Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Bioinformatics

Computational Insight into the Binding Mechanism of Pyrazinoic Acid to RpsA Protein

Author(s): Ashfaq Ur Rehman, Saadat Ali, Humaira Rafiq, Salman Rasheed, Faisal Nouroz and Abdul Wadood*

Volume 1, Issue 2, 2021

Published on: 07 January, 2021

Page: [207 - 215] Pages: 9

DOI: 10.2174/2210298101666210108105814

Abstract

Background: Resistance to the critical first line anti-tubercular drug, Pyrazinamide, is a significant obstacle to achieving the global end to tuberculosis targets. Approximately 50% of multidrug- resistant tuberculosis and over 90% of extensively drug-resistant tuberculosis strains are also Pyrazinamide resistant. Pyrazinamide is a pro-drug that reduces the duration of tuberculosis therapy time by 9-12 months, while used as an anti-biotic in the 1st- & 2nd-line tuberculosis treatment regimens. Pyrazinamidase is an enzyme encoded by pncA gene, which is responsible for the amide hydrolysis of pyrazinamide into active pyrazinoic acid. Pyrazinoic acid can inhibit trans-translation by binding to ribosomal protein S1 and competing with tmRNA, the natural cofactor of ribosomal protein S1. Although pncA mutations have been commonly associated with pyrazinamide resistance, a small number of resistance cases have been associated with mutations in ribosomal protein S1. Ribosomal protein S1was recently identified as a possible target of pyrazinamide based on its binding activity to pyrazinoic acid and the capacity to inhibit trans-translation.

Objective: Despite the critical role played by pyrazinamide, its mechanisms of action are not yet fully understood. Therefore, this study is an effort to explore the resistance mechanism toward pyrazinamide drug in Mycobacterium (M.) tuberculosis.

Methods: An extensive molecular dynamics simulation was performed using the AMBER software package. We mutated residues of the binding site (i.e., F307A, F310A, and R357A) in the RpsA S1 domain to address the drug-resistant mechanism of RpsA in complex that might be responsible for pyrazinamide resistance.

Moreover, it is challenging to collect the drug mutant to combine the complex of a protein by single- crystal X-ray diffraction. Thus, the total three structures were prepared by inducing mutations in the wild-type protein using PyMol.

Results: The dynamic results revealed that a mutation in the binding pocket produced pyrazinamide resistance due to the specificity of these residues in binding pockets, which resulted in the scarcity of hydrophobic and hydrogen bonding interaction with pyrazinoic acid, increasing the CAdistance between the binding pocket residues as compared to wild type RpsA that led to structural instability.

Conclusion: The overall dynamic results will provide useful information behind the drug resistance mechanism to manage tuberculosis and also helps in better management for future drug resistance.

Keywords: Pyrazinamide, pyrazinoic acid, rpsa protein, tuberculosis, multidrug-resistant tb (mdr-tb), molecular dynamic simulation.

Graphical Abstract
[1]
Organization, W.H. Compendium of WHO guidelines and associated standards: ensuring optimum delivery of the cascade of care for patients with tuberculosis, 2018.
[2]
Benson, C.A. Guidelines for prevention and treatment opportunistic infections in HIV-infected adults and adolescents; recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association/Infectious Diseases Society of America.,, 2009.
[3]
Mazurek, G.H.; LoBue, P.A.; Daley, C.L.; Bernardo, J.; Lardizabal, A.A.; Bishai, W.R.; Iademarco, M.F.; Rothel, J.S. Comparison of a whole-blood interferon γ assay with tuberculin skin testing for detecting latent Mycobacterium tuberculosis infection. JAMA, 2001, 286(14), 1740-1747.
[http://dx.doi.org/10.1001/jama.286.14.1740] [PMID: 11594899]
[4]
Mckenzie, D.; Malone, L. The effect of nicotinic acid amide on experimental tuberculosis of white mice. J. Lab. Clin. Med., 1948, 33(10), 1249-1253.
[PMID: 18886322]
[5]
De la Rua-Domenech, R.; Goodchild, A.T.; Vordermeier, H.M.; Hewinson, R.G.; Christiansen, K.H.; Clifton-Hadley, R.S. Ante mortem diagnosis of tuberculosis in cattle: a review of the tuberculin tests, γ-interferon assay and other ancillary diagnostic techniques. Res. Vet. Sci., 2006, 81(2), 190-210.
[http://dx.doi.org/10.1016/j.rvsc.2005.11.005] [PMID: 16513150]
[6]
Mitchison, D.A. The action of antituberculosis drugs in short-course chemotherapy. Tubercle, 1985, 66(3), 219-225.
[http://dx.doi.org/10.1016/0041-3879(85)90040-6] [PMID: 3931319]
[7]
Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.; Neefs, J.M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005, 307(5707), 223-227.
[http://dx.doi.org/10.1126/science.1106753] [PMID: 15591164]
[8]
Tasneen, R.; Tyagi, S.; Williams, K.; Grosset, J.; Nuermberger, E. Enhanced bactericidal activity of rifampin and/or pyrazinamide when combined with PA-824 in a murine model of tuberculosis. Antimicrob. Agents Chemother., 2008, 52(10), 3664-3668.
[http://dx.doi.org/10.1128/AAC.00686-08] [PMID: 18694943]
[9]
Scorpio, A.; Zhang, Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med., 1996, 2(6), 662-667.
[http://dx.doi.org/10.1038/nm0696-662] [PMID: 8640557]
[10]
Zhang, Y.; Mitchison, D. The curious characteristics of pyrazinamide: a review. Int. J. Tuberc. Lung Dis., 2003, 7(1), 6-21.
[PMID: 12701830]
[11]
Xia, Q.; Zhao, L.L.; Li, F.; Fan, Y.M.; Chen, Y.Y.; Wu, B.B.; Liu, Z.W.; Pan, A.Z.; Zhu, M. Phenotypic and genotypic characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis isolates in Zhejiang, China. Antimicrob. Agents Chemother., 2015, 59(3), 1690-1695.
[http://dx.doi.org/10.1128/AAC.04541-14] [PMID: 25583712]
[12]
Xu, P.; Wu, J.; Yang, C.; Luo, T.; Shen, X.; Zhang, Y.; Nsofor, C.A.; Zhu, G.; Gicquel, B.; Gao, Q. Prevalence and transmission of pyrazinamide resistant Mycobacterium tuberculosis in China. Tuberculosis (Edinb.), 2016, 98, 56-61.
[http://dx.doi.org/10.1016/j.tube.2016.02.008] [PMID: 27156619]
[13]
Scorpio, A.; Lindholm-Levy, P.; Heifets, L.; Gilman, R.; Siddiqi, S.; Cynamon, M.; Zhang, Y. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1997, 41(3), 540-543.
[http://dx.doi.org/10.1128/AAC.41.3.540] [PMID: 9055989]
[14]
Shi, W.; Zhang, X.; Jiang, X.; Yuan, H.; Lee, J.S.; Barry, C.E., III; Wang, H.; Zhang, W.; Zhang, Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science, 2011, 333(6049), 1630-1632.
[http://dx.doi.org/10.1126/science.1208813] [PMID: 21835980]
[15]
Tan, Y.; Hu, Z.; Zhang, T.; Cai, X.; Kuang, H.; Liu, Y.; Chen, J.; Yang, F.; Zhang, K.; Tan, S.; Zhao, Y. Role of pncA and rpsA gene sequencing in detection of pyrazinamide resistance in Mycobacterium tuberculosis isolates from southern China. J. Clin. Microbiol., 2014, 52(1), 291-297.
[http://dx.doi.org/10.1128/JCM.01903-13] [PMID: 24131688]
[16]
Yang, J.; Liu, Y.; Bi, J.; Cai, Q.; Liao, X.; Li, W.; Guo, C.; Zhang, Q.; Lin, T.; Zhao, Y.; Wang, H.; Liu, J.; Zhang, X.; Lin, D. Structural basis for targeting the ribosomal protein S1 of Mycobacterium tuberculosis by pyrazinamide. Mol. Microbiol., 2015, 95(5), 791-803.
[http://dx.doi.org/10.1111/mmi.12892] [PMID: 25430994]
[17]
Salah, P.; Bisaglia, M.; Aliprandi, P.; Uzan, M.; Sizun, C.; Bontems, F. Probing the relationship between gram-negative and gram-positive S1 proteins by sequence analysis. Nucleic Acids Res., 2009, 37(16), 5578-5588.
[http://dx.doi.org/10.1093/nar/gkp547] [PMID: 19605565]
[18]
DeLano, W.L. The PyMOL molecular graphics system, 2002.Available at:. http://www. pymol.org
[19]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[20]
Leach, A.R.; Shoichet, B.K.; Peishoff, C.E. Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J. Med. Chem., 2006, 49(20), 5851-5855.
[http://dx.doi.org/10.1021/jm060999m] [PMID: 17004700]
[21]
Kumar, N.; Singh, A.; Grover, S.; Kumari, A.; Kumar, D.P.; Chandra, R.; Grover, A. HHV-5 epitope: A potential vaccine candidate with high antigenicity and large coverage. J. Biomol. Struct. Dyn., 2019, 37(8), 2098-2109.
[http://dx.doi.org/10.1080/07391102.2018.1477620] [PMID: 30044169]
[22]
Chaudhary, M.; Kumar, N.; Baldi, A.; Chandra, R.; Babu, A.M.; Madan, J. Chloro and bromo-pyrazole curcumin Knoevenagel condensates augmented anticancer activity against human cervical cancer cells: design, synthesis, in silico docking and in vitro cytotoxicity analysis. J. Biomol. Struct. Dyn., 2020, 38(1), 200-218.
[http://dx.doi.org/10.1080/07391102.2019.1578264] [PMID: 30784365]
[23]
Kumar, N.; Sood, D.; Sharma, N.; Chandra, R. Multiepitope subunit vaccine to evoke immune response against acute encephalitis. J. Chem. Inf. Model., 2020, 60(1), 421-433.
[http://dx.doi.org/10.1021/acs.jcim.9b01051] [PMID: 31873008]
[24]
Kumar, N.; Sood, D.; Tomar, R.; Chandra, R. Antimicrobial peptide designing and optimization employing large-scale flexibility analysis of protein-peptide fragments. ACS Omega, 2019, 4(25), 21370-21380.
[http://dx.doi.org/10.1021/acsomega.9b03035] [PMID: 31867532]
[25]
Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 2015, 11(8), 3696-3713.
[http://dx.doi.org/10.1021/acs.jctc.5b00255] [PMID: 26574453]
[26]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
[27]
Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model., 2006, 25(2), 247-260.
[http://dx.doi.org/10.1016/j.jmgm.2005.12.005] [PMID: 16458552]
[28]
Zhang, J.; Chen, L.; Liu, D.; Zhu, Y.; Zhang, Y. Interactions of pyrene and/or 1-hydroxypyrene with bovine serum albumin based on EEM-PARAFAC combined with molecular docking. Talanta, 2018, 186, 497-505.
[http://dx.doi.org/10.1016/j.talanta.2018.04.066] [PMID: 29784393]
[29]
Case, D. AMBER 18; University of California: San Francisco,; , 2018.
[30]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[31]
Ryckaert, J-P.; Ciccotti, G.; Berendsen, H.J. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys., 1977, 23(3), 327-341.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[32]
Wu, X.; Brooks, B.R.; Vanden-Eijnden, E. Self-guided Langevin dynamics via generalized Langevin equation. J. Comput. Chem., 2016, 37(6), 595-601.
[http://dx.doi.org/10.1002/jcc.24015] [PMID: 26183423]
[33]
Khan, M.T.; Malik, S.I.; Bhatti, A.I.; Ali, S.; Khan, A.S.; Zeb, M.T.; Nadeem, T.; Fazal, S. Pyrazinamide-resistant mycobacterium tuberculosis isolates from Khyber Pakhtunkhwa and rpsA mutations. J. Biol. Regul. Homeost. Agents, 2018, 32(3), 705-709.
[PMID: 29921403]
[34]
Akhmetova, A.; Kozhamkulov, U.; Bismilda, V.; Chingissova, L.; Abildaev, T.; Dymova, M.; Filipenko, M.; Ramanculov, E. Mutations in the pncA and rpsA genes among 77 Mycobacterium tuberculosis isolates in Kazakhstan. Int. J. Tuberc. Lung Dis., 2015, 19(2), 179-184.
[http://dx.doi.org/10.5588/ijtld.14.0305] [PMID: 25574916]
[35]
Gu, Y.; Yu, X.; Jiang, G.; Wang, X.; Ma, Y.; Li, Y.; Huang, H. Pyrazinamide resistance among multidrug-resistant tuberculosis clinical isolates in a national referral center of China and its correlations with pncA, rpsA, and panD gene mutations. Diagn. Microbiol. Infect. Dis., 2016, 84(3), 207-211.
[http://dx.doi.org/10.1016/j.diagmicrobio.2015.10.017] [PMID: 26775806]
[36]
Shi, W.; Chen, J.; Feng, J.; Cui, P.; Zhang, S.; Weng, X.; Zhang, W.; Zhang, Y. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg. Microbes Infect., 2014, 3(8)e58
[PMID: 26038753]
[37]
Suthar, A.B.; Zachariah, R.; Harries, A.D. Ending tuberculosis by 2030: can we do it? Int. J. Tuberc. Lung Dis., 2016, 20(9), 1148-1154.
[http://dx.doi.org/10.5588/ijtld.16.0142] [PMID: 27510238]
[38]
Floyd, K.; Glaziou, P.; Houben, R.M.G.J.; Sumner, T.; White, R.G.; Raviglione, M. Global tuberculosis targets and milestones set for 2016-2035: definition and rationale. Int. J. Tuberc. Lung Dis., 2018, 22(7), 723-730.
[http://dx.doi.org/10.5588/ijtld.17.0835] [PMID: 29914597]
[39]
Control, C.f.D. and Prevention, Fact sheets: the difference between latent TB infection and TB disease; Centers for Disease Control and Prevention: Atlanta, GA, 2011.

© 2024 Bentham Science Publishers | Privacy Policy