Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

General Research Article

Synthesis of New Cyclopeptide Analogues of the Miuraenamides

Author(s): Sarah Kappler, Andreas Siebert and Uli Kazmaier*

Volume 18, Issue 4, 2021

Published on: 13 January, 2021

Page: [418 - 424] Pages: 7

DOI: 10.2174/1570179418666210113161550

Price: $65

Abstract

Introduction: Miuraenamides belong to natural marine compounds with interesting biological properties.

Materials and Methods: Miuraenamides initiate polymerization of monomeric actin and therefore show high cytotoxicity by influencing the cytoskeleton. New derivatives of the miuraenamides have been synthesized containing an N-methylated amide bond instead of the more easily hydrolysable ester in the natural products.

Results: Incorporation of an aromatic side chain onto the C-terminal amino acid of the tripeptide fragment also led to highly active new miuraenamides.

Conclusion: In this study, we showed that the ester bond of the natural product miuraenamide can be replaced by an N-methyl amide. The yields in the cyclization step were high and generally much better than with the corresponding esters. On the other hand, the biological activity of the new amide analogs was lower compared to the natural products, but the activity could significantly be increased by incorporation of a p-nitrophenyl group at the C-terminus of the peptide fragment.

Keywords: Actin, cyclodepsipeptides, cyclopeptides, cytoskeleton, cytotoxic compounds, myxobacteria, natural products.

« Previous
Graphical Abstract
[1]
(a) Wipf, P. Synthetic studies of biologically active marine cyclopeptides. Chem. Rev., 1995, 95, 2115-2134.
(b) Hamada, Y.; Shioiri, T. Recent progress of the synthetic studies of biologically active marine cyclic peptides and depsipeptides. Chem. Rev., 2005, 105(12), 4441-4482.
[http://dx.doi.org/10.1021/cr0406312] [PMID: 16351050]
(c) von Nussbaum, F.; Brands, M.; Hinzen, B.; Weigand, S.; Häbich, D. Antibacterial natural products in medicinal chemistry-Exodus or revival? Angew. Chem. Int. Ed. Engl., 2006, 45(31), 5072-5129.
[http://dx.doi.org/10.1002/anie.200600350] [PMID: 16881035]
(d) Desriac, F.; Jégou, C.; Balnois, E.; Brillet, B.; Le Chevalier, P.; Fleury, Y. Antimicrobial peptides from marine proteobacteria. Mar. Drugs, 2013, 11(10), 3632-3660.
[http://dx.doi.org/10.3390/md11103632] [PMID: 24084784]
[2]
(a) Crews, P.; Manes, L.V.; Boehler, M. Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis sp. Tetrahedron Lett., 1986, 27, 2797-2800.
[http://dx.doi.org/10.1016/S0040-4039(00)84645-6]
(b) Braekman, J.C.; Daloze, D.; Moussiaux, B.; Riccio, R. Jaspamide from the marine sponge Jaspis johnstoni. J. Nat. Prod., 1987, 50, 994-995.
[http://dx.doi.org/10.1021/np50053a048]
[3]
(a) Chan, W.R.; Tinto, W.F.; Manchand, P.S.; Todaro, L.J. Stereostructures of geodiamolides A and B, novel cyclodepsipeptides from the marine sponge Geodia sp. J. Org. Chem., 1987, 52, 3091-3093.
[http://dx.doi.org/10.1021/jo00390a023]
(b) De Silva, E.D.; Andersen, R.J.; Allen, T.M. Geodiamolides C to F, new cytotoxic cyclodepsipeptides from the marine sponge Pseudaxinyssa sp. Tetrahedron Lett., 1990, 31, 489-492.
[http://dx.doi.org/10.1016/0040-4039(90)87015-R]
[4]
(a) Schmidt, U.; Siegel, W.; Mundinger, K. Total syntheses of jaspamide (jasplakinolide) and geodiamolide A and B - 1. Stereoselective synthesis of (2,4,6,8)-8-hydroxy-2,4,6-trimethyl-4-nonenoicic acid. Tetrahedron Lett., 1988, 29, 1269-1270.
[http://dx.doi.org/10.1016/S0040-4039(00)80273-7]
(b) Kato, S.; Hamada, Y.; Shioiri, T. A practical synthesis of the peptide part of jaspamide (jasplakinolide), a cyclodepsipeptide from a marine sponge. Tetrahedron Lett., 1988, 29, 6465-6466.
(c) Grieco, P.A.; Perez-Medrano, A. Total synthesis of the mixed peptide-polypropionate based cyclodepsipeptide (+)-geodiamolide B. Tetrahedron Lett., 1988, 29, 4225-4228.
(d) White, J.D.; Amedio, J.C., Jr Total synthesis of geodiamolide A, a novel cyclodepsipeptide of marine origin. J. Org. Chem., 1989, 54, 736-738.
[5]
Xu, Y.Y.; Liu, C.; Liu, Z.P. Advances in the total synthesis of cyclodepsipeptide (+)-jasplakinolide (jaspamide) and its analogs. Curr. Org. Synth., 2013, 10, 67-89.
[6]
Stingl, J.; Andersen, R.J.; Emerman, J.T. In vitro screening of crude extracts and pure metabolites obtained from marine invertebrates for the treatment of breast cancer. Cancer Chemother. Pharmacol., 1992, 30(5), 401-406.
[http://dx.doi.org/10.1007/BF00689969] [PMID: 1505079]
[7]
(a) Bubb, M.R.; Senderowicz, A.M.J.; Sausville, E.A.; Duncan, K.L.K.; Korn, E.D. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J. Biol. Chem., 1994, 269(21), 14869-14871.
[PMID: 8195116]
(b) Senderowicz, A.M.J.; Kaur, G.; Sainz, E.; Laing, C.; Inman, W.D.; Rodríguez, J.; Crews, P.; Malspeis, L.; Grever, M.R.; Sausville, E.A.; Duncan, K.L. Jasplakinolide’s inhibition of the growth of prostate carcinoma cells in vitro with disruption of the actin cytoskeleton. J. Natl. Cancer Inst., 1995, 87(1), 46-51.
[http://dx.doi.org/10.1093/jnci/87.1.46] [PMID: 7666463]
[8]
Freitas, V.M.; Rangel, M.; Bisson, L.F.; Jaeger, R.G.; Machado-Santelli, G.M. The geodiamolide H, derived from Brazilian sponge Geodia corticostylifera, regulates actin cytoskeleton, migration and invasion of breast cancer cells cultured in three-dimensional environment. J. Cell. Physiol., 2008, 216(3), 583-594.
[http://dx.doi.org/10.1002/jcp.21432] [PMID: 18330887]
[9]
Tinto, W.F.; Lough, A.J.; McLean, S.; Reynolds, W.F.; Yu, M.; Chan, W.R. Geodiamolides H and I, Further Cyclodepsipeptides from the Marine Sponge Geodia sp. Tetrahedron, 1998, 54, 4451-4458.
[http://dx.doi.org/10.1016/S0040-4020(98)00157-4]
[10]
Iizuka, T.; Fudou, R.; Jojima, Y.; Ogawa, S.; Yamanaka, S.; Inukai, Y.; Ojika, M. Miuraenamides A and B, Novel antimicrobial cyclic depsipeptides from a new slightly halophilic myxobacterium: taxonomy, oroduction, and biological properties. J. Antibiot. (Tokyo), 2006, 59, 385-391.
[http://dx.doi.org/10.1038/ja.2006.55] [PMID: 17025014]
[11]
(a) Garcia, R.O.; Krug, D.; Müller, R. Discovering natural products from myxobacteria with emphasis on rare producer strains in combination with improved analytical methods. Methods Enzymol, 2009, 458, 59-91.
[http://dx.doi.org/10.1016/S0076-6879(09)04803-4] [PMID: 19374979]
(b) Weissman, K.J.; Müller, R. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat. Prod. Rep., 2010, 27(9), 1276-1295.
[http://dx.doi.org/10.1039/c001260m] [PMID: 20520915]
[12]
(a) Nett, M.; König, G.M. The chemistry of gliding bacteria. Nat. Prod. Rep., 2007, 24(6), 1245-1261.
[http://dx.doi.org/10.1039/b612668p] [PMID: 18033578]
(b) Wenzel, S.C.; Müller, R. Myxobacteria--‘microbial factories’ for the production of bioactive secondary metabolites. Mol. Biosyst., 2009, 5(6), 567-574.
[http://dx.doi.org/10.1039/b901287g] [PMID: 19462013]
(c) Wenzel, S.C.; Müller, R. The biosynthetic potential of myxobacteria and their impact in drug discovery. Curr. Opin. Drug Discov. Devel., 2009, 12(2), 220-230.
[PMID: 19333867]
(d) Birkett, S.L.; Loits, D.A.; Wimala, S.; Rizzacasa, M.A. Synthesis of myxobacteria metabolites. Pure Appl. Chem., 2012, 84, 1421-1433.
[http://dx.doi.org/10.1351/PAC-CON-11-11-19]
[13]
(a) Schäberle, T.F.; Goralski, E.; Neu, E.; Erol, O.; Hölzl, G.; Dörmann, P.; Bierbaum, G.; König, G.M. Marine myxobacteria as a source of antibiotics-- comparison of physiology, polyketide-type genes and antibiotic production of three new isolates of Enhygromyxa salina. Mar. Drugs, 2010, 8(9), 2466-2479.
[http://dx.doi.org/10.3390/md8092466] [PMID: 20948900]
(b) García-Ruiz, C.; Sarabia, F. Chemistry and biology of bengamides and bengazoles, bioactive natural products from Jaspis sponges. Mar. Drugs, 2014, 12(3), 1580-1622.
[http://dx.doi.org/10.3390/md12031580] [PMID: 24646945]
(c) Dávila-Céspedes, A.; Hufendiek, P.; Crüsemann, M.; Schäberle, T.F.; König, G.M. Marine-derived myxobacteria of the suborder Nannocystineae: An underexplored source of structurally intriguing and biologically active metabolites. Beilstein J. Org. Chem., 2016, 12, 969-984.
[http://dx.doi.org/10.3762/bjoc.12.96] [PMID: 27340488]
[14]
Iizuka, T.; Fudou, R.; Jojima, Y.; Ogawa, S.; Yamanaka, S.; Inukai, Y.; Ojika, M. Miuraenamides A and B, novel antimicrobial cyclic depsipeptides from a new slightly halophilic myxobacterium: taxonomy, production, and biological properties. J. Antibiot. (Tokyo), 2006, 59(7), 385-391.
[http://dx.doi.org/10.1038/ja.2006.55] [PMID: 17025014]
[15]
Ojika, M.; Inukai, Y.; Kito, Y.; Hirata, M.; Iizuka, T.; Fudou, R. Miuraenamides: antimicrobial cyclic depsipeptides isolated from a rare and slightly halophilic myxobacterium. Chem. Asian J., 2008, 3(1), 126-133.
[http://dx.doi.org/10.1002/asia.200700233] [PMID: 18022981]
[16]
(a) Sumiya, E.; Shimogawa, H.; Sasaki, H.; Tsutsumi, M.; Yoshita, K.; Ojika, M.; Suenaga, K.; Uesugi, M. Cell-morphology profiling of a natural product library identifies bisebromoamide and miuraenamide A as actin filament stabilizers. ACS Chem. Biol., 2011, 6(5), 425-431.
[http://dx.doi.org/10.1021/cb1003459] [PMID: 21322638]
(b) Wang, S.; Crevenna, A.H.; Ugur, I.; Marion, A.; Antes, I.; Kazmaier, U.; Hoyer, M.; Lamb, D.C.; Gegenfurtner, F.; Kliesmete, Z.; Ziegenhain, C.; Enard, W.; Vollmar, A.; Zahler, S. Actin stabilizing compounds show specific biological effects due to their binding mode. Sci. Rep., 2019, 9(1), 9731.
[http://dx.doi.org/10.1038/s41598-019-46282-w] [PMID: 31278311]
[17]
Gorges, J.; Kjaerulff, L.; Panter, F.; Hoffmann, T.; Kazmaier, U.; Müller, R. Structure, Total synthesis and biosynthesis of Chloromyxamides: Myxobacterial tetrapeptides featuring an uncommon 6-chloromethyl-5-methoxypipecolic acid building block. Angew. Chem. Int. Ed., 2018, 57, 14270-14275.
[http://dx.doi.org/10.1002/anie.201808028]
[18]
(a) Ullrich, A.; Chai, Y.; Pistorius, D.; Elnakady, Y.A.; Herrmann, J.E.; Weissman, K.J.; Kazmaier, U.; Müller, R. Pretubulysin, a potent and chemically-accessible tubulysin precursor from Angiococcus disciformis. Angew. Chem. Int. Ed., 2009, 47, 4422-4425.
[http://dx.doi.org/10.1002/anie.200900406]
(b) Ullrich, A.; Herrmann, J.; Müller, R.; Kazmaier, U. Synthesis and biological evaluation of pretubulysin and derivatives. Eur. J. Org. Chem., 2009, 6367-6378.
[http://dx.doi.org/10.1002/ejoc.200900999]
(c) Chai, Y.; Pistorius, D.; Ullrich, A. Weissman, K. J.; Kazmaier, U.; Müller, R. Discovery of 23 novel natural tubulysins from Angiococcus disciformis An d48 and Cystobacter SBCb004. Chem. Biol., 2010, 17, 296-309.
[http://dx.doi.org/10.1016/j.chembiol.2010.01.016] [PMID: 20338521]
(d) Kazmaier, U.; Ullrich, A.; Hoffmann, J. Synthetic approaches towards tubulysins and their derivatives Open. Nat. Prod. J., 2013, 6, 12-30.
[http://dx.doi.org/10.2174/1874848101306010012]
[19]
(a) Herrmann, J.; Wiedmann, R.M.; Elnakady, Y.A.; Ullrich, A.; Rohde, M.; Kazmaier, U.; Vollmar, A.M.; Müller, R. Pretubulysins: from a hypothetical biosynthetic intermediate to potential lead in tumor therapie. PLoS One, 2012, 7(e37416), 1-12.
[http://dx.doi.org/10.1371/journal.pone.0037416]
(b) Kubisch, R.; von Gamm, M.; Braig, S.; Ullrich, A.; Burkhart, J.L.; Colling, L.; Hermann, J.; Scherer, O.; Müller, R.; Werz, O.; Kazmaier, U.; Vollmar, A.M. Simplified pretubulysin derivatives and their biological effects on cancer cells. J. Nat. Prod., 2014, 77(3), 536-542.
[http://dx.doi.org/10.1021/np4008014] [PMID: 24437936]
[20]
Eirich, J.; Burkhart, J.L.; Ullrich, A.; Rudolf, G.C.; Vollmar, A.; Zahler, S.; Kazmaier, U.; Sieber, S.A. Pretubulysin derived probes as novel tools for monitoring the microtubule network via activity-based protein profiling and fluorescence microscopy. Mol. Biosyst., 2012, 8(8), 2067-2075.
[http://dx.doi.org/10.1039/c2mb25144b] [PMID: 22722320]
[21]
(a) Herrmann, J.; Hüttel, S.; Müller, R. Discovery and biological activity of new chondramides from Chondromyces sp. ChemBioChem, 2013, 14(13), 1573-1580.
[http://dx.doi.org/10.1002/cbic.201300140] [PMID: 23959765]
(b) Becker, D.; Kazmaier, U. Synthesis of simplified halogenated chondramide derivatives as new actin-binding agents. Eur. J. Org. Chem., 2015, 2591-2602.
[http://dx.doi.org/10.1002/ejoc.201403577]
(c) Becker, D.; Kazmaier, U. Synthesis and biological evaluation of dichlorinated chondramide derivatives. Eur. J. Org. Chem., 2015, 4198-4213.
[http://dx.doi.org/10.1002/ejoc.201500369]
[22]
(a) Waldmann, H.; Hu, T-S.; Renner, S.; Menninger, S.; Tannert, R.; Oda, T.; Arndt, H-D. Total synthesis of chondramide C and its binding mode to F-actin. Angew. Chem. Int. Ed. Engl., 2008, 47(34), 6473-6477.
[http://dx.doi.org/10.1002/anie.200801010] [PMID: 18624308]
(b) Ma, C.I.; Diraviyam, K.; Maier, M.E.; Sept, D.; Sibley, L.D. Synthetic chondramide A analogues stabilize filamentous actin and block invasion by Toxoplasma gondii. J. Nat. Prod., 2013, 76(9), 1565-1572.
[http://dx.doi.org/10.1021/np400196w] [PMID: 24020843]
(c) Menhofer, M.H.; Kubisch, R.; Schreiner, L.; Zorn, M.; Foerster, F.; Mueller, R.; Raedler, J.O.; Wagner, E.; Vollmar, A.M.; Zahler, S. The actin targeting compound Chondramide inhibits breast cancer metastasis via reduction of cellular contractility. PLoS One, 2014, 9(11)e112542
[http://dx.doi.org/10.1371/journal.pone.0112542] [PMID: 25391145]
[23]
Karmann, L.; Schulz, K.; Herrmann, J.; Müller, R.; Kazmaier, U. Total syntheses and biological evaluation of miuraenamides. Angew. Chem. Int. Ed., 2015, 54, 4502-4507.
[http://dx.doi.org/10.1002/anie.201411212]
[24]
Ojima, D.; Yasui, A.; Tohyama, K.; Tokuzumi, K.; Toriihara, E.; Ito, K.; Iwasaki, A.; Tomura, T.; Ojika, M.; Suenaga, K. Total synthesis of miuraenamides A and D. J. Org. Chem., 2016, 81, 9886-9894.
[http://dx.doi.org/10.1021/acs.joc.6b02061]
[25]
Kappler, S.; Karmann, L.; Prudel, C.; Herrmann, J.; Caddeu, G.; Müller, R.; Vollmar, A.M.; Zahler, S.; Kazmaier, U. Synthesis and biological evaluation of modified miuraenamides. Eur. J. Org. Chem., 2018, 6952-6965.
[http://dx.doi.org/10.1021/jo00238a005]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy