Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Application of Ion Exchange and Adsorption Techniques for Separation of Whey Proteins from Bovine Milk

Author(s): Jelena Radosavljević*, Dragana Stanić-Vučinić, Marija Stojadinović, Mirjana Radomirović, Ana Simović, Milica Radibratović and Tanja Ćirković Veličković*

Volume 18, Issue 3, 2022

Published on: 08 January, 2021

Page: [341 - 359] Pages: 19

DOI: 10.2174/1573411017666210108092338

Price: $65

Abstract

Background: The world’s production of whey is estimated to be more than 200 million tons per year. Although whey is an important source of proteins with high nutritional value and biotechnological importance, it is still considered as a by-product of the dairy industry with low economic value due to low industrial exploitation. There are several challenges in the separation of whey proteins: low concentration, the complexity of the material and similar properties (pI, molecular mass) of some proteins.

Methods: A narrative review of all the relevant papers on the present methodologies based on ion exchange and adsorption principles for isolation of whey proteins, known to the authors, was conducted

Results: Traditional ion exchange techniques are widely used for the separation and purification of the bovine whey proteins. These methodologies, based on the anion or cation chromatographic procedures, as well as the combination of aforementioned techniques are still preferential methods for the isolation of the whey proteins on the laboratory scale. However, more recent research on ion exchange membranes for this purpose has been introduced, with promising potential to be applied on the pilot industrial scale. Newly developed methodologies based either on the ion exchange separation (for example: simulated moving bed chromatography, expanded bed adsorption, magnetic ion exchangers, etc.) or adsorption (for example: adsorption on hydroxyapatite or activated carbon, or molecular imprinting) are promising approaches for scaling up of the whey proteins’ purification processes.

Conclusion: Many procedures based on ion exchange are successfully implemented for the separation and purification of whey proteins, providing protein preparations of moderate-to-high yield and satisfactory purity. However, the authors anticipate further development of adsorption-based methodologies for the separation of whey proteins by targeting the differences in proteins’ structures rather than targeting the differences in molecular masses and pI. The complex composite multilayered matrices, including also inorganic components, are promising materials for simultaneous exploiting of the differences in the masses, pI and structures of whey proteins for the separation.

Keywords: Whey proteins, ion exchange, alpha-lactalbumin, beta-lactoglobulin, adsorption, membranes.

Graphical Abstract
[1]
Albreht, A.; Vovk, I. Applicability of analytical and preparative monolithic columns to the separation and isolation of major whey proteins. J. Chromatogr. A, 2012, 1227, 210-218.
[http://dx.doi.org/10.1016/j.chroma.2012.01.011] [PMID: 22281509]
[2]
Bhushan, S.; Etzel, M.R. Charged ultrafiltration membranes increase the selectivity of whey protein separations. J. Food Sci., 2009, 74(3), E131-E139.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01095.x] [PMID: 19397718]
[3]
Stanic, D.; Radosavljevic, J.; Stojadinovic, M.; Cirkovic Velickovic, T. Application of ion exchanger in the separation of whey proteins and lactin from milk whey.Ion exchange technology ii: Applications; Inamuddin, D; Luqman, M., Ed.; Springer Netherlands: Dordrecht, 2012, pp. 35-63.
[http://dx.doi.org/10.1007/978-94-007-4026-6_2]
[4]
Monaci, L.; Tregoat, V.; van Hengel, A.J.; Anklam, E. Milk allergens, their characteristics and their detection in food: A review. Eur. Food Res. Technol., 2006, 223(2), 149-179.
[http://dx.doi.org/10.1007/s00217-005-0178-8]
[5]
Saufi, S.M.; Fee, C.J. Fractionation of beta-Lactoglobulin from whey by mixed matrix membrane ion exchange chromatography. Biotechnol. Bioeng., 2009, 103(1), 138-147.
[http://dx.doi.org/10.1002/bit.22239] [PMID: 19199353]
[6]
de Wit, J.N. Marschall Rhône-Poulenc Award Lecture. Nutritional and functional characteristics of whey proteins in food products. J. Dairy Sci., 1998, 81(3), 597-608.
[http://dx.doi.org/10.3168/jds.S0022-0302(98)75613-9] [PMID: 9565865]
[7]
El-Agamy, E.I. The challenge of cow milk protein allergy. Small Rumin. Res., 2007, 68(1), 64-72.
[http://dx.doi.org/10.1016/j.smallrumres.2006.09.016]
[8]
Suutari, T.J.; Valkonen, K.H.; Karttunen, T.J.; Ehn, B.M.; Ekstrand, B.; Bengtsson, U.; Virtanen, V.; Nieminen, M.; Kokkonen, J. IgE cross reactivity between reindeer and bovine milk beta-lactoglobulins in cow’s milk allergic patients. J. Investig. Allergol. Clin. Immunol., 2006, 16(5), 296-302.
[PMID: 17039668]
[9]
Pearce, R.J.; Marshall, S.C. New ways with whey components. Aust. J. Dairy Technol., 1991, 46(2), 105-107.
[10]
Jost, R.; Maire, J.C.; Maynard, F.; Secretin, M.C. Aspects of whey protein usage in infant nutrition, a brief review. Int. J. Food Sci. Technol., 1999, 34(5/6), 533-542.
[http://dx.doi.org/10.1046/j.1365-2621.1999.00324.x]
[11]
Muller, A.; Chaufer, B.; Merin, U.; Daufin, G. Purification of alpha-lactalbumin from a prepurified acid whey: Ultrafiltration or precipitation. Lait, 2003, 83(6), 439-451.
[http://dx.doi.org/10.1051/lait:2003028]
[12]
Hutchens, T.W.; Magnuson, J.S.; Yip, T.T. Secretory IgA, IgG, and IgM immunoglobulins isolated simultaneously from colostral whey by selective thiophilic adsorption. J. Immunol. Methods, 1990, 128(1), 89-99.
[http://dx.doi.org/10.1016/0022-1759(90)90467-A] [PMID: 2324506]
[13]
Zydney, A.L. Protein separations using membrane filtration: New opportunities for whey fractionation. Int. Dairy J., 1998, 8(3), 243-250.
[http://dx.doi.org/10.1016/S0958-6946(98)00045-4]
[14]
Arnold, D.; Di Biase, A.M.; Marchetti, M.; Pietrantoni, A.; Valenti, P.; Seganti, L.; Superti, F. Antiadenovirus activity of milk proteins: lactoferrin prevents viral infection. Antiviral Res., 2002, 53(2), 153-158.
[http://dx.doi.org/10.1016/S0166-3542(01)00197-8] [PMID: 11750941]
[15]
Baveye, S.; Elass, E.; Mazurier, J.; Spik, G.; Legrand, D. Lactoferrin: a multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin. Chem. Lab. Med., 1999, 37(3), 281-286.
[http://dx.doi.org/10.1515/CCLM.1999.049] [PMID: 10353473]
[16]
Chiu, C.K.; Etzel, M.R. Fractionation of lactoperoxidase and lactoferrin from bovine whey using a cation exchange membrane. J. Food Sci., 1997, 62(5), 996-1000.
[http://dx.doi.org/10.1111/j.1365-2621.1997.tb15023.x]
[17]
van Calcar, S.C.; MacLeod, E.L.; Gleason, S.T.; Etzel, M.R.; Clayton, M.K.; Wolff, J.A.; Ney, D.M. Improved nutritional management of phenylketonuria by using a diet containing glycomacropeptide compared with amino acids. Am. J. Clin. Nutr., 2009, 89(4), 1068-1077.
[http://dx.doi.org/10.3945/ajcn.2008.27280] [PMID: 19244369]
[18]
Smithers, G.W.; Ballard, F.J.; Copeland, A.D.; De Silva, K.J.; Dionysius, D.A.; Francis, G.L.; Goddard, C.; Grieve, P.A.; McIntosh, G.H.; Mitchell, I.R.; Pearce, R.J.; Regester, G.O. New opportunities from the isolation and utilization of whey proteins. J. Dairy Sci., 1996, 79(8), 1454-1459.
[http://dx.doi.org/10.3168/jds.S0022-0302(96)76504-9] [PMID: 8880470]
[19]
Gerberding, S.J.; Byers, C.H. Preparative ion-exchange chromatography of proteins from dairy whey. J. Chromatogr. A, 1998, 808(1-2), 141-151.
[http://dx.doi.org/10.1016/S0021-9673(98)00103-4] [PMID: 9652116]
[20]
el Rassi, Z.; Horváth, C. Tandem columns and mixed-bed columns in high-performance liquid chromatography of proteins. J. Chromatogr. A, 1986, 359, 255-264.
[http://dx.doi.org/10.1016/0021-9673(86)80079-6] [PMID: 3733930]
[21]
de Jongh, H.H.J.; Gröneveld, T.; de Groot, J. Mild isolation procedure discloses new protein structural properties of beta-lactoglobulin. J. Dairy Sci., 2001, 84(3), 562-571.
[http://dx.doi.org/10.3168/jds.S0022-0302(01)74508-0] [PMID: 11286407]
[22]
Neyestani, T.R.; Djalali, M.; Pezeshki, M. Isolation of alpha-lactalbumin, beta-lactoglobulin, and bovine serum albumin from cow’s milk using gel filtration and anion-exchange chromatography including evaluation of their antigenicity. Protein Expr. Purif., 2003, 29(2), 202-208.
[http://dx.doi.org/10.1016/S1046-5928(03)00015-9] [PMID: 12767810]
[23]
Stojadinovic, M.; Burazer, L.; Ercili-Cura, D.; Sancho, A.; Buchert, J.; Cirkovic Velickovic, T.; Stanic-Vucinic, D. One-step method for isolation and purification of native β-lactoglobulin from bovine whey. J. Sci. Food Agric., 2012, 92(7), 1432-1440.
[http://dx.doi.org/10.1002/jsfa.4722] [PMID: 22083849]
[24]
Manji, B.; Hill, A.; Kakuda, Y.; Irvine, D.M. Rapid separation of milk whey proteins by anion exchange chromatography. J. Dairy Sci., 1985, 68(12), 3176-3179.
[http://dx.doi.org/10.3168/jds.S0022-0302(85)81224-8] [PMID: 3879255]
[25]
Santos, M.J.; Teixeira, J.A.; Rodrigues, L.R. Fractionation of the major whey proteins and isolation of beta-lactoglobulin variants by anion exchange chromatography. Separ. Purif. Tech., 2012, 90, 133-139.
[http://dx.doi.org/10.1016/j.seppur.2012.02.030]
[26]
Ye, X.; Yoshida, S.; Ng, T.B. Isolation of lactoperoxidase, lactoferrin, alpha-lactalbumin, beta-lactoglobulin B and beta-lactoglobulin A from bovine rennet whey using ion exchange chromatography. Int. J. Biochem. Cell Biol., 2000, 32(11-12), 1143-1150.
[http://dx.doi.org/10.1016/S1357-2725(00)00063-7] [PMID: 11137454]
[27]
Kunz, C.; Lönnerdal, B. Human milk proteins: separation of whey proteins and their analysis by polyacrylamide gel electrophoresis, fast protein liquid chromatography (FPLC) gel filtration, and anion-exchange chromatography. Am. J. Clin. Nutr., 1989, 49(3), 464-470.
[http://dx.doi.org/10.1093/ajcn/49.3.464] [PMID: 2923079]
[28]
Couriol, C.; Le Quellec, S.; Guihard, L.; Molle, D.; Chaufer, B.; Prigent, Y. Separation of acid whey proteins on the preparative scale by hyperdiffusive anion exchange chromatography. Chromatographia, 2000, 52(7-8), 465-472.
[http://dx.doi.org/10.1007/BF02535721]
[29]
Doultani, S.; Turhan, K.N.; Etzel, M.R. Fractionation of proteins from whey using cation exchange chromatography. Process Biochem., 2004, 39(11), 1737-1743.
[http://dx.doi.org/10.1016/j.procbio.2003.07.005]
[30]
Carlström, A. Lactoperoxidase. Identification of multiple molecular forms and their interrelationships. Acta Chem. Scand., 1969, 23(1), 171-184.
[http://dx.doi.org/10.3891/acta.chem.scand.23-0171] [PMID: 5785125]
[31]
Rombauts, W.A.; Schroeder, W.A.; Morrison, M. Bovine lactoperoxidase. Partial characterization of the further purified protein. Biochemistry, 1967, 6(10), 2965-2977.
[http://dx.doi.org/10.1021/bi00862a002] [PMID: 6069855]
[32]
Fweja, L.W.T.; Lewis, M.J.; Grandison, A.S. Isolation of lactoperoxidase using different cation exchange resins by batch and column procedures. J. Dairy Res., 2010, 77(3), 357-367.
[http://dx.doi.org/10.1017/S002202991000018X] [PMID: 20576170]
[33]
Yoshida, S.; Ye, X. Isolation of lactoperoxidase and lactoferrins from bovine milk acid whey by carboxymethyl cation exchange chromatography. J. Dairy Sci., 1991, 74(5), 1439-1444.
[http://dx.doi.org/10.3168/jds.S0022-0302(91)78301-X]
[34]
Fee, C.J.; Chand, A. Capture of lactoferrin and lactoperoxidase from raw whole milk by cation exchange chromatography. Separ. Purif. Tech., 2006, 48(2), 143-149.
[http://dx.doi.org/10.1016/j.seppur.2005.07.011]
[35]
Aich, R.; Batabyal, S.S.N. J. Simple purification method for beta–lactoglobulin from buffalo milk. Adv. Anim. Vet. Sci., 2014, 2(2), 78-80.
[http://dx.doi.org/10.14737/journal.aavs/2014/2.2.78.80]
[36]
Pavlov, G.; Hsu, J.T. The ph, temperature, and protein structure effect on -lactoglobulin a and b separation in anion-exchange chromatography. AIChE J., 2018, 64(6), 1928-1937.
[http://dx.doi.org/10.1002/aic.16077]
[37]
Ng, P.K.; Snyder, M.A. Purification of β-lactoglobulin with a high-capacity anion exchanger: high-throughput process development and scale-up considerations. J. Sci. Food Agric., 2013, 93(13), 3231-3236.
[http://dx.doi.org/10.1002/jsfa.6162] [PMID: 23653166]
[38]
Nfor, B.K.; Ripić, J.; van der Padt, A.; Jacobs, M.; Ottens, M. Model-based high-throughput process development for chromatographic whey proteins separation. Biotechnol. J., 2012, 7(10), 1221-1232.
[http://dx.doi.org/10.1002/biot.201200191] [PMID: 22887918]
[39]
Mao, X.; Zhang, G.F.; Li, C.; Zhao, Y.C.; Liu, Y.; Wang, T.T.; Duan, C.Y.; Wang, J.Y.; Liu, L.B. One-step method for the isolation of -lactalbumin and -lactoglobulin from cow’s milk while preserving their antigenicity. Int. J. Food Prop., 2017, 20(4), 792-800.
[http://dx.doi.org/10.1080/10942912.2016.1181649]
[40]
Geng, X.L.; Tolkach, A.; Otte, J.; Ipsen, R. Pilot-scale purification of alpha-lactalbumin from enriched whey protein concentrate by anion-exchange chromatography and ultrafiltration. Dairy Sci. Technol., 2015, 95(3), 353-368.
[http://dx.doi.org/10.1007/s13594-015-0215-8]
[41]
Fuciños, C.; Fuciños, P.; Estévez, N.; Pastrana, L.M.; Vicente, A.A.; Rúa, M.L. One-step chromatographic method to purify α-lactalbumin from whey for nanotube synthesis purposes. Food Chem., 2019, 275, 480-488.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.144] [PMID: 30724223]
[42]
Andrews, A.T.; Taylor, M.D.; Owen, A.J. Rapid analysis of bovine milk proteins by fast protein liquid chromatography. J. Chromatogr. A, 1985, 348(1), 177-185.
[http://dx.doi.org/10.1016/S0021-9673(01)92451-3] [PMID: 4086636]
[43]
Felipe, X.; Law, A.J.R. Preparative-scale fractionation of bovine, caprine and ovine whey proteins by bel permeation chromatography. J. Dairy Res., 1997, 64(3), 459-464.
[http://dx.doi.org/10.1017/S0022029997002276] [PMID: 9275260]
[44]
Groves, M.L. Preparation of some iron-binding proteins and alpha-lactalbumin from bovine milk. Biochim. Biophys. Acta, 1965, 100, 154-162.
[http://dx.doi.org/10.1016/0304-4165(65)90438-1] [PMID: 14323619]
[45]
Konrad, G.; Lieske, B.; Faber, W. A large-scale isolation of native beta-lactoglobulin: Characterization of physicochemical properties and comparison with other methods. Int. Dairy J., 2000, 10(10), 713-721.
[http://dx.doi.org/10.1016/S0958-6946(00)00099-6]
[46]
Kristiansen, K.R.; Otte, J.; Ipsen, R.; Qvist, K.B. Large-scale preparation of beta-lactoglobulin a and b by ultrafiltration and ion-exchange chromatography. Int. Dairy J., 1998, 8(2), 113-118.
[http://dx.doi.org/10.1016/S0958-6946(98)00028-4]
[47]
Imafidon, G.I.; Ng-Kwai-Hang, K.F. Isolation and purification of beta-lactoglobulin by mass ion-exchange chromatography. J. Dairy Res., 1992, 59(1), 101-104.
[http://dx.doi.org/10.1017/S0022029900030302] [PMID: 1560124]
[48]
Kalan, E.B.; Greenberg, R.; Walter, M.; Gordon, W.G. Chemical properties of beta-lactoglobulins a, b and c. Biochem. Biophys. Res. Commun., 1964, 16(3), 199-203.
[http://dx.doi.org/10.1016/0006-291X(64)90325-0] [PMID: 5871806]
[49]
Turhan, K.N.; Etzel, M.R. Whey protein isolate and alpha-lactalbumin recovery from lactic acid whey using cation-exchange chromatography. J. Food Sci., 2004, 69(2), E66-E70.
[50]
Liang, Y.; Wang, X.; Wu, M.; Zhu, W. Simultaneous isolation of lactoferrin and lactoperoxidase from bovine colostrum by SPEC 70 SLS cation exchange resin. Int. J. Environ. Res. Public Health, 2011, 8(9), 3764-3776.
[http://dx.doi.org/10.3390/ijerph8093764] [PMID: 22016715]
[51]
Ingle, U.; Lali, A. Development and optimization of a single-step cation chromatographic whey protein fractionation process: Evaluation and comparison of scale-up strategies. Braz. J. Chem. Eng., 2018, 35(2), 805-818.
[http://dx.doi.org/10.1590/0104-6632.20180352s20160421]
[52]
Hahn, R.; Schulz, P.M.; Schaupp, C.; Jungbauer, A. Bovine whey fractionation based on cation-exchange chromatography. J. Chromatogr. A, 1998, 795(2), 277-287.
[http://dx.doi.org/10.1016/S0021-9673(97)01030-3] [PMID: 9528103]
[53]
Faraji, N.; Zhang, Y.; Ray, A.K. Optimization of lactoperoxidase and lactoferrin separation on an ion-exchange chromatography step. Separations, 2017, 4(2), 1.
[http://dx.doi.org/10.3390/separations4020010]
[54]
Faraji, N.; Zhang, Y.; Ray, A.K. Impact of operating conditions on chromatographic column performance: Experimental studies on adsorption of high-value minor whey proteins. AIMS Bioeng., 2017, 4(2), 223-238.
[http://dx.doi.org/10.3934/bioeng.2017.2.223]
[55]
Faraji, N.; Zhang, Y.; Ray, A.K. Determination of adsorption isotherm parameters for minor whey proteins by gradient elution preparative liquid chromatography. J. Chromatogr. A, 2015, 1412, 67-74.
[http://dx.doi.org/10.1016/j.chroma.2015.08.004] [PMID: 26277029]
[56]
Kiddy, C.A.; Townend, R.E.; Thatcher, W.W.; Timasheff, S.N. B-lactoglobulin variation in milk from individual cows. J. Dairy Res., 1965, 32(2), 209-217.
[http://dx.doi.org/10.1017/S0022029900018550]
[57]
Voswinkel, L.; Kulozik, U. Fractionation of whey proteins by means of membrane adsorption chromatography. Procedia Food Sci., 2011, 1, 900-907.
[http://dx.doi.org/10.1016/j.profoo.2011.09.136]
[58]
Voswinkel, L.; Kulozik, U. Fractionation of all major and minor whey proteins with radial flow membrane adsorption chromatography at lab and pilot scale. Int. Dairy J., 2014, 39(1), 209-214.
[http://dx.doi.org/10.1016/j.idairyj.2014.06.012]
[59]
Saufi, S.M.; Fee, C.J. Simultaneous anion and cation exchange chromatography of whey proteins using a customizable mixed matrix membrane. J. Chromatogr. A, 2011, 1218(50), 9003-9009.
[http://dx.doi.org/10.1016/j.chroma.2011.09.045] [PMID: 21968351]
[60]
Avramescu, M.E.; Borneman, Z.; Wessling, M. Mixed-matrix membrane adsorbers for protein separation. J. Chromatogr. A, 2003, 1006(1-2), 171-183.
[http://dx.doi.org/10.1016/S0021-9673(03)00562-4] [PMID: 12938884]
[61]
Allen, P.Z.; Morrison, M.; Lactoperoxidase, I.V. Immunological analysis of bovine lactoperoxidase preparations obtained by a simplified fractionation procedure. Arch. Biochem. Biophys., 1963, 102(1), 106-113.
[http://dx.doi.org/10.1016/0003-9861(63)90326-6] [PMID: 14012136]
[62]
Xu, Y.; Sleigh, R.; Hourigan, J.; Johnson, R. Separation of bovine immunoglobulin g and glycomacropeptide from dairy whey. Process Biochem., 2000, 36(5), 393-399.
[http://dx.doi.org/10.1016/S0032-9592(00)00199-0]
[63]
Lech, M.; Niesobska, A.; Trusek-Holownia, A. Dairy wastewater utilization: Separation of whey proteins in membrane and chromatographic processes. Desalination Water Treat., 2016, 57(48-49), 23326-23334.
[http://dx.doi.org/10.1080/19443994.2015.1117823]
[64]
Li, X.; Luo, Z.L.; Chen, H.B.; Cao, Y.S. Isolation and antigenicity evaluation of beta-lactoglobulin from buffalo milk. Afr. J. Biotechnol., 2008, 7(13), 2258-2264.
[65]
Oram, J.D.; Reiter, B. Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim. Biophys. Acta, 1968, 170(2), 351-365.
[http://dx.doi.org/10.1016/0304-4165(68)90015-9] [PMID: 4974829]
[66]
Lucas, D.; Rabiller-Baudry, M.; Millesime, L.; Chaufer, B.; Daufin, G. Extraction of alpha-lactalbumin from whey protein concentrate with modified inorganic membranes. J. Membr. Sci., 1998, 148(1), 1-12.
[http://dx.doi.org/10.1016/S0376-7388(98)00157-4]
[67]
Cowan, S.; Ritchie, S. Modified polyethersulfone (pes) ultrafiltration membranes for enhanced filtration of whey proteins. Sep. Sci. Technol., 2007, 42(11), 2405-2418.
[http://dx.doi.org/10.1080/01496390701477212]
[68]
Plate, K.; Beutel, S.; Buchholz, H.; Demmer, W.; Fischer-Frühholz, S.; Reif, O.; Ulber, R.; Scheper, T. Isolation of bovine lactoferrin, lactoperoxidase and enzymatically prepared lactoferricin from proteolytic digestion of bovine lactoferrin using adsorptive membrane chromatography. J. Chromatogr. A, 2006, 1117(1), 81-86.
[http://dx.doi.org/10.1016/j.chroma.2006.03.090] [PMID: 16616760]
[69]
Valino, V.; San Roman, M.F.; Ibanez, R.; Ortiz, I. Improved separation of bovine serum albumin and lactoferrin mixtures using charged ultrafiltration membranes. Separ. Purif. Tech., 2014, 125, 163-169.
[http://dx.doi.org/10.1016/j.seppur.2014.01.023]
[70]
Freitag, R.; Splitt, H.; Reif, O.W. Controlled mixed-mode interaction chromatography on membrane adsorbers. J. Chromatogr. A, 1996, 728(1-2), 129-137.
[http://dx.doi.org/10.1016/0021-9673(95)01024-6]
[71]
Ulber, R.; Plate, K.; Weiss, T.; Demmer, W.; Buchholz, H.; Scheper, T. Downstream processing of bovine lactoferrin from sweet whey. Acta Biotechnol., 2001, 21(1), 27-34.
[http://dx.doi.org/10.1002/1521-3846(200102)21:1<27:AID-ABIO27>3.0.CO;2-W]
[72]
Bhattacharjee, S.; Bhattacharjee, C.; Datta, S. Studies on the fractionation of beta-lactoglobulin from casein whey using ultrafiltration and ion-exchange membrane chromatography. J. Membr. Sci., 2006, 275(1-2), 141-150.
[http://dx.doi.org/10.1016/j.memsci.2005.09.013]
[73]
Hossain, M.; Mohammad, A.; Collins, P. Evaluation of a commercially available ion exchange membrane for separation of proteins from a whey protein mixture: Modeling and experimental results. Adv. Food Process. Technol, 2018, 2018, 1.
[74]
Goodall, S.; Grandison, A.S.; Jauregi, P.J.; Price, J. Selective separation of the major whey proteins using ion exchange membranes. J. Dairy Sci., 2008, 91(1), 1-10.
[http://dx.doi.org/10.3168/jds.2007-0539] [PMID: 18096919]
[75]
Gerstner, J.A.; Hamilton, R.; Cramer, S.M. Membrane chromatographic systems for high-throughput protein separations. J. Chromatogr. A, 1992, 596(2), 173-180.
[http://dx.doi.org/10.1016/0021-9673(92)85004-D]
[76]
Kawai, T.; Saito, K.; Lee, W. Protein binding to polymer brush, based on ion-exchange, hydrophobic, and affinity interactions. J. Chromatogr. B , 2003, 790(1-2), 131-142.
[77]
Arunkumar, A.; Etzel, M.R. Fractionation of alpha-lactalbumin from beta-lactoglobulin using positively charged tangential flow ultrafiltration membranes. Separ. Purif. Tech., 2013, 105, 121-128.
[78]
Arunkumar, A.; Etzel, M.R. Fractionation of alpha-lactalbumin and beta-lactoglobulin from bovine milk serum using staged, positively charged, tangential flow ultrafiltration membranes. J. Membr. Sci., 2014, 454, 488-495.
[http://dx.doi.org/10.1016/j.memsci.2013.12.040]
[79]
Avramescu, M.E.; Girones, M.; Borneman, Z.; Wessling, M. Preparation of mixed matrix adsorber membranes for protein recovery. J. Membr. Sci., 2003, 218(1-2), 219-233.
[http://dx.doi.org/10.1016/S0376-7388(03)00178-9]
[80]
Shiew, C.F.; Shamsinar, N.; Rasli, N.I.; Saufi, S.M. Multiple interactions mixed matrix membrane chromatography using anion and cation exchanger resin for whey protein fractionation. J. Teknol., 2015, 75(1), 259-263.
[81]
Saufi, S.M.; Fee, C.J. Recovery of lactoferrin from whey using cross-flow cation exchange mixed matrix membrane chromatography. Separ. Purif. Tech., 2011, 77(1), 68-75.
[http://dx.doi.org/10.1016/j.seppur.2010.11.021]
[82]
Andersson, J.; Mattiasson, B. Simulated moving bed technology with a simplified approach for protein purification. Separation of lactoperoxidase and lactoferrin from whey protein concentrate. J. Chromatogr. A, 2006, 1107(1-2), 88-95.
[http://dx.doi.org/10.1016/j.chroma.2005.12.018] [PMID: 16387313]
[83]
Du, Q.Y.; Lin, D.Q.; Xiong, Z.S.; Yao, S.J. One-step purification of lactoferrin from crude sweet whey using cation-exchange expanded bed adsorption. Ind. Eng. Chem. Res., 2013, 52(7), 2693-2699.
[http://dx.doi.org/10.1021/ie302606z]
[84]
Du, Q.Y.; Lin, D.Q.; Zhang, Q.L.; Yao, S.J. An integrated expanded bed adsorption process for lactoferrin and immunoglobulin G purification from crude sweet whey. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 947-948, 201-207.
[http://dx.doi.org/10.1016/j.jchromb.2013.12.020] [PMID: 24440799]
[85]
Teepakorn, C.; Fiaty, K.; Charcosset, C. Comparison of membrane chromatography and monolith chromatography for lactoferrin and bovine serum albumin separation. Processes (Basel), 2016, 4(3)
[http://dx.doi.org/10.3390/pr4030031]
[86]
Billakanti, J.M.; Fee, C.J. Characterization of cryogel monoliths for extraction of minor proteins from milk by cation exchange. Biotechnol. Bioeng., 2009, 103(6), 1155-1163.
[http://dx.doi.org/10.1002/bit.22344] [PMID: 19405153]
[87]
Dong, S.; Chen, L.; Dai, B.; Johnson, W.; Ye, J.; Shen, S.; Yun, J.; Yao, K.; Lin, D.Q.; Yao, S.J. Isolation of immunoglobulin G from bovine milk whey by poly(hydroxyethyl methacrylate)-based anion-exchange cryogel. J. Sep. Sci., 2013, 36(15), 2387-2393.
[http://dx.doi.org/10.1002/jssc.201300306] [PMID: 23720373]
[88]
Pan, M.M.; Shen, S.C.; Chen, L.; Dai, B.; Xu, L.H.; Yun, J.X.; Yao, K.J.; Lin, D.Q.; Yao, S.J. Separation of lactoperoxidase from bovine whey milk by cation exchange composite cryogel embedded macroporous cellulose beads. Separ. Purif. Tech., 2015, 147, 132-138.
[http://dx.doi.org/10.1016/j.seppur.2015.04.026]
[89]
Machado, A.P.D.; Minim, L.A.; Fontan, R.D.I.; Minim, V.P.R.; Goncalves, G.R.F.; Mol, P.C.G. Adsorptive behavior of alpha-lactalbumin on cation-exchange supermacroporous monolithic column. Fluid Phase Equilib., 2015, 401, 64-69.
[http://dx.doi.org/10.1016/j.fluid.2015.05.021]
[90]
Sarvi, M.N.; Bee, T.B.; Gooi, C.K.; Woonton, B.W.; Gee, M.L.; O’Connor, A.J. Development of functionalized mesoporous silica for adsorption and separation of dairy proteins. Chem. Eng. J., 2014, 235, 244-251.
[http://dx.doi.org/10.1016/j.cej.2013.09.036]
[91]
Itoyama, K.; Nishimura, S-i.; Kawamura, Y.; Seo, H.; Sato, K.; Dosako, S-i.; Nishi, N.; Tokura, S. Selective adsorption of bovine lactoferrin onto partially sulfated chitosan beads. Seni Gakkaishi, 1993, 49(11), 580-585.
[http://dx.doi.org/10.2115/fiber.49.11_580]
[92]
Pessela, B.C.C.; Munilla, R.; Betancor, L.; Fuentes, M.; Carrascosa, A.V.; Vian, A.; Fernandez-Lafuente, R.; Guisán, J.M. Ion exchange using poorly activated supports, an easy way for purification of large proteins. J. Chromatogr. A, 2004, 1034(1-2), 155-159.
[http://dx.doi.org/10.1016/j.chroma.2004.01.061] [PMID: 15116925]
[93]
Pessela, B.C.; Torres, R.; Batalla, P.; Fuentes, M.; Mateo, C.; Fernández-Lafuente, R.; Guisán, J.M. Simple purification of immunoglobulins from whey proteins concentrate. Biotechnol. Prog., 2006, 22(2), 590-594.
[http://dx.doi.org/10.1021/bp050223z] [PMID: 16599581]
[94]
Bolivar, J.M.; Batalla, P.; Mateo, C.; Carrascosa, A.V.; Pessela, B.C.; Guisán, J.M. Selective adsorption of small proteins on large-pore anion exchangers coated with medium size proteins. Colloids Surf. B Biointerfaces, 2010, 78(1), 140-145.
[http://dx.doi.org/10.1016/j.colsurfb.2010.02.030] [PMID: 20307961]
[95]
El-Sayed, M.M.H.; Chase, H.A. Separation of the two major whey proteins using cation-exchange adsorption. Lect. Notes Eng. Comp, 2008, 2008, 39-43.
[96]
El-Sayed, M.M.H.; Chase, H.A. Single and two-component cation-exchange adsorption of the two pure major whey proteins. J. Chromatogr. A, 2009, 1216(50), 8705-8711.
[http://dx.doi.org/10.1016/j.chroma.2009.02.080] [PMID: 19298967]
[97]
El-Sayed, M.M.H.; Chase, H.A. Confocal microscopy study of uptake kinetics of alpha-lactalbumin and beta-lactoglobulin onto the cation-exchanger SP Sepharose FF. J. Sep. Sci., 2009, 32(18), 3246-3256.
[http://dx.doi.org/10.1002/jssc.200900288] [PMID: 19697318]
[98]
El-Sayed, M.M.H.; Chase, H.A. Purification of the two major proteins from whey concentrate using a cation-exchange selective adsorption process. Biotechnol. Prog., 2010, 26(1), 192-199.
[PMID: 19927316]
[99]
El-Sayed, M.M.H.; Chase, H.A. Simulation of the breakthrough curves for the adsorption of alpha-lactalbumin and beta-lactoglobulin to sp sepharose ff cation-exchanger. Biochem. Eng. J., 2010, 49(2), 221-228.
[http://dx.doi.org/10.1016/j.bej.2009.12.017]
[100]
Nicolas, P.; Ferreira, M.L.; Lassalle, V. A review of magnetic separation of whey proteins and potential application to whey proteins recovery, isolation and utilization. J. Food Eng., 2019, 246, 7-15.
[http://dx.doi.org/10.1016/j.jfoodeng.2018.10.021]
[101]
Meyer, A.; Berensmeier, S.; Franzreb, M. Direct capture of lactoferrin from whey using magnetic micro-ion exchangers in combination with high-gradient magnetic separation. React. Funct. Polym., 2007, 67(12), 1577-1588.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2007.07.038]
[102]
Brown, G.N.; Müller, C.; Theodosiou, E.; Franzreb, M.; Thomas, O.R.T. Multi-cycle recovery of lactoferrin and lactoperoxidase from crude whey using fimbriated high-capacity magnetic cation exchangers and a novel “rotor-stator” high-gradient magnetic separator. Biotechnol. Bioeng., 2013, 110(6), 1714-1725.
[http://dx.doi.org/10.1002/bit.24842] [PMID: 23335282]
[103]
Heeboll-Nielsen, A.; Justesen, S.F.L.; Hobley, T.J.; Thomas, O.R.T. Superparamagnetic cation-exchange adsorbents for bioproduct recovery from crude process liquors by high-gradient magnetic fishing. Sep. Sci. Technol., 2004, 39(12), 2891-2914.
[http://dx.doi.org/10.1081/SS-200028791]
[104]
Heebøll-Nielsen, A.; Justesen, S.F.L.; Thomas, O.R.T. Fractionation of whey proteins with high-capacity superparamagnetic ion-exchangers. J. Biotechnol., 2004, 113(1-3), 247-262.
[http://dx.doi.org/10.1016/j.jbiotec.2004.06.008] [PMID: 15380659]
[105]
Liao, A.W.; El Rassi, Z.; LeMaster, D.M.; Horváth, C. High performance displacement chromatography of proteins: Separation of β-lactoglobulins a and b. Chromatographia, 1987, 24(1), 881-885.
[http://dx.doi.org/10.1007/BF02688603]
[106]
Vogt, S.; Freitag, R. Comparison of anion-exchange and hydroxyapatite displacement chromatography for the isolation of whey proteins. J. Chromatogr. A, 1997, 760(1), 125-137.
[http://dx.doi.org/10.1016/S0021-9673(96)00797-2] [PMID: 9062994]
[107]
Al-Mashikhi, S.A.; Li-Chan, E.; Nakai, S. Separation of immunoglobulins and lactoferrin from cheese whey by chelating chromatography. J. Dairy Sci., 1988, 71(7), 1747-1755.
[http://dx.doi.org/10.3168/jds.S0022-0302(88)79741-6] [PMID: 3261742]
[108]
Blomkalns, A.L.; Gomez, M.R. Purification of bovine alpha-lactalbumin by immobilized metal ion affinity chromatography. Prep. Biochem. Biotechnol., 1997, 27(4), 219-226.
[http://dx.doi.org/10.1080/10826069708001280] [PMID: 9413555]
[109]
Carvalho, B.M.; Carvalho, L.M.; Silva, W.F., Jr; Minim, L.A.; Soares, A.M.; Carvalho, G.G.; da Silva, S.L. Direct capture of lactoferrin from cheese whey on supermacroporous column of polyacrylamide cryogel with copper ions. Food Chem., 2014, 154, 308-314.
[http://dx.doi.org/10.1016/j.foodchem.2014.01.010] [PMID: 24518347]
[110]
Rossano, R.; D’Elia, A.; Riccio, P. One-step separation from lactose: recovery and purification of major cheese-whey proteins by hydroxyapatite--a flexible procedure suitable for small- and medium-scale preparations. Protein Expr. Purif., 2001, 21(1), 165-169.
[http://dx.doi.org/10.1006/prep.2000.1350] [PMID: 11162402]
[111]
Schlatterer, B.; Baeker, R.; Schlatterer, K. Improved purification of beta-lactoglobulin from acid whey by means of ceramic hydroxyapatite chromatography with sodium fluoride as a displacer. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 807(2), 223-228.
[http://dx.doi.org/10.1016/j.jchromb.2004.04.013] [PMID: 15203033]
[112]
Ng, P.K.; Yoshitake, T. Purification of lactoferrin using hydroxyapatite. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(13-14), 976-980.
[http://dx.doi.org/10.1016/j.jchromb.2010.02.027] [PMID: 20308020]
[113]
Sousa, R.C.S.d.; Coimbra, J.S.R.; Augusto, L.L.X.; Reis, L.S.T. Adsorção de alfa-lactalbumina do soro de leite em hidroxiapatita: Efeito do ph e da temperatura e análise termodinâmica. Quim. Nova, 2014, 37, 950-955.
[114]
Vyas, H.K.; Izco, J.M.; Jiménez-Flores, R. Scale-up of native beta-lactoglobulin affinity separation process. J. Dairy Sci., 2002, 85(7), 1639-1645.
[http://dx.doi.org/10.3168/jds.S0022-0302(02)74236-7] [PMID: 12201513]
[115]
Tercinier, L.; Ye, A.Q.; Singh, A.; Anema, S.G.; Singh, H. Effects of ionic strength, ph and milk serum composition on adsorption of milk proteins on to hydroxyapatite particles. Food Biophys., 2014, 9(4), 341-348.
[http://dx.doi.org/10.1007/s11483-014-9360-5]
[116]
Nagasaki, T.; Nagata, F.; Sakurai, M.; Kato, K. Effects of pore distribution of hydroxyapatite particles on their protein adsorption behavior. J. Asian. Ceram. Soc., 2017, 5(2), 88-93.
[117]
Kawachi, G.; Watanabe, T.; Ogata, S.I.; Kamitakahara, M.; Ohtsuki, C. Protein adsorption on needle-shaped hydroxyapatite prepared by hydrothermal treatment of mixture composed of cahpo4 center dot 2h(2)o and beta-ca-3(po4)(2). J. Ceram. Soc. Jpn., 2009, 117(1367), 847-850.
[http://dx.doi.org/10.2109/jcersj2.117.847]
[118]
Cetınkaya, S.; Akkaya, B. Selective and single step adsorption of α-lactalbumin from whole cow’s milk on hydroxyapatite microbeads. Mater. Sci. Eng. C, 2016, 68, 573-578.
[http://dx.doi.org/10.1016/j.msec.2016.06.040] [PMID: 27524056]
[119]
Moreno-Castilla, C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 2004, 42(1), 83-94.
[http://dx.doi.org/10.1016/j.carbon.2003.09.022]
[120]
Ribeiro Alves, M.R.; Zuñiga, A.D.G. Sousa, Rde.C.; Zacchi Scolforo, C. The process of separating bovine serum albumin using hydroxyapatite and active babassu coal orbignya martiana. ScientificWorldJournal, 2016, 20162808241
[http://dx.doi.org/10.1155/2016/2808241] [PMID: 27376149]
[121]
Gecgel, U.; Uner, O. Adsorption of bovine serum albumin onto activated carbon prepared from elaeagnus stone. Bull. Chem. Soc. Ethiop., 2018, 32(1), 53-63.
[http://dx.doi.org/10.4314/bcse.v32i1.5]
[122]
Pereira, R.G.; Veloso, C.M.; da Silva, N.M.; de Sousa, L.F.; Bonomo, R.C.F.; de Souza, A.O.; Souza, M.O.D.; Fontan, R.D.I. Preparation of activated carbons from cocoa shells and siriguela seeds using h3po4 and zncl2 as activating agents for bsa and alpha-lactalbumin adsorption. Fuel Process. Technol., 2014, 126, 476-486.
[http://dx.doi.org/10.1016/j.fuproc.2014.06.001]
[123]
Andrade, S.N.; Veloso, C.M.; Fontan, R.C.I.; Bonomo, R.C.F.; Santos, L.S.; Brito, M.J.P.; Diniz, G.A. Chemical-activated carbon from coconut (cocos nucifera) endocarp waste and its application in the adsorption of beta-lactoglobulin protein. Rev. Mex. Ing. Quim., 2018, 17(2), 463-475.
[http://dx.doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/Andrade]
[124]
Batista, G.A.; Silva, M.L.M.; Gomes, W.D.; Neves, I.C.O.; Mol, P.C.G.; de Resende, J.V.; Verissimo, L.A.A.; Soares, J.R. Preparation of mesoporous activated carbon from defective coffee beans for adsorption of fresh whey proteins. Acta Sci. Technol., 2020, 2020, 42.
[125]
Seredych, M.; Mikhalovska, L.; Mikhalovsky, S.; Gogotsi, Y. Adsorption of bovine serum albumin on carbon-based materials. Journal of Carbon Research, 2018, 4(1)
[http://dx.doi.org/10.3390/c4010003]
[126]
Guo, Z.; Zhang, D.; Song, S.; Shu, Y.; Chen, X.; Wang, J. Complexes of magnetic nanospheres with amphiprotic polymer-Zn systems for the selective isolation of lactoferrin. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(35), 5596-5603.
[http://dx.doi.org/10.1039/C8TB01341A] [PMID: 32254969]
[127]
Guo, P.F.; Wang, X.M.; Wang, M.M.; Yang, T.; Chen, M.L.; Wang, J.H. Boron-titanate monolayer nanosheets for highly selective adsorption of immunoglobulin G. Nanoscale, 2019, 11(19), 9362-9368.
[http://dx.doi.org/10.1039/C9NR01111K] [PMID: 31038517]
[128]
Chen, Q.; Zhang, D.D.; Wang, M.M.; Chen, X.W.; Wang, J.H. A novel organic-inorganic hybrid polyoxometalate for the selective adsorption/isolation of β-lactoglobulin. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(34), 6964-6970.
[http://dx.doi.org/10.1039/C5TB01298H] [PMID: 32262546]
[129]
Soleimani, M.; Ghaderi, S.; Afshar, M.G.; Soleimani, S. Synthesis of molecularly imprinted polymer as a sorbent for solid phase extraction of bovine albumin from whey, milk, urine and serum. Microchem. J., 2012, 100, 1-7.
[http://dx.doi.org/10.1016/j.microc.2011.06.026]
[130]
Jimenez-Guzman, J.; Mendez-Palacios, I.; Lopez-Luna, A.; Del Moral-Ramirez, E.; Barzana, E.; Garcia-Garibay, M. Development of a molecularly imprinted polymer for the recovery of lactoferrin. Food Bioprod. Process., 2014, 92(C2), 226-232.
[http://dx.doi.org/10.1016/j.fbp.2014.02.001]
[131]
Wang, Y.; Zhou, J.; Wu, C.; Tian, L.; Zhang, B.; Zhang, Q. Fabrication of micron-sized BSA-imprinted polymers with outstanding adsorption capacity based on poly(glycidyl methacrylate)/polystyrene (PGMA/PS) anisotropic microspheres. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(37), 5860-5866.
[http://dx.doi.org/10.1039/C8TB01423J] [PMID: 32254707]
[132]
Wang, Y.F.; Zhou, J.J.; Gu, H.M.; Jia, X.K.; Su, K.H.; Zhang, B.L.; Zhang, Q.Y. Preparation of anti-nonspecific adsorption chitosan-based bovine serum albumin imprinted polymers with outstanding adsorption capacity and selective recognition ability based on magnetic microspheres. Macromol. Mater. Eng., 2019, 304(4), 1.
[http://dx.doi.org/10.1002/mame.201800731]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy