05.089]
[21]
Pastor, I.M.; Yus, M. The Prins reaction: advances and applications. Curr. Org. Chem., 2007, 11, 925-957.
[http://dx.doi.org/10.2174/138527207781024067]
[22]
Wender, P.A.; Dechristopher, B.A.; Schrier, A.J. Efficient synthetic access to a new family of highly potent bryostatin analogues via a Prins-driven macrocyclization strategy. J. Am. Chem. Soc., 2008, 130(21), 6658-6659.
[http://dx.doi.org/10.1021/ja8015632] [PMID: 18452292]
[23]
Woo, S.K.; Kwon, M.S.; Lee, E. Total synthesis of (+)-neopeltolide by a Prins macrocyclization. Angew. Chem. Int. Ed. Engl., 2008, 47(17), 3242-3244.
[http://dx.doi.org/10.1002/anie.200800386] [PMID: 18348147]
[24]
Custar, D.W.; Zabawa, T.P.; Scheidt, K.A. Total synthesis and structural revision of the marine macrolide neopeltolide. J. Am. Chem. Soc., 2008, 130(3), 804-805.
[http://dx.doi.org/10.1021/ja710080q] [PMID: 18161979]
[25]
Gesinski, M.R.; Tadpetch, K.; Rychnovsky, S.D. Symmetric macrocycles by a Prins dimerization and macrocyclization strategy. Org. Lett., 2009, 11(22), 5342-5345.
[http://dx.doi.org/10.1021/ol9022062] [PMID: 19873984]
[26]
Crane, E.A.; Scheidt, K.A. Prins-type macrocyclizations as an efficient ring-closing strategy in natural product synthesis. Angew. Chem. Int. Ed. Engl., 2010, 49(45), 8316-8326.
[http://dx.doi.org/10.1002/anie.201002809] [PMID: 20931580]
[27]
Han, X.; Peh, G-R.; Floreancig, P.E. Prins-type cyclization reactions in natural product synthesis. Eur. J. Org. Chem., 2013, 2013(7), 1193-1208.
[http://dx.doi.org/10.1002/ejoc.201201557]
[28]
Reddy, B.V.S.; Nair, P.N.; Antony, A.; Lalli, C.; Grée, R. The Aza-Prins reaction in the synthesis of natural products and analogues. Eur. J. Org. Chem., 2017, 2017(14), 1805-1819.
[http://dx.doi.org/10.1002/ejoc.201601411]
[29]
Blumenkopf, T.A.; Bratz, M.; Castañeda, A.; Look, G.C.; Overman, L.E.; Rodriguez, D.; Thompson, A.S. Preparation of eight-membered cyclic ethers by Lewis acid promoted acetal-alkene cyclizations. J. Am. Chem. Soc., 1990, 112, 4386-4399.
[http://dx.doi.org/10.1021/ja00167a041]
[30]
Jaber, J.J.; Mitsui, K.; Rychnovsky, S.D. Stereoselectivity and regioselectivity in the segment-coupling Prins cyclization. J. Org. Chem., 2001, 66(13), 4679-4686.
[http://dx.doi.org/10.1021/jo010232w] [PMID: 11421792]
[31]
Crosby, S.R.; Harding, J.R.; King, C.D.; Parker, G.D.; Willis, C.L. Oxonia-cope rearrangement and side-chain exchange in the Prins cyclization. Org. Lett., 2002, 4(4), 577-580.
[http://dx.doi.org/10.1021/ol0102850] [PMID: 11843595]
[32]
Barry, C.St.J.; Crosby, S.R.; Harding, J.R.; Hughes, R.A.; King, C.D.; Parker, G.D.; Willis, C.L. Stereoselective synthesis of 4-hydroxy-2,3,6-trisubstituted tetrahydropyrans. Org. Lett., 2003, 5(14), 2429-2432.
[http://dx.doi.org/10.1021/ol0346180] [PMID: 12841747]
[33]
Dobbs, A.P.; Guesné, S.J.J.; Martinović, S.; Coles, S.J.; Hursthouse, M.B. A versatile indium trichloride mediated Prins-type reaction to unsaturated heterocycles. J. Org. Chem., 2003, 68(20), 7880-7883.
[http://dx.doi.org/10.1021/jo034981k] [PMID: 14510570]
[34]
Miranda, P.O.; Díaz, D.D.; Padrón, J.I.; Bermejo, J.; Martín, V.S. Iron(III)-catalyzed Prins-type cyclization using homopropargylic alcohol: a method for the synthesis of 2-alkyl-4-halo-5,6-dihydro-2H-pyrans. Org. Lett., 2003, 5(11), 1979-1982.
[http://dx.doi.org/10.1021/ol034568z] [PMID: 12762701]
[35]
Al-Mutairi, E.H.; Crosby, S.R.; Darzi, J.; Harding, J.R.; Hughes, R.A.; King, C.D.; Simpson, T.J.; Smith, R.W.; Willis, C.L. Stereocontrolled synthesis of 2,4,5-trisubstituted tetrahydropyrans. Chem. Commun. (Camb.), 2001, 2001(9), 835-836.
[http://dx.doi.org/10.1039/b101414p]
[36]
Kishi, Y.; Inagi, S.; Fuchigami, T. Prins cyclization in ionic liquid hydrogen fluoride salts: facile and highly efficient synthesis of 4-fluorinated tetrahydropyrans, thiacyclohexanes, and piperidines. Eur. J. Org. Chem., 2009, 1, 103-109.
[http://dx.doi.org/10.1002/ejoc.200800872]
[37]
Kishi, Y.; Nagura, H.; Inagi, S.; Fuchigami, T. Facile and highly efficient synthesis of fluorinated heterocycles via Prins cyclization in ionic liquid hydrogen fluoride salts. Chem. Commun. (Camb.), 2008, (33), 3876-3878.
[http://dx.doi.org/10.1039/b806389c] [PMID: 18726020]
[38]
Yadav, J.S.; Reddy, B.V.S.; Kumar, G.G.K.S.N.; Reddy, G.M. CeCl3• 7H2O/LiI: a novel reagent system for the synthesis of 4-iodotetrahydro-pyrans via Prins cyclization. Chem. Lett., 2007, 36, 426-427.
[http://dx.doi.org/10.1246/cl.2007.426]
[39]
Zhang, W-C.; Viswanathan, G.S.; Li, C-J. Scandium triflate catalyzed in situ Prins-type cyclization: formations of 4-tetrahydropyranols and ethers. Chem. Commun. (Camb.), 1999, 1999(3), 291-292.
[http://dx.doi.org/10.1039/a808960d]
[40]
Kopecky, D.J.; Rychnovsky, S.D. Mukaiyama aldol-Prins cyclization cascade reaction: a formal total synthesis of leucascandrolide A. J. Am. Chem. Soc., 2001, 123(34), 8420-8421.
[http://dx.doi.org/10.1021/ja011377n] [PMID: 11516301]
[41]
Dalgard, J.E.; Rychnovsky, S.D. Oxonia-cope prins cyclizations: a facile method for the synthesis of tetrahydropyranones bearing quaternary centers. J. Am. Chem. Soc., 2004, 126(48), 15662-15663.
[http://dx.doi.org/10.1021/ja044736y] [PMID: 15571386]
[42]
Epstein, O.L.; Rovis, T. A Sakurai-Prins-Ritter sequence for the three-component diastereoselective synthesis of 4-amino tetrahydropyrans. J. Am. Chem. Soc., 2006, 128(51), 16480-16481.
[http://dx.doi.org/10.1021/ja066794k] [PMID: 17177379]
[43]
Yadav, J.S.; Reddy, B.V.S.; Reddy, Y.J.; Reddy, N.S. Three-component synthesis of 2-aryl-4-arylthio-tetrahydro-2H-pyrans via the Prins-cyclization. Tetrahedron Lett., 2009, 50, 2877-2880.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.176]
[44]
Matsumoto, K.; Fujie, S.; Ueoka, K.; Suga, S.; Yoshida, J. An electroinitiated cation chain reaction: intramolecular carbon-carbon bond formation between thioacetal and olefin groups. Angew. Chem. Int. Ed. Engl., 2008, 47(13), 2506-2508.
[http://dx.doi.org/10.1002/anie.200705748] [PMID: 18286560]
[45]
Yadav, J.S.; Reddy, B.V.S.; Reddy, Y.J.; Reddy, B.P.; Reddy, P.A. A novel Prins-alkynylation reaction for the synthesis of 4-phenacyl tetrahydropyrans. Tetrahedron Lett., 2010, 51, 1236-1239.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.117]
[46]
Wei, Z.Y.; Wang, D.; Li, J.S.; Chan, T.H. Lewis acid-promoted condensation of allylalkoxysilanes with carbonyl compounds. Synthesis of tetrahydropyrans. J. Org. Chem., 1989, 54, 5768-5774.
[http://dx.doi.org/10.1021/jo00285a025]
[47]
Chan, K-P.; Loh, T-P. Lewis acid-catalyzed one-pot crossed Prins cyclizations using allylchlorosilane as allylating agent. Tetrahedron Lett., 2004, 45, 8387-8390.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.049]
[48]
Yadav, J.S.; Reddy, B.V.S.; Ganesh, A.V.; Kumar, G.G.K.S.N. Sc(OTf)3-catalyzed one-pot ene-Prins cyclization: a novel synthesis of octahydro-2H-chromen-4-ols. Tetrahedron Lett., 2010, 51, 2963-2966.
[http://dx.doi.org/10.1016/j.tetlet.2010.03.100]
[49]
Patterson, B.; Marumoto, S.; Rychnovsky, S.D. Titanium(IV)-promoted Mukaiyama aldol-Prins cyclizations. Org. Lett., 2003, 5(17), 3163-3166.
[http://dx.doi.org/10.1021/ol035303n] [PMID: 12917007]
[50]
Tenenbaum, J.M.; Morris, W.J.; Custar, D.W.; Scheidt, K.A. Synthesis of (-)-okilactomycin by a Prins-type fragment-assembly strategy. Angew. Chem. Int. Ed. Engl., 2011, 50(26), 5892-5895.
[http://dx.doi.org/10.1002/anie.201102037] [PMID: 21560215]
[51]
Sarmah, B.; Baishya, G.; Baruahb, R.K. First example of a Prins–Ritter reaction on terpenoids: a diastereoselective route to novel 4-amido-octahydro-2H-chromenes. RSC Adv, 2014, 4, 22387-22397.
[http://dx.doi.org/10.1039/c4ra02124j]
[52]
Chiba, M.; Ishikawa, Y.; Sakai, R.; Oikawa, M. Three-component, diastereoselective Prins-Ritter reaction for cis-fused-4-amidotetrahydropyrans toward precursor for possible neuronal receptor ligands. ACS Comb. Sci., 2016, 18(7), 399-404.
[http://dx.doi.org/10.1021/acscombsci.6b00046] [PMID: 27163384]
[53]
Calloway, N.O. The Friedel-Crafts syntheses. Chem. Rev., 1935, 17, 327-392.
[http://dx.doi.org/10.1021/cr60058a002]
[54]
Song, C.E.; Jung, D-U.; Choung, S.Y.; Roh, E.J.; Lee, S-G. Dramatic enhancement of catalytic activity in an ionic liquid: highly practical Friedel-Crafts alkenylation of arenes with alkynes catalyzed by metal triflates. Angew. Chem. Int. Ed. Engl., 2004, 43(45), 6183-6185.
[http://dx.doi.org/10.1002/anie.200460292] [PMID: 15549737]
[55]
Hajra, S.; Maji, B.; Bar, S. Samarium triflate-catalyzed halogen-promoted Friedel-Crafts alkylation with alkenes. Org. Lett., 2007, 9(15), 2783-2786.
[http://dx.doi.org/10.1021/ol070813t] [PMID: 17585769]
[56]
Srihari, P.; Reddy, J.S.S.; Mandal, S.S.; Satyanarayana, K.; Yadav, J.S. PMA-Silica gel catalyzed propargylation of aromatic compounds with arylpropargyl alcohols under solvent-free conditions. Synthesis, 2008, 2008(12), 1853-1860.
[http://dx.doi.org/10.1055/s-2008-1067083]
[57]
You, S-L.; Cai, Q.; Zeng, M. Chiral Brønsted acid catalyzed Friedel-Crafts alkylation reactions. Chem. Soc. Rev., 2009, 38(8), 2190-2201.
[http://dx.doi.org/10.1039/b817310a] [PMID: 19623343]
[58]
Chen, L.; Zhou, F.; Shi, T-D.; Zhou, J. Metal-free tandem Friedel-Crafts/lactonization reaction to benzofuranones bearing a quaternary center at C3 position. J. Org. Chem., 2012, 77(9), 4354-4362.
[http://dx.doi.org/10.1021/jo300395x] [PMID: 22458567]
[59]
Pallikonda, G.; Chakravartya, M. Benzylic phosphates in Friedel-Crafts reactions with activated and unactivated arenes: access to polyarylated alkanes. J. Org. Chem., 2016, 81(5), 2135-2142.
[http://dx.doi.org/10.1021/acs.joc.5b02441] [PMID: 26835977]
[60]
Elkaeed, E.B.; An, J.; Beauchemin, A.M. Synthesis of indazolones via Friedel-Crafts cyclization of blocked (masked) N-isocyanates. J. Org. Chem., 2017, 82(18), 9890-9897.
[http://dx.doi.org/10.1021/acs.joc.7b01607] [PMID: 28829915]
[61]
Kim, H.Y.; Song, E.; Oh, K. Unified approach to (thio)chromenones via one-pot Friedel-Crafts acylation/cyclization: distinctive mechanistic pathways of β-chlorovinyl ketones. Org. Lett., 2017, 19(2), 312-315.
[http://dx.doi.org/10.1021/acs.orglett.6b03348] [PMID: 28035830]
[62]
Heravi, M.M.; Zadsirjan, V.; Saedi, P.; Momeni, T. Applications of Friedel–Crafts reactions in total synthesis of natural products. RSC Adv, 2018, 8, 40061-40163.
[http://dx.doi.org/10.1039/C8RA07325B]
[63]
Elliott, M.C. Saturated oxygen heterocycles. J. Chem. Soc., Perkin Trans. 1, 2000, 3, 1291-1318.
[http://dx.doi.org/10.1039/a903885j]
[64]
Deiters, A.; Martin, S.F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev., 2004, 104(5), 2199-2238.
[http://dx.doi.org/10.1021/cr0200872] [PMID: 15137789]
[65]
Ganguly, A.K.; Mahata, P.K.; Biswas, D. Synthesis of oxygen heterocycles. Tetrahedron Lett., 2006, 47, 1347-1349.
[http://dx.doi.org/10.1016/j.tetlet.2005.12.062]
[66]
Ferraz, H.M.C.; Bombonato, F.I.; Sano, M.K.; Longo, L.S. Natural occurrence, biological activities and synthesis of eight-, nine-, and eleven membered ring lactones. Quim. Nova, 2008, 31, 885-900.
[http://dx.doi.org/10.1590/S0100-40422008000400029]
[67]
Kaur, N.; Kishore, D. Solid-phase synthetic approach toward the synthesis of oxygen containing heterocycles. Synth. Commun., 2014, 44, 1019-1042.
[http://dx.doi.org/10.1080/00397911.2012.760131]
[68]
Kaur, N. Palladium-catalyzed approach to the synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2014, 49, 86-119.
[http://dx.doi.org/10.1016/j.inoche.2014.09.024]
[69]
Hemmerling, F.; Hahn, F. Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides. Beilstein J. Org. Chem., 2016, 12, 1512-1550.
[http://dx.doi.org/10.3762/bjoc.12.148] [PMID: 27559404]
[70]
Patrusheva, O.S.; Volcho, K.P.; Salakhutdinov, N.F. Synthesis of oxygen-containing heterocyclic compounds based on monoterpenoids. Russ. Chem. Rev., 2018, 87, 771-796.
[http://dx.doi.org/10.1070/RCR4810]
[71]
Kaur, N. Photochemical mediated reactions in five-membered O- heterocycles synthesis. Synth. Commun., 2018, 48, 2119-2149.
[http://dx.doi.org/10.1080/00397911.2018.1485165]
[72]
Croisetière, J-P.; Spino, C. O-Heterocycles from unsaturated carbonyls and dimethoxycarbene. J. Org. Chem., 2018, 83(10), 5609-5618.
[http://dx.doi.org/10.1021/acs.joc.8b00613] [PMID: 29682963]
[73]
Jia, W.; Xi, Q.; Liu, T.; Yang, M.; Chen, Y.; Yin, D.; Wang, X. One-pot synthesis of O-heterocycles or aryl ketones using an InCl3/Et3SiH system by switching the solvent. J. Org. Chem., 2019, 84(9), 5141-5149.
[http://dx.doi.org/10.1021/acs.joc.9b00140] [PMID: 30986065]
[74]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[75]
De, S.; Babu, N.; Babu, S.; Sree, B.; Kiran, S.; Reddy, K.S.K. A review article on importance of heterocyclic compounds. Mintage J. Pharm. Med. Sci., 2016, 5, 18-27.
[76]
Patil, J. Versatile applications of heterocyclic compounds: special attention to nanomaterials in cancer therapy. J. Pharmacovigil., 2016, 4, 1-2.
[http://dx.doi.org/10.4172/2329-6887.1000e164]
[77]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[78]
Al-Mulla, A.A. Review: biological importance of heterocyclic compounds. Pharma Chem., 2017, 9, 141-147.
[79]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 3839-3842.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[80]
Sashida, H.; Kawamukai, A. Palladium-catalyzed intramolecular cyclization of o-ethynylbenzoic acids and o-ethynylbenzamides: preparation of isocoumarins and isoquinolin-1-ones. Synthesis, 1999, 7, 1145-1148.
[http://dx.doi.org/10.1055/s-1999-3522]
[81]
Biagetti, M.; Bellina, F.; Carpita, A.; Viel, S.; Mannina, L.; Rossi, R. Selective synthesis of 5,6-disubstituted 3-methyl-2(2H)-pyranones and 6-substituted 3-methyl-2(2H)-pyranones, including fusalanipyrone and gibepyrone A. Eur. J. Org. Chem., 2002, 1063-1076.
[http://dx.doi.org/10.1002/1099-0690(200203)2002:6<1063:AID-EJOC1063>3.0.CO;2-M]
[82]
Kaur, N.; Kishore, D. Microwave-assisted synthesis of six membered O-heterocycles. Synth. Commun., 2014, 44, 3047-3081.
[http://dx.doi.org/10.1080/00397911.2013.796383]
[83]
Kaur, N. Ionic liquid assisted synthesis of six-membered oxygen heterocycles. SN Appl. Sci., 2019, 1, 932-952.
[http://dx.doi.org/10.1007/s42452-019-0861-1]
[84]
Li, L.; Sun, X.; He, Y.; Gao, L.; Song, Z. TMSBr/InBr3-promoted Prins cyclization/homobromination of dienyl alcohol with aldehyde to construct cis-THP containing an exocyclic E-alkene. Chem. Commun. (Camb.), 2015, 51(80), 14925-14928.
[http://dx.doi.org/10.1039/C5CC06270E] [PMID: 26303284]
[85]
Alder, R.W.; Harvey, J.N.; Oakley, M.T. Aromatic 4-tetrahydropyranyl and 4-quinuclidinyl cations. Linking Prins with Cope and Grob. J. Am. Chem. Soc., 2002, 124(18), 4960-4961.
[http://dx.doi.org/10.1021/ja025902+] [PMID: 11982351]
[86]
Jasti, R.; Rychnovsky, S.D. Solvolysis of a tetrahydropyranyl mesylate: mechanistic implications for the Prins cyclization, 2-oxonia-cope rearrangement, and Grob fragmentation. Org. Lett., 2006, 8(10), 2175-2178.
[http://dx.doi.org/10.1021/ol0606738] [PMID: 16671810]
[87]
Lowe, J.T.; Panek, J.S. Stereocontrolled [4+2]-annulation accessing dihydropyrans: synthesis of the C1a-C10 fragment of kendomycin. Org. Lett., 2005, 7(8), 1529-1532.
[http://dx.doi.org/10.1021/ol0501875] [PMID: 15816744]
[88]
Feng, J.; Fu, X.; Chen, Z.; Lin, L.; Liu, X.; Feng, X. Efficient enantioselective synthesis of dihydropyrans using a chiral N,N′-dioxide as organocatalyst. Org. Lett., 2013, 15(11), 2640-2643.
[http://dx.doi.org/10.1021/ol400894j] [PMID: 23742266]
[89]
Liu, Y.; Liu, X.; Wang, M.; He, P.; Lin, L.; Feng, X. Enantioselective synthesis of 3,4-dihydropyran derivatives via organocatalytic Michael reaction of α,β-unsaturated enones. J. Org. Chem., 2012, 77(8), 4136-4142.
[http://dx.doi.org/10.1021/jo3001047] [PMID: 22432769]
[90]
Saha, P.; Ghosh, P.; Sultana, S.; Saikia, A.K. Diastereoselective synthesis of substituted dihydropyrans via an oxonium-ene cyclization reaction. Org. Biomol. Chem., 2012, 10(43), 8730-8738.
[http://dx.doi.org/10.1039/c2ob26088c] [PMID: 23037969]
[91]
Safari, E.; Nowrouzi, N.; Abbasi, M.; Hasaninejad, A. Metal-free I2-catalyzed sulfenylation of dihydropyrans: synthesis of vinyl sulfides. ChemistrySelect, 2019, 4, 8771-8775.
[http://dx.doi.org/10.1002/slct.201902140]
[92]
Morimoto, K.; Hirano, K.; Satoh, T.; Miura, M. Synthesis of isochromene and related derivatives by rhodium-catalyzed oxidative coupling of benzyl and allyl alcohols with alkynes. J. Org. Chem., 2011, 76(22), 9548-9551.
[http://dx.doi.org/10.1021/jo201923d] [PMID: 21988500]
[93]
Yue, D.; Della Ca´, N.; Larock, R.C. Syntheses of isochromenes and naphthalenes by electrophilic cyclization of acetylenic arenecarboxaldehydes. J. Org. Chem., 2006, 71(9), 3381-3388.
[http://dx.doi.org/10.1021/jo0524573] [PMID: 16626117]
[94]
Gharpure, S.J.; Shelke, Y.G.; Reddy, S.R.B. Synthesis of isochromene derivatives using intramolecular benzylic C(sp3)-C(sp2) bond forming Heck reaction on vinylogous carbonates. RSC Adv, 2014, 4, 46962-46965.
[http://dx.doi.org/10.1039/C4RA08421G]
[95]
Saikia, A.K.; Ghosh, P.; Deka, M.J.; Borah, M. Synthesis of dihydroindeno[1,2-c]isochromene via Cascade cyclization and Friedel-Crafts reaction. RSC Adv, 2016, 6, 106656-106661.
[http://dx.doi.org/10.1039/C6RA22329J]
[96]
Chemler, S.R.; Iserloh, U.; Danishefsky, S.J. Enantioselective synthesis of the oxadecalin core of phomactin A via a highly stereoselective Diels-Alder reaction. Org. Lett., 2001, 3(19), 2949-2951.
[http://dx.doi.org/10.1021/ol0161357] [PMID: 11554815]
[97]
Vill, V.; Tunger, H-W. Liquid crystals derived from carbohydrates: synthesis and properties of oxadecaline compounds. Liebigs Ann., 1995, 1995(6), 1055-1059.
[http://dx.doi.org/10.1002/jlac.1995199506149]
[98]
Lambuab, M.R.; Mukherjee, D. Diastereoselective synthesis of highly functionalized cis-1-oxadecalines via 6-endo-tetcyclizations of 2-C-branched sugars. RSC Adv, 2014, 4, 37908-37913.
[http://dx.doi.org/10.1039/C4RA06554A]
[99]
Arrayás, R.G.; Yin, J.; Liebeskind, L.S. The enantiomeric scaffold approach to highly functionalized 1-oxadecalines: enantio- and regiocontrolled [4 + 2] cycloadditions of 5-alkenyl-η3-pyranylmolybdenum complexes. J. Am. Chem. Soc., 2007, 129(6), 1816-1825.
[http://dx.doi.org/10.1021/ja067104f] [PMID: 17284010]
[100]
Wada, Y.; Murata, R.; Fujii, Y.; Asano, K.; Matsubara, S. Enantio- and diastereoselective construction of contiguous tetrasubstituted chiral carbons in organocatalytic oxadecalin synthesis. Org. Lett., 2020, 22(12), 4710-4715.
[http://dx.doi.org/10.1021/acs.orglett.0c01501] [PMID: 32492346]
[101]
Miyaji, R.; Asano, K.; Matsubara, S. Asymmetric chroman synthesis via an intramolecular oxy-Michael addition by bifunctional organocatalysts. Org. Biomol. Chem., 2014, 12(1), 119-122.
[http://dx.doi.org/10.1039/C3OB41938J] [PMID: 24201562]
[102]
Emami, S.; Ghanbarimasir, Z. Recent advances of chroman-4-one derivatives: synthetic approaches and bioactivities. Eur. J. Med. Chem., 2015, 93, 539-563.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.048] [PMID: 25743215]
[103]
Kamat, D.P.; Tilve, S.G.; Kamat, V.P.; Kirtany, J.K. Syntheses and biological activities of chroman-2-ones. A review. Org. Prep. Proced. Int., 2015, 47, 1-79.
[http://dx.doi.org/10.1080/00304948.2015.983805]
[104]
Rawat, P.; Verma, S.M. Design and synthesis of chroman derivatives with dual anti-breast cancer and antiepileptic activities. Drug Des. Devel. Ther., 2016, 10, 2779-2788.
[http://dx.doi.org/10.2147/DDDT.S111266] [PMID: 27621598]
[105]
Wang, B.; Leng, H-J.; Yang, X-Y.; Han, B.; Rao, C-L.; Liu, L.; Peng, C.; Huang, W. Efficient synthesis of tetrahydronaphthalene- or isochroman-fused spirooxindoles using tandem reactions. RSC Adv, 2015, 5, 88272-88276.
[http://dx.doi.org/10.1039/C5RA15735H]
[106]
Mateos, R.; Madrona, A.; Pereira-Caro, G.; Domínguez, V.; Cert, R.M.; Parrado, J.; Sarriá, B.; Bravo, L.; Espartero, J.L. Synthesis and antioxidant evaluation of isochroman-derivatives of hydroxytyrosol: structure-activity relationship. Food Chem., 2015, 173, 313-320.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.036] [PMID: 25466028]
[107]
Ravindra, B.; Maity, S.; Das, B.G.; Ghorai, P. Organocatalytic, Enantioselective synthesis of 1- and 3-substituted isochromans via intramolecular oxa-Michael reaction of alkoxyboronate: synthesis of (+)-sonepiprazole. J. Org. Chem., 2015, 80(14), 7008-7018.
[http://dx.doi.org/10.1021/acs.joc.5b00719] [PMID: 26102523]
[108]
Tamanna, K.M.; Joshia, K.; Chauhana, P. Catalytic asymmetric synthesis of isochroman derivatives. Adv. Synth. Catal., 2020, 362, 1907-1926.
[http://dx.doi.org/10.1002/adsc.202000243]
[109]
Yang, X-F.; Wang, M.; Zhang, Y.; Li, C-J. 2,4-Diaryltetrahydropyran formation by the Prins cyclization and its application towards the synthesis of epicalyxin F and calyxin I. Synlett, 2005, 12, 1912-1916.
[http://dx.doi.org/10.1002/chin.200552114]
[110]
Gewali, M.B.; Tezuka, Y.; Banskota, A.H.; Ali, M.S.; Saiki, I.; Dong, H.; Kadota, S.; Epicalyxin, F.; Calyxin, I. Epicalyxin F and calyxin I: two novel antiproliferative diarylheptanoids from the seeds of Alpinia blepharocalyx. Org. Lett., 1999, 1(11), 1733-1736.
[http://dx.doi.org/10.1021/ol990260p] [PMID: 10836033]
[111]
Tian, X.; Jaber, J.J.; Rychnovsky, S.D. Synthesis and structure revision of calyxin natural products. J. Org. Chem., 2006, 71(8), 3176-3183.
[http://dx.doi.org/10.1021/jo060094g] [PMID: 16599616]
[112]
Tian, X.; Rychnovsky, S.D. Synthesis and structural reassignment of (+)-epicalyxin F. Org. Lett., 2007, 9(24), 4955-4958.
[http://dx.doi.org/10.1021/ol702200t] [PMID: 17958435]
[113]
Ackrill, T.D.; Sparkes, H.A.; Willis, C.L. Synthesis of diarylheptanoid scaffolds inspired by calyxins I and J. Org. Lett., 2015, 17(15), 3884-3887.
[http://dx.doi.org/10.1021/acs.orglett.5b01848] [PMID: 26208000]
[114]
Reddy, U.C.; Bondalapati, S.; Saikia, A.K. Stereoselective one-pot, three-component synthesis of 4-aryltetrahydropyran via Prins-Friedel-Crafts reaction. J. Org. Chem., 2009, 74(6), 2605-2608.
[http://dx.doi.org/10.1021/jo802531h] [PMID: 19216514]
[115]
Lubczak, J.; Lubczak, R.; Zarzyka, I. A One-pot multicomponent reaction for the synthesis of oligoetherols with azacyclic rings. Acta Chim. Slov., 2017, 64(4), 858-864.
[http://dx.doi.org/10.17344/acsi.2017.3495] [PMID: 29318302]
[116]
Halimehjani, A.Z.; Nosood, Y.L.; Sharifi, M. A one-pot three-step multicomponent synthesis of functionalized allyl dithiocarbamates using Baylis–Hillman reaction. Synth. Commun., 2020, 50, 966-972.
[http://dx.doi.org/10.1080/00397911.2020.1725974]
[117]
Hernández, J.G.; Butler, I.S.; Friščić, T. Multi-step and multi-component organometallic synthesis in one pot using orthogonal mechanochemical reactions. Chem. Sci. (Camb.), 2014, 5, 3576-3582.
[http://dx.doi.org/10.1039/C4SC01252F]
[118]
Chebanov, V.A.; Saraev, V.E.; Desenko, S.M.; Chernenko, V.N.; Shishkina, S.V.; Shishkin, O.V.; Kobzar, K.M.; Kappe, C.O. One-pot, multicomponent route to pyrazoloquinolizinones. Org. Lett., 2007, 9(9), 1691-1694.
[http://dx.doi.org/10.1021/ol070411l] [PMID: 17385876]
[119]
Zhang, Z.; Tan, Z.; Hong, C.; Wu, D.; You, Y. One-pot sequential multicomponent reaction and multicomponent polymerization method for the synthesis of differently topological polymers. Polym. Chem., 2016, 7, 1468-1474.
[http://dx.doi.org/10.1039/C5PY01758K]
[120]
Xia, L.; Zhang, Z.; You, Y-Z. Synthesis of sequence-controlled polymers via sequential multicomponent reactions and interconvertible hybrid copolymerizations. Polym. J., 2020, 52, 33-43.
[http://dx.doi.org/10.1038/s41428-019-0266-4]
[121]
Hosomi, A.; Endo, M.; Sakurai, H. Allylsilanes as synthetic intermediates. II. Syntheses of homoallyl ethers from allylsilanes and acetals promoted by titanium tetrachloride. Chem. Lett., 1976, 5, 941-942.
[http://dx.doi.org/10.1246/cl.1976.941]
[122]
Hosomi, A.; Sakurai, H. Chemistry of organosilicon compounds. 99. Conjugate addition of allylsilanes to. alpha.beta.-enones. A new method of stereoselective introduction of the angular allyl group in fused cyclic. alpha.,beta.-enones. J. Am. Chem. Soc., 1977, 99, 1673-1675.
[http://dx.doi.org/10.1021/ja00447a080]
[123]
Hosomi, A.; Miura, K. Development of new reagents containing silicon and related metals and application to practical organic syntheses. Bull. Chem. Soc. Jpn., 2004, 77, 835-851.
[http://dx.doi.org/10.1246/bcsj.77.835]
[124]
Wadamoto, M.; Yamamoto, H. Silver-catalyzed asymmetric Sakurai-Hosomi allylation of ketones. J. Am. Chem. Soc., 2005, 127(42), 14556-14557.
[http://dx.doi.org/10.1021/ja0553351] [PMID: 16231892]
[125]
Sellars, J.D.; Steel, P.G.; Turner, M.J. Hosomi-Sakurai reactions of silacyclic allyl silanes. Chem. Commun. (Camb.), 2006, 2006(22), 2385-2387.
[http://dx.doi.org/10.1039/B602642G] [PMID: 16733588]
[126]
Kampen, D.; List, B. Efficient Brønsted acid catalyzed Hosomi-Sakurai reaction of acetals. Synlett, 2006, 2006(16), 2589-2592.
[http://dx.doi.org/10.1055/s-2006-950444 ]
[127]
Saito, T.; Nishimoto, Y.; Yasuda, M.; Baba, A. An enhanced Lewis acid system of InCl3 and Me3SiBr can be used to promote a wide range of direct coupling reactions between alcohols and silyl nucleophiles in non-halogenated solvents. Highly chemoselective allylations toward a hydroxyl moiety over ketone and acetoxy ones have been demonstrated. J. Org. Chem., 2006, 71, 8516-8522.
[http://dx.doi.org/10.1021/jo061512k] [PMID: 17064028]
[128]
Jervis, P.J.; Kariuki, B.M.; Cox, L.R. Stereoselective synthesis of 2,4,5-trisubstituted tetrahydropyrans using an intramolecular allylation strategy. Org. Lett., 2006, 8(20), 4649-4652.
[http://dx.doi.org/10.1021/ol061957v] [PMID: 16986972]
[129]
Barbero, M.; Bazzi, S.; Cadamuro, S.; Dughera, S.; Piccinini, C. O-Benzenedisulfonimide as a reusable brønsted acid catalyst for Hosomi-Sakurai reactions. Synthesis, 2010, 2010(2), 315-319.
[http://dx.doi.org/10.1055/s-0029-1217093]
[130]
Fang, G.; Liu, Z.; Cao, S.; Yuan, H.; Zhang, J.; Pan, L. Interruption of formal Schmidt rearrangement/Hosomi-Sakurai reaction of vinyl azides with allyl/propargylsilanes. Org. Lett., 2018, 20(22), 7113-7116.
[http://dx.doi.org/10.1021/acs.orglett.8b03062] [PMID: 30387360]
[131]
Niwa, Y.; Miyake, M.; Hayakawa, I.; Sakakura, A. Catalytic enantioselective Hosomi-Sakurai reaction of α-ketoesters promoted by chiral copper(II) complexes. Chem. Commun. (Camb.), 2019, 55(27), 3923-3926.
[http://dx.doi.org/10.1039/C9CC01159E] [PMID: 30919859]
[132]
Gong, Y.; Cao, Z-Y.; Shi, Y-B.; Zhou, F.; Zhou, Y.; Zhou, J. A highly efficient Hg(OTf)2-mediated Sakurai–Hosomi allylation of N-tert-butyloxy-carbonylamino sulfones, aldehydes, fluoroalkyl ketones and α,β-unsaturated enones using allyltrimethylsilane. Org. Chem. Front., 2019, 6, 3989-3995.
[http://dx.doi.org/10.1039/C9QO01049A]
[133]
Reddy, U.C.; Bondalapati, S.; Saikia, A.K. Stereoselective synthesis of 2,6-disubstituted-4-aryltetrahydropyrans using Sakurai–Hosomi–Prins–Friedel–Crafts reaction. Eur. J. Org. Chem., 2009, 2009(10), 1625-1629.
[http://dx.doi.org/10.1002/ejoc.200900006]
[134]
Laska, M. Olfactory discrimination ability for aromatic odorants as a function of oxygen moiety. Chem. Senses, 2002, 27(1), 23-29.
[http://dx.doi.org/10.1093/chemse/27.1.23] [PMID: 11751464]
[135]
More, G.P.; Rane, M.; Bhat, S.V. Efficient Prins cyclization in environmentally benign method using ion exchange resin catalyst. Green Chem. Lett. Rev., 2012, 5, 13-17.
[http://dx.doi.org/10.1080/17518253.2011.572929]
[136]
Förster, B.; Bertermann, R.; Kraft, P.; Tacke, R. Sila-rhubafuran and derivatives: synthesis and olfactory characterization of novel silicon-containing odorants. Organometallics, 2014, 33, 338-346.
[http://dx.doi.org/10.1021/om401070c]
[137]
Imanishi, M.; Sonoda, M.; Miyazato, H.; Sugimoto, K.; Akagawa, M.; Tanimori, S. Sequential synthesis, olfactory properties, and biological activity of quinoxaline derivatives. ACS Omega, 2017, 2(5), 1875-1885.
[http://dx.doi.org/10.1021/acsomega.7b00124] [PMID: 30023648]
[138]
Safayhi, H.; Mack, T.; Sabieraj, J.; Anazodo, M.I.; Subramanian, L.R.; Ammon, H.P. Boswellic acids: novel, specific, nonredox inhibitors of 5-lipoxygenase. J. Pharmacol. Exp. Ther., 1992, 261(3), 1143-1146.
[PMID: 1602379]
[139]
Safayhi, H.; Sailer, E.R.; Ammon, H.P.T. 5-Lipoxygenase inhibition by acetyl-11-keto-β-boswellic acid (AKBA) by a novel mechanism. Phytomedicine, 1996, 3(1), 71-72.
[http://dx.doi.org/10.1016/S0944-7113(96)80013-4] [PMID: 23194864]
[140]
Steinhilber, D.; Hofmann, B. Recent advances in the search for novel 5-lipoxygenase inhibitors. Basic Clin. Pharmacol. Toxicol., 2014, 114(1), 70-77.
[http://dx.doi.org/10.1111/bcpt.12114] [PMID: 23953428]
[141]
Subba Reddy, B.V.; Chaya, D.N.; Yadav, J.S.; Chatterjee, D.; Kunwar, A.C. BF3•OEt2-catalyzed tandem Prins Friedel–Crafts reaction: a novel synthesis of sugar fused diarylhexahydro-2H-furo[3,2-b]pyrans. Tetrahedron Lett., 2011, 52, 2961-2964.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.114]
[142]
Rajasekaran, P.; Mallikharjunarao, Y.; Vankar, Y.D. Synthesis of 1C-aryl/alkyl 2C-branched sugar-fused isochroman derivatives by sequential Prins and Friedel–Crafts cyclizations on a perlin aldehyde derived substrate. Synlett, 2017, 28, 1346-1352.
[http://dx.doi.org/10.1055/s-0036-1588156]
[143]
Reddy, B.V.; Borkar, P.; Yadav, J.S.; Sridhar, B.; Grée, R. Tandem Prins/Friedel–Crafts cyclization for stereoselective synthesis of heterotricyclic systems. J. Org. Chem., 2011, 76(19), 7677-7690.
[http://dx.doi.org/10.1021/jo201027u] [PMID: 21842903]
[144]
Suginome, M.; Ohmori, Y.; Ito, Y. Stereoselective construction of trans-1,2-benzooxadecaline frameworks by three-component cascade reactions of an α-phenethyl-β-borylallylsilane with aldehydes. Chem. Commun. (Camb.), 2001, 2001(12), 1090-1091.
[http://dx.doi.org/10.1039/b102613p]
[145]
Subba Reddy, B.V.; Kumar, H.; Borkar, P.; Yadav, J.S.; Sridhar, B. The Prins Cascade cyclization reaction for the synthesis of angularly-fused tetrahydropyran and piperidine derivatives. Eur. J. Org. Chem., 2013, 2013(10), 1993-1999.
[http://dx.doi.org/10.1002/ejoc.201201387]
[146]
Ghosh, A.K.; Keyes, C.; Veitschegger, A.M. FeCl3-catalyzed Tandem Prins and Friedel-Crafts cyclization: a highly diastereoselective route to polycyclic ring structures. Tetrahedron Lett., 2014, 55(30), 4251-4254.
[http://dx.doi.org/10.1016/j.tetlet.2014.05.092] [PMID: 25104867]
[147]
Li, B.; Lai, Y-C.; Zhao, Y.; Wong, Y-H.; Shen, Z.L.; Loh, T-P. Synthesis of 3-oxaterpenoids and its application in the total synthesis of (±)-moluccanic acid methyl ester. Angew. Chem. Int. Ed. Engl., 2012, 51(42), 10619-10623.
[http://dx.doi.org/10.1002/anie.201205981] [PMID: 22987395]
[148]
Liu, H.; Di, Y.; Yang, J.; Teng, F.; Lu, Y.; Ni, W.; Chen, C.; Hao, X. Three novel 3,4-seco-podocarpane trinorditerpenoids from Aleurites moluccana. Tetrahedron Lett., 2008, 49, 5150-5151.
[http://dx.doi.org/10.1016/j.tetlet.2008.06.088]
[149]
Ushakov, D.B.; Raja, A.; Franke, R.; Sasse, F.; Maier, M.E. Total synthesis of (±)-moluccanic acid methyl ester. Synlett, 2012, 23, 1358-1360.
[http://dx.doi.org/10.1055/s-0031-1290956]
[150]
Subba Reddy, B.V.; Reddy, G.N.; Reddy, M.R.; Lakshmi, J.K.; Jagadeesh, B.; Sridhar, B. Prins-Driven Friedel–Crafts reaction for the stereoselective synthesis of hexahydroindeno[2,1-c]pyran derivatives. Asian J. Org. Chem., 2015, 4, 1266-1272.
[http://dx.doi.org/10.1002/ajoc.201500218]
[151]
Peterson, E.A.; Overman, L.E. Contiguous stereogenic quaternary carbons: a daunting challenge in natural products synthesis. Proc. Natl. Acad. Sci. USA, 2004, 101(33), 11943-11948.
[http://dx.doi.org/10.1073/pnas.0402416101] [PMID: 15232003]
[152]
Singh, R.; Parai, M.K.; Mondal, S.; Panda, G. Contiguous generation of quaternary and tertiary stereocenters: one-pot synthesis of chroman-fused S-proline-derived chiral oxazepinones. Synth. Commun., 2013, 43, 253-259.
[http://dx.doi.org/10.1080/00397911.2011.596301]
[153]
Tian, L.; Luo, Y-C.; Hu, X-Q.; Xu, P-F. Recent developments in the synthesis of chiral compounds with quaternary centers by organocatalytic cascade reactions. Asian J. Org. Chem., 2016, 5, 580-607.
[http://dx.doi.org/10.1002/ajoc.201500486]
[154]
Germain, N.; Alexakis, A. Formation of contiguous quaternary and tertiary stereocenters by sequential asymmetric conjugate addition of Grignard reagents to 2-substituted enones and Mg-enolate trapping. Chemistry, 2015, 21(23), 8597-8606.
[http://dx.doi.org/10.1002/chem.201500292] [PMID: 25916571]
[155]
Zhan, M.; Ding, Z.; Du, S.; Chen, H.; Feng, C.; Xu, M.; Liu, Z.; Zhang, M.; Wu, C.; Lan, Y.; Li, P. A unified approach for divergent synthesis of contiguous stereodiads employing a small boronyl group. Nat. Commun., 2020, 11(1), 792.
[http://dx.doi.org/10.1038/s41467-020-14592-7] [PMID: 32034155]
[156]
Subba Reddy, B.V.; Sundar, C.S.; Reddy, M.R.; Reddy, C.S.; Sridhar, B. Tandem Prins and Friedel–Crafts Cyclizations for the stereoselective synthesis of trans-fused hexahydro-1H-benzo[g]isochromene derivatives. Synthesis, 2015, 47, 1117-1122.
[http://dx.doi.org/10.1055/s-0034-1380177]
[157]
Reddy, B.V.; Jalal, S.; Borkar, P.; Yadav, J.S.; Reddy, P.P.; Kunwar, A.C.; Sridhar, B. The stereoselective synthesis of cis-/trans-fused hexahydropyrano[4,3-b]chromenes via Prins cyclization trapping by a tethered nucleophile. Org. Biomol. Chem., 2012, 10(32), 6562-6568.
[http://dx.doi.org/10.1039/c2ob25771h] [PMID: 22763607]
[158]
Reddy, U.C.; Saikia, A. One-pot, three-component synthesis of 4-aryl-5,6-dihydropyran via Prins–Friedel–Crafts reaction. Synlett, 2010, 7, 1027-1032.
[http://dx.doi.org/10.1055/s-0029-1219779 ]
[159]
Hinkle, R.J.; Lewis, S.E. Atom economical, one-pot, three-reaction cascade to novel tricyclic 2,4-dihydro-1H-benzo[f]isochromenes. Org. Lett., 2013, 15(16), 4070-4073.
[http://dx.doi.org/10.1021/ol401600j] [PMID: 23901903]
[160]
Hinkle, R.J.; Chen, Y.; Nofi, C.P.; Lewis, S.E. Electronic effects on a one-pot aromatization cascade involving alkynyl-Prins cyclization, Friedel-Crafts alkylation and dehydration to tricyclic benzo[f]isochromenes. Org. Biomol. Chem., 2017, 15(36), 7584-7593.
[http://dx.doi.org/10.1039/C7OB01412K] [PMID: 28861587]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy