Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Review Article Section: Pharmacology

Sole Anti-inflammatory Immunomodulators: Innovative Drugs to Prevent and Treat Autoimmune Diseases and Proteopathies

Author(s): Dante J. Marciani*

Volume 1, Issue 2, 2021

Published on: 07 January, 2021

Page: [273 - 285] Pages: 13

DOI: 10.2174/2210298101666210108110556

Abstract

Objective: To review the available sole anti-inflammatory immunomodulators or adjuvants, different from pro-inflammatory ones, which elicit a Th2 immunity while inhibiting but without abrogating Th1/Th17 immunities. Adjuvants that are useful to develop vaccines for T-cell mediated autoimmune conditions.

Methods: A literature search using PubMed and Google Scholar databases was made to identify reports regarding adjuvants, mechanisms of action, pro-inflammatory autoimmunity and vaccines to treat it, immunosuppressive agents, dendritic cells, helminths, immunotolerance, and infectious diseases causing autoimmunity.

Results: Some anti-inflammatory drugs to treat autoimmune diseases inhibit DNA or protein synthesis causing global immunosuppression, which is reduced by using biologics to block key steps in the inflammatory cascade. Fucosylated glycans from helminths, which are anti-inflammatory but not immune-suppressive, offer an avenue to develop better drugs. Fucosylated glycans bind to DC-SIGN, a receptor on dendritic cells, entering the cells via receptor-mediated endocytosis, biasing their immunoresponse to a sole Th2 anti-inflammatory immunity, while inhibiting the proinflammatory Th1/Th17 immunities. New anti-inflammatory drugs are particular plant-derived fucosylated glycosides with immunological properties like those of helminth-derived glycans. Another class of anti-inflammatory immunomodulators is ligands of the aromatic-hydrocarbon receptor, which by activating this intracellular receptor, boosts the differentiation of regulatory Tcells, inducing an anti-inflammatory immunity. However, aromatic ligands can also stimulate a pro-inflammatory response. Exogenous aromatic ligands are usually delivered intracellularly using carriers like nanoparticles, which upon translocation to the nucleus, activate this receptor.

Conclusion: Autoimmune conditions and some infectious diseases, characterized by organ damage due to pro-inflammatory autoimmune immunoresponses, could benefit from nonimmunosuppressive agents to modulate immunity; this way, averting a damaging inflammation.

Keywords: Anti-inflammatories, immunotolerance, immunosuppression, vaccines, proteopathies, autoimmunity, immunomodulation.

Graphical Abstract
[1]
Lerner, A.; Jeremias, P.; Matthias, T. The world incidence and prevalence of autoimmune diseases is increasing. Int. J. Celiac Dis., 2015, 3(4), 151-155.
[2]
AARDA report. The Cost Burden of Autoimmune Disease: The Latest Front in the War on Healthcare Spending.” , 2011.http://www.diabetesed.net/page/_files/autoimmune-diseases.pdf
[3]
Derry, H.M.; Padin, A.C.; Kuo, J.L. Sex differences in depression: does inflammation play a role? Curr. Psychiatry Rep., 2015, 17(10), 78.
[http://dx.doi.org/10.1007/s11920-015-0618-5]
[4]
O’Donovan, A.; Cohen, B.E.; Seal, K.H. Elevated risk for autoimmune disorders in Iraq and Afghanistan veterans with posttraumatic stress disorder. Biol. Psychiatry, 2015, 77(4), 365-374.
[http://dx.doi.org/10.1016/j.biopsych.2014.06.015]
[5]
Bromet, E.; Andrade, L.H.; Hwang, I. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med., 2011, 9(1), 90.
[http://dx.doi.org/10.1186/1741-7015-9-90]
[6]
Minter, M.R.; Taylor, J.M.; Crack, P.J. The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. J. Neurochem., 2016, 136(3), 457-474.
[http://dx.doi.org/10.1111/jnc.13411] [PMID: 26509334]
[7]
Russell, C.D.; Unger, S.A.; Walton, M.; Schwarze, J. The human immune response to respiratory syncytial virus infection. Clin. Microbiol. Rev., 2017, 30(2), 481-502.
[http://dx.doi.org/10.1128/CMR.00090-16] [PMID: 28179378]
[8]
Diamanti, A.P.; Rosado, M.M.; Pioli, C.; Sesti, G.; Laganà, B. Cytokine release syndrome in COVID-19 patients, a new scenario for an old concern: The fragile balance between infections and autoimmunity. Int. J. Mol. Sci., 2020, 21(9), 3330.
[http://dx.doi.org/10.3390/ijms21093330] [PMID: 32397174]
[9]
Henderson, L.A.; Canna, S.W.; Schulert, G.S.; Volpi, S.; Lee, P.Y.; Kernan, K.F.; Caricchio, R.; Mahmud, S.; Hazen, M.M.; Halyabar, O.; Hoyt, K.J.; Han, J.; Grom, A.A.; Gattorno, M.; Ravelli, A.; De Benedetti, F.; Behrens, E.M.; Cron, R.Q.; Nigrovic, P.A. On the alert for cytokine storm: Immunopathology in COVID-19. Arthritis Rheumatol., 2020, 72(7), 1059-1063.
[http://dx.doi.org/10.1002/art.41285] [PMID: 32293098]
[10]
Heidari, A.R.; Boroumand-Noughabi, S.; Nosratabadi, R.; Arab, F.L.; Tabasi, N.; Rastin, M.; Mahmoudi, M. Acylated and deacylated quillaja saponin-21 adjuvants have opposite roles when utilized for immunization of C57BL/6 mice model with MOG35-55 peptide. Mult. Scler. Relat. Disord., 2019, 29, 68-82.
[http://dx.doi.org/10.1016/j.msard.2019.01.025] [PMID: 30685444]
[11]
Mendoza, Y.G.; Garric, E.; Leach, A.; Lievens, M.; Ofori-Anyinam, O.; Pirçon, J.Y.; Stegmann, J.U.; Vandoolaeghe, P.; Otieno, L.; Otieno, W.; Owusu-Agyei, S.; Sacarlal, J.; Masoud, N.S.; Sorgho, H.; Tanner, M.; Tinto, H.; Valea, I.; Mtoro, A.T.; Njuguna, P.; Oneko, M.; Otieno, G.A.; Otieno, K.; Gesase, S.; Hamel, M.J.; Hoffman, I.; Kaali, S.; Kamthunzi, P.; Kremsner, P.; Lanaspa, M.; Lell, B.; Lusingu, J.; Malabeja, A.; Aide, P.; Akoo, P.; Ansong, D.; Asante, K.P.; Berkley, J.A.; Adjei, S.; Agbenyega, T.; Agnandji, S.T.; Schuerman, L. Safety profile of the RTS,S/AS01 malaria vaccine in infants and children: additional data from a phase III randomized controlled trial in sub-Saharan Africa. Hum. Vaccin. Immunother., 2019, 15(10), 2386-2398.
[http://dx.doi.org/10.1080/21645515.2019.1586040 PMID: 31012786]
[12]
Akira, S. Innate immunity and adjuvants. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2011, 366(1579), 2748-2755.
[http://dx.doi.org/10.1098/rstb.2011.0106] [PMID: 21893536]
[13]
Spreafico, R.; Ricciardi-Castagnoli, P.; Mortellaro, A. The controversial relationship between NLRP3, alum, danger signals and the next-generation adjuvants. Eur. J. Immunol., 2010, 40(3), 638-642.
[http://dx.doi.org/10.1002/eji.200940039] [PMID: 20201020]
[14]
Cain, D.W.; Sanders, S.E.; Cunningham, M.M.; Kelsoe, G. Disparate adjuvant properties among three formulations of “alum”. Vaccine, 2013, 31(4), 653-660.
[http://dx.doi.org/10.1016/j.vaccine.2012.11.044] [PMID: 23200935]
[15]
Bachmann, M.F.; Jennings, G.T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol., 2010, 10(11), 787-796.
[http://dx.doi.org/10.1038/nri2868] [PMID: 20948547]
[16]
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6, 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[17]
Li, P.; Zheng, Y.; Chen, X. Drugs for autoimmune inflammatory diseases: From small molecule compounds to anti-TNF biologics. Front. Pharmacol., 2017, 8, 460.
[http://dx.doi.org/10.3389/fphar.2017.00460] [PMID: 28785220]
[18]
Lim, H.; Lee, S.H.; Lee, H.T.; Lee, J.U.; Son, J.Y.; Shin, W.; Heo, Y.S. Structural biology of the TNFα antagonists used in the treatment of rheumatoid arthritis. Int. J. Mol. Sci., 2018, 19(3), 768.
[http://dx.doi.org/10.3390/ijms19030768] [PMID: 29518978]
[19]
Rosenblum, M.D.; Gratz, I.K.; Paw, J.S.; Abbas, A.K. Treating human autoimmunity: current practice and future prospects. Sci. Transl. Med., 2012, 4(125)125sr1
[http://dx.doi.org/10.1126/scitranslmed.3003504] [PMID: 22422994]
[20]
Kong, Y.C.; Flynn, J.C. Opportunistic autoimmune disorders potentiated by immune-checkpoint inhibitors anti-CTLA-4 and anti-PD-1. Front. Immunol., 2014, 5, 206.
[http://dx.doi.org/10.3389/fimmu.2014.00206] [PMID: 24904570]
[21]
Inaoka, M.; Kimishima, M.; Takahashi, R.; Shiohara, T. Non-steroidal anti-inflammatory drugs selectively inhibit cytokine production by NK cells and gamma delta T cells. Exp. Dermatol., 2006, 15(12), 981-990.
[http://dx.doi.org/10.1111/j.1600-0625.2006.00505.x] [PMID: 17083365]
[22]
Lisboa, F.A.; Bradley, M.J.; Hueman, M.T.; Schobel, S.A.; Gaucher, B.J.; Styrmisdottir, E.L.; Potter, B.K.; Forsberg, J.A.; Elster, E.A. Nonsteroidal anti-inflammatory drugs may affect cytokine response and benefit healing of combat-related extremity wounds. Surgery, 2017, 161(4), 1164-1173.
[http://dx.doi.org/10.1016/j.surg.2016.10.011] [PMID: 27919449]
[23]
Süleyman, H.; Demircan, B.; Karagöz, Y. Anti-inflammatory and side effects of cyclooxygenase inhibitors. Pharmacol. Rep., 2007, 59(3), 247-258.
[PMID: 17652824]
[24]
Harirforoosh, S.; Asghar, W.; Jamali, F. Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J. Pharm. Pharm. Sci., 2013, 16(5), 821-847.
[http://dx.doi.org/10.18433/J3VW2F] [PMID: 24393558]
[25]
Ramamoorthy, S.; Cidlowski, J.A. Corticosteroids-mechanisms of action in health and disease. Rheum. Dis. Clin. North Am., 2016, 42(1), 15-31. vii
[http://dx.doi.org/10.1016/j.rdc.2015.08.002] [PMID: 26611548]
[26]
Newton, R. Molecular mechanisms of glucocorticoid action: what is important? Thorax, 2000, 55(7), 603-613.
[http://dx.doi.org/10.1136/thorax.55.7.603] [PMID: 10856322]
[27]
Newton, R.; Shah, S.; Altonsy, M.O.; Gerber, A.N. Glucocorticoid and cytokine crosstalk: Feedback, feedforward, and co-regulatory interactions determine repression or resistance. J. Biol. Chem., 2017, 292(17), 7163-7172.
[http://dx.doi.org/10.1074/jbc.R117.777318] [PMID: 28283576]
[28]
Kohler, O.; Krogh, J.; Mors, O.; Benros, M.E. Inflammation in depression and the potential for anti-inflammatory treatment. Curr. Neuropharmacol., 2016, 14(7), 732-742.
[http://dx.doi.org/10.2174/1570159X14666151208113700] [PMID: 27640518]
[29]
Najjar, S.; Pearlman, D.M.; Alper, K.; Najjar, A.; Devinsky, O. Neuroinflammation and psychiatric illness. J. Neuroinflammation, 2013, 10, 43.
[http://dx.doi.org/10.1186/1742-2094-10-43] [PMID: 23547920]
[30]
Breitner, J.C.; Baker, L.D.; Montine, T.J.; Meinert, C.L.; Lyketsos, C.G.; Ashe, K.H.; Brandt, J.; Craft, S.; Evans, D.E.; Green, R.C.; Ismail, M.S.; Martin, B.K.; Mullan, M.J.; Sabbagh, M.; Tariot, P.N. ADAPT Research Group. Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimers Dement., 2011, 7(4), 402-411.
[http://dx.doi.org/10.1016/j.jalz.2010.12.014] [PMID: 21784351]
[31]
Fox, M.; Knapp, L.A.; Andrews, P.W.; Fincher, C.L. Hygiene and the world distribution of Alzheimer’s disease: Epidemiological evidence for a relationship between microbial environment and age-adjusted disease burden. Evol. Med. Public Health, 2013, 2013(1), 173-186.
[http://dx.doi.org/10.1093/emph/eot015] [PMID: 24481197]
[32]
Zaccone, P.; Cooke, A. Vaccine against autoimmune disease: can helminths or their products provide a therapy? Curr. Opin. Immunol., 2013, 25(3), 418-423.
[http://dx.doi.org/10.1016/j.coi.2013.02.006] [PMID: 23465465]
[33]
Prince, M.J. World Alzheimer Report 2015: The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends. 2015., https://www.alz.co.uk/research/world-report-2015
[34]
Yeste, A.; Nadeau, M.; Burns, E.J.; Weiner, H.L.; Quintana, F.J. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA, 2012, 109(28), 11270-11275.
[http://dx.doi.org/10.1073/pnas.1120611109] [PMID: 22745170]
[35]
Northrup, L.; Christopher, M.A.; Sullivan, B.P.; Berkland, C. Combining antigen and immunomodulators: Emerging trends in antigen-specific immunotherapy for autoimmunity. Adv. Drug Deliv. Rev., 2016, 98, 86-98.
[http://dx.doi.org/10.1016/j.addr.2015.10.020] [PMID: 26546466]
[36]
Atassi, M.Z.; Casali, P. Molecular mechanisms of autoimmunity. Autoimmunity, 2008, 41(2), 123-132.
[http://dx.doi.org/10.1080/08916930801929021] [PMID: 18324481]
[37]
Riedhammer, C.; Weissert, R. Antigen presentation, autoantigens, and immune regulation in multiple sclerosis and other autoimmune diseases. Front. Immunol., 2015.
[http://dx.doi.org/10.3389/fimmu.2015.00322]
[38]
Doyle, H.A.; Yang, M.L.; Raycroft, M.T.; Gee, R.J.; Mamula, M.J. Autoantigens: novel forms and presentation to the immune system. Autoimmunity, 2014, 47(4), 220-233.
[http://dx.doi.org/10.3109/08916934.2013.850495] [PMID: 24191689]
[39]
Shakya, A.K.; Nandakumar, K.S. Antigen-specific tolerization and targeted delivery as therapeutic strategies for autoimmune diseases. Trends Biotechnol., 2018, 36(7), 686-699.
[http://dx.doi.org/10.1016/j.tibtech.2018.02.008] [PMID: 29588069]
[40]
Press, J.B.; Reynolds, R.C.; May, R.D. Structure/function relationships of immunostimulating saponins. Stud. Nat. Prod. Chem., 2000, 24, 131-174.
[http://dx.doi.org/10.1016/S1572-5995(00)80045-9]
[41]
Wing, K.; Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol., 2010, 11(1), 7-13.
[http://dx.doi.org/10.1038/ni.1818] [PMID: 20016504]
[42]
Liu, J.; Cao, X. Regulatory dendritic cells in autoimmunity: A comprehensive review. J. Autoimmun., 2015, 63, 1-12.
[http://dx.doi.org/10.1016/j.jaut.2015.07.011] [PMID: 26255250]
[43]
Hopp, A.K.; Rupp, A.; Lukacs-Kornek, V. Self-antigen presentation by dendritic cells in autoimmunity. Front. Immunol., 2014, 5, 55.
[http://dx.doi.org/10.3389/fimmu.2014.00055] [PMID: 24592266]
[44]
Jackson, J.A.; Friberg, I.M.; Little, S.; Bradley, J.E. Review series on helminths, immune modulation and the hygiene hypothesis: immunity against helminths and immunological phenomena in modern human populations: coevolutionary legacies? Immunology, 2009, 126(1), 18-27.
[http://dx.doi.org/10.1111/j.1365-2567.2008.03010.x] [PMID: 19120495]
[45]
van Erp, E.A.; Luytjes, W.; Ferwerda, G.; van Kasteren, P.B. Fc-mediated antibody effector functions during respiratory syncytial virus infection and disease. Front. Immunol., 2019, 10, 548.
[http://dx.doi.org/10.3389/fimmu.2019.00548] [PMID: 30967872]
[46]
Delgado, M.F.; Coviello, S.; Monsalvo, A.C. Lack of antibody affinity maturation due to poor Toll stimulation led to enhanced RSV disease. Nat. Med., 2009, 15, 34-41.
[http://dx.doi.org/10.1038/nm.1894] [PMID: 19079256]
[47]
Alter, G.; Ottenhoff, T.H.M.; Joosten, S.A. Antibody glycosylation in inflammation, disease and vaccination. Semin. Immunol., 2018, 39, 102-110.
[http://dx.doi.org/10.1016/j.smim.2018.05.003] [PMID: 29903548]
[48]
Gutiérrez-Vázquez, C.; Quintana, F.J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity, 2018, 48(1), 19-33.
[http://dx.doi.org/10.1016/j.immuni.2017.12.012] [PMID: 29343438]
[49]
Hao, N.; Whitelaw, M.L. The emerging roles of AhR in physiology and immunity. Biochem. Pharmacol., 2013, 86(5), 561-570.
[http://dx.doi.org/10.1016/j.bcp.2013.07.004] [PMID: 23856287]
[50]
Stejskalova, L.; Dvorak, Z.; Pavek, P. Endogenous and exogenous ligands of aryl hydrocarbon receptor: current state of art. Curr. Drug Metab., 2011, 12(2), 198-212.
[http://dx.doi.org/10.2174/138920011795016818] [PMID: 21395538]
[51]
Soshilov, A.A.; Denison, M.S. Ligand promiscuity of aryl hydrocarbon receptor agonists and antagonists revealed by site-directed mutagenesis. Mol. Cell. Biol., 2014, 34(9), 1707-1719.
[http://dx.doi.org/10.1128/MCB.01183-13] [PMID: 24591650]
[52]
Perkins, A.; Phillips, J.L.; Kerkvliet, N.I.; Tanguay, R.L.; Perdew, G.H.; Kolluri, S.K.; Bisson, W.H. A structural switch between agonist and antagonist bound conformations for a ligand-optimized model of the human aryl hydrocarbon receptor ligand binding domain. Biology (Basel), 2014, 3(4), 645-669.
[http://dx.doi.org/10.3390/biology3040645] [PMID: 25329374]
[53]
Ince-Askan, H.; Dolhain, R.J. Pregnancy and rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol., 2015, 29(4-5), 580-596.
[http://dx.doi.org/10.1016/j.berh.2015.07.001] [PMID: 26697768]
[54]
Kourtis, A.P.; Read, J.S.; Jamieson, D.J. Pregnancy and infection. N. Engl. J. Med., 2014, 370(23), 2211-2218.
[http://dx.doi.org/10.1056/NEJMra1213566] [PMID: 24897084]
[55]
Anderson, G.; Maes, M. Postpartum depression: psychoneuroimmunological underpinnings and treatment. Neuropsychiatr. Dis. Treat., 2013, 9, 277-287.
[http://dx.doi.org/10.2147/NDT.S25320] [PMID: 23459664]
[56]
Reiding, K.R.; Vreeker, G.C.M.; Bondt, A.; Bladergroen, M.R.; Hazes, J.M.W.; Van der Burgt, Y.E.M.; Wuhrer, M.; Dolhain, R.J.E.M. Serum protein N-glycosylation changes with rheumatoid arthritis disease activity during and after pregnancy. Front. Med. (Lausanne), 2018, 4, 241.
[http://dx.doi.org/10.3389/fmed.2017.00241] [PMID: 29359131]
[57]
Li, J.; Hsu, H.C.; Ding, Y.; Li, H.; Wu, Q.; Yang, P.; Luo, B.; Rowse, A.L.; Spalding, D.M.; Bridges, S.L., Jr; Mountz, J.D. Inhibition of fucosylation reshapes inflammatory macrophages and suppresses type II collagen-induced arthritis. Arthritis Rheumatol., 2014, 66(9), 2368-2379.
[http://dx.doi.org/10.1002/art.38711] [PMID: 24838610]
[58]
Okano, M.; Satoskar, A.R.; Nishizaki, K.; Harn, D.A., Jr Lacto-N-fucopentaose III found on Schistosoma mansoni egg antigens functions as adjuvant for proteins by inducing Th2-type response. J. Immunol., 2001, 167(1), 442-450.
[http://dx.doi.org/10.4049/jimmunol.167.1.442] [PMID: 11418681]
[59]
Clark, G.F. The role of glycans in immune evasion: the human fetoembryonic defence system hypothesis revisited. Mol. Hum. Reprod., 2014, 20(3), 185-199.
[http://dx.doi.org/10.1093/molehr/gat064] [PMID: 24043694]
[60]
Gringhuis, S.I.; Kaptein, T.M.; Wevers, B.A.; Mesman, A.W.; Geijtenbeek, T.B. Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKε- and CYLD-dependent Bcl3 activation. Nat. Commun., 2014, 5, 3898.
[http://dx.doi.org/10.1038/ncomms4898] [PMID: 24867235]
[61]
Marciani, D.J. New Th2 adjuvants for preventive and active immunotherapy of neurodegenerative proteinopathies. Drug Discov. Today, 2014, 19(7), 912-920.
[http://dx.doi.org/10.1016/j.drudis.2014.02.015] [PMID: 24607730]
[62]
Marciani, D.J. Is fucose the answer to the immunomodulatory paradox of Quillaja saponins? Int. Immunopharmacol., 2015, 29(2), 908-913.
[http://dx.doi.org/10.1016/j.intimp.2015.10.028] [PMID: 26603552]
[63]
Tundup, S.; Srivastava, L.; Harn, D.A., Jr Polarization of host immune responses by helminth-expressed glycans. Ann. N. Y. Acad. Sci., 2012, 1253, E1-E13.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06618.x] [PMID: 22974465]
[64]
Bhargava, P.; Li, C.; Stanya, K.J.; Jacobi, D.; Dai, L.; Liu, S.; Gangl, M.R.; Harn, D.A.; Lee, C.H. Immunomodulatory glycan LNFPIII alleviates hepatosteatosis and insulin resistance through direct and indirect control of metabolic pathways. Nat. Med., 2012, 18(11), 1665-1672.
[http://dx.doi.org/10.1038/nm.2962] [PMID: 23104131]
[65]
Zhu, B.; Trikudanathan, S.; Zozulya, A.L.; Sandoval-Garcia, C.; Kennedy, J.K.; Atochina, O.; Norberg, T.; Castagner, B.; Seeberger, P.; Fabry, Z.; Harn, D.; Khoury, S.J.; Guleria, I. Immune modulation by Lacto-N-fucopentaose III in experimental autoimmune encephalomyelitis. Clin. Immunol., 2012, 142(3), 351-361.
[http://dx.doi.org/10.1016/j.clim.2011.12.006] [PMID: 22264636]
[66]
He, P.; Zou, Y.; Hu, Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum. Vaccin. Immunother., 2015, 11(2), 477-488.
[http://dx.doi.org/10.1080/21645515.2014.1004026] [PMID: 25692535]
[67]
Kooijman, S.; Brummelman, J.; Van Els, C.A.C.M.; Marino, F.; Heck, A.J.R.; Mommen, G.P.M.; Metz, B.; Kersten, G.F.A.; Pennings, J.L.A.; Meiring, H.D. Novel identified aluminum hydroxide-induced pathways prove monocyte activation and pro-inflammatory preparedness. J. Proteomics, 2018, 175, 144-155.
[http://dx.doi.org/10.1016/j.jprot.2017.12.021] [PMID: 29317357]
[68]
Cook, D.P.; Gysemans, C.; Mathieu, C. Prospects of a type 1 diabetes vaccine. Expert Opin. Biol. Ther., 2017, 17(4), 403-406.
[http://dx.doi.org/10.1080/14712598.2017.1295035] [PMID: 28274141]
[69]
Robert, S.; Korf, H.; Gysemans, C.; Mathieu, C. Antigen-based vs. systemic immunomodulation in type 1 diabetes: the pros and cons. Islets, 2013, 5(2), 53-66.
[http://dx.doi.org/10.4161/isl.24785] [PMID: 23648893]
[70]
Kooijman, S.; Brummelman, J.; Van Els, C.A.C.M.; Marino, F.; Heck, A.J.R.; Van Riet, E.; Metz, B.; Kersten, G.F.A.; Pennings, J.L.A.; Meiring, H.D. Vaccine antigens modulate the innate response of monocytes to Al(OH)3. PLoS One, 2018, 13(5)e0197885
[http://dx.doi.org/10.1371/journal.pone.0197885] [PMID: 29813132]
[71]
Marciani, D.J. Elucidating the mechanisms of action of saponin derived adjuvants. Trends Pharmacol. Sci., 2018, 39(6), 573-585.
[http://dx.doi.org/10.1016/j.tips.2018.03.005] [PMID: 29655658]
[72]
Marciani, D.J. Effects of immunomodulators on the response induced by vaccines against autoimmune diseases. Autoimmunity, 2017, 50(7), 393-402.
[http://dx.doi.org/10.1080/08916934.2017.1373766] [PMID: 28906131]
[73]
Shaide, K-T.C.; Anthony, R.M. Antibody glycosylation and inflammation. Antibodies (Basel), 2013, 2, 392-414.
[http://dx.doi.org/10.3390/antib2030392]
[74]
Schwab, I.; Nimmerjahn, F. Role of sialylation in the anti-inflammatory activity of intravenous immunoglobulin - F(ab’)2 versus Fc sialylation. Clin. Exp. Immunol., 2014, 178(Suppl. 1), 97-99.
[http://dx.doi.org/10.1111/cei.12527] [PMID: 25546778]
[75]
Jones, M.B.; Oswald, D.M.; Joshi, S.; Whiteheart, S.W.; Orlando, R.; Cobb, B.A. B-cell-independent sialylation of IgG. Proc. Natl. Acad. Sci. USA, 2016, 113(26), 7207-7212.
[http://dx.doi.org/10.1073/pnas.1523968113] [PMID: 27303031]
[76]
White, R.R.; Artavanis-Tsakonas, K. How helminths use excretory secretory fractions to modulate dendritic cells. Virulence, 2012, 3(7), 668-677.
[http://dx.doi.org/10.4161/viru.22832] [PMID: 23221477]
[77]
Anderluh, M.; Jug, G.; Svajger, U.; Obermajer, N. DC-SIGN antagonists, a potential new class of anti-infectives. Curr. Med. Chem., 2012, 19(7), 992-1007.
[http://dx.doi.org/10.2174/092986712799320664] [PMID: 22257062]
[78]
Garber, K.C.; Wangkanont, K.; Carlson, E.E.; Kiessling, L.L. A general glycomimetic strategy yields non-carbohydrate inhibitors of DC-SIGN. Chem. Commun. (Camb.), 2010, 46(36), 6747-6749.
[http://dx.doi.org/10.1039/c0cc00830c] [PMID: 20717628]
[79]
Grim, J.C.; Garber, K.C.A.; Kiessling, L.L. Glycomimetic building blocks: a divergent synthesis of epimers of shikimic acid. Org. Lett., 2011, 13(15), 3790-3793.
[http://dx.doi.org/10.1021/ol201252x] [PMID: 21711006]
[80]
Prost, L.R.; Grim, J.C.; Tonelli, M.; Kiessling, L.L. Noncarbohydrate glycomimetics and glycoprotein surrogates as DC-SIGN antagonists and agonists. ACS Chem. Biol., 2012, 7(9), 1603-1608.
[http://dx.doi.org/10.1021/cb300260p] [PMID: 22747463]
[81]
Reina, J.J.; Bernardi, A. Carbohydrate mimics and lectins: a source of new drugs and therapeutic opportunities. Mini Rev. Med. Chem., 2012, 12(14), 1434-1442.
[http://dx.doi.org/10.2174/138955712803832690] [PMID: 22827173]
[82]
Andreini, M.; Doknic, D.; Sutkeviciute, I.; Reina, J.J.; Duan, J.; Chabrol, E.; Thepaut, M.; Moroni, E.; Doro, F.; Belvisi, L.; Weiser, J.; Rojo, J.; Fieschi, F.; Bernardi, A. Second generation of fucose-based DC-SIGN ligands: affinity improvement and specificity versus Langerin. Org. Biomol. Chem., 2011, 9(16), 5778-5786.
[http://dx.doi.org/10.1039/c1ob05573a] [PMID: 21735039]
[83]
Wang, Y.; Da’Dara, A.A.; Thomas, P.G.; Harn, D.A. Dendritic cells activated by an anti-inflammatory agent induce CD4(+) T helper type 2 responses without impairing CD8(+) memory and effector cytotoxic T-lymphocyte responses. Immunology, 2010, 129(3), 406-417.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03193.x] [PMID: 19922421]
[84]
Tundup, S.; Srivastava, L.; Norberg, T.; Watford, W.; Harn, D. A neoglycoconjugate containing the milk sugar LNFPIII drives anti-inflammatory activation of antigen presenting cells in a CD14 dependent pathway. PLoS One, 2015, 10(9)e0137495
[http://dx.doi.org/10.1371/journal.pone.0137495] [PMID: 26340260]
[85]
Guo, Y.; Feinberg, H.; Conroy, E.; Mitchell, D.A.; Alvarez, R.; Blixt, O.; Taylor, M.E.; Weis, W.I.; Drickamer, K. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat. Struct. Mol. Biol., 2004, 11(7), 591-598.
[http://dx.doi.org/10.1038/nsmb784] [PMID: 15195147]
[86]
Terhune, T.D.; Deth, R.C. A role for impaired regulatory T cell function in adverse responses to aluminum adjuvant-containing vaccines in genetically susceptible individuals. Vaccine, 2014, 32(40), 5149-5155.
[http://dx.doi.org/10.1016/j.vaccine.2014.07.052] [PMID: 25066736]
[87]
Terhune, T.D.; Deth, R.C. Aluminum adjuvant-containing vaccines in the context of the hygiene hypothesis: A risk factor for eosinophilia an allergy in a susceptible subpopulation? Int. J. Environ. Res. Public Health, 2018, 15(5), 901.
[http://dx.doi.org/10.3390/ijerph15050901] [PMID: 29751492]
[88]
Marciani, D.J. A retrospective analysis of the Alzheimer’s disease vaccine progress - The critical need for new development strategies. J. Neurochem., 2016, 137(5), 687-700.
[http://dx.doi.org/10.1111/jnc.13608] [PMID: 26990863]
[89]
Marciani, D.J. Promising results from Alzheimer’s disease passive immunotherapy support the development of a preventive vaccine. Research (Wash D C), 2019, 20195341375
[http://dx.doi.org/10.34133/2019/5341375] [PMID: 31549066]
[90]
Chae, W-J.; Bothwell, A.L.M. Therapeutic potential of gene-modified regulatory T cells: From bench to bedside. Front. Immunol., 2018, 9, 303.
[http://dx.doi.org/10.3389/fimmu.2018.00303] [PMID: 29503652]
[91]
Safari, F.; Farajnia, S.; Arya, M.; Zarredar, H.; Nasrolahi, A. CRISPR and personalized Treg therapy: new insights into the treatment of rheumatoid arthritis. Immunopharmacol. Immunotoxicol., 2018, 40(3), 201-211.
[http://dx.doi.org/10.1080/08923973.2018.1437625] [PMID: 29473438]
[92]
Baylis, F. The potential harms of human gene editing using CRISPR-Cas9. Clin. Chem., 2018, 64(3), 489-491.
[http://dx.doi.org/10.1373/clinchem.2017.278317] [PMID: 29490999]
[93]
Lopez-Herrera, G.; Tampella, G.; Pan-Hammarström, Q.; Herholz, P.; Trujillo-Vargas, C.M.; Phadwal, K.; Simon, A.K.; Moutschen, M.; Etzioni, A.; Mory, A.; Srugo, I.; Melamed, D.; Hultenby, K.; Liu, C.; Baronio, M.; Vitali, M.; Philippet, P.; Dideberg, V.; Aghamohammadi, A.; Rezaei, N.; Enright, V.; Du, L.; Salzer, U.; Eibel, H.; Pfeifer, D.; Veelken, H.; Stauss, H.; Lougaris, V.; Plebani, A.; Gertz, E.M.; Schäffer, A.A.; Hammarström, L.; Grimbacher, B. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am. J. Hum. Genet., 2012, 90(6), 986-1001.
[http://dx.doi.org/10.1016/j.ajhg.2012.04.015] [PMID: 22608502]
[94]
Verma, N.; Burns, S.O.; Walker, L.S.K.; Sansom, D.M. Immune deficiency and autoimmunity in patients with CTLA-4 (CD152) mutations. Clin. Exp. Immunol., 2017, 190(1), 1-7.
[http://dx.doi.org/10.1111/cei.12997] [PMID: 28600865]
[95]
Mout, R.; Ray, M.; Lee, Y-W.; Scaletti, F.; Rotello, V.M. In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: Progress and challenges. Bioconjug. Chem., 2017, 28(4), 880-884.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00057] [PMID: 28263568]
[96]
Kosicki, M.; Tomberg, K.; Bradley, A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol., 2018, 36(8), 765-771.
[http://dx.doi.org/10.1038/nbt.4192] [PMID: 30010673]
[97]
Ihry, R.J.; Worringer, K.A.; Salick, M.R.; Frias, E.; Ho, D.; Theriault, K.; Kommineni, S.; Chen, J.; Sondey, M.; Ye, C.; Randhawa, R.; Kulkarni, T.; Yang, Z.; McAllister, G.; Russ, C.; Reece-Hoyes, J.; Forrester, W.; Hoffman, G.R.; Dolmetsch, R.; Kaykas, A. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat. Med., 2018, 24(7), 939-946.
[http://dx.doi.org/10.1038/s41591-018-0050-6] [PMID: 29892062]
[98]
Haapaniemi, E.; Botla, S.; Persson, J.; Schmierer, B.; Taipale, J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med., 2018, 24(7), 927-930.
[http://dx.doi.org/10.1038/s41591-018-0049-z] [PMID: 29892067]
[99]
Skryabin, B.V.; Kummerfeld, D-M.; Gubar, L.; Seeger, B.; Kaiser, H.; Stegemann, A.; Roth, J.; Meuth, S.G.; Pavenstädt, H.; Sherwood, J.; Pap, T.; Wedlich-Söldner, R.; Sunderkötter, C.; Schwartz, Y.B.; Brosius, J.; Rozhdestvensky, T.S. Pervasive head-to-tail insertions of DNA templates mask desired CRISPR-Cas9-mediated genome editing events. Sci. Adv., 2020, 6(7)eaax2941
[http://dx.doi.org/10.1126/sciadv.aax2941] [PMID: 32095517]
[100]
Boers, M. Excessive pricing causes poor access to biologics. J. Rheumatol., 2018, 45(6), 876.
[http://dx.doi.org/10.3899/jrheum.171401] [PMID: 29858458]
[101]
Leonard, B.E. The concept of depression as a dysfunction of the immune system. Curr. Immunol. Rev., 2010, 6(3), 205-212.
[http://dx.doi.org/10.2174/157339510791823835] [PMID: 21170282]
[102]
Duthie, M.S.; Windish, H.P.; Fox, C.B.; Reed, S.G. Use of defined TLR ligands as adjuvants within human vaccines. Immunol. Rev., 2011, 239(1), 178-196.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00978.x] [PMID: 21198672]

© 2024 Bentham Science Publishers | Privacy Policy