Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

General Research Article

From Secretion in Pichia pastoris to Application in Apple Juice Processing: Exo-Polygalacturonase from Sporothrix schenckii 1099-18

Author(s): Ersin Karataş, Ahmet Tülek, Mehmet Mervan Çakar, Faruk Tamtürk, Fatih Aktaş and Barış Binay*

Volume 28, Issue 7, 2021

Published on: 06 January, 2021

Page: [817 - 830] Pages: 14

DOI: 10.2174/1871530321666210106110400

Price: $65

Abstract

Background: Polygalacturonases are a group of enzymes under pectinolytic enzymes related to enzymes that hydrolyse pectic substances. Polygalacturonases have been used in various industrial applications such as fruit juice clarification, retting of plant fibers, wastewater treatment drinks fermentation, and oil extraction.

Objectives: The study was evaluated at the heterologous expression, purification, biochemical characterization, computational modeling, and performance in apple juice clarification of a new exo-polygalacturonase from Sporothrix schenckii 1099-18 (SsExo-PG) in Pichia pastoris.

Methods: Recombinant DNA technology was used in this study. Two different pPIC9K plasmids were constructed with native signal sequence-ssexo-pg and alpha signal sequence-ssexo-pg separately. Protein expression and purification performed after plasmids transformed into the Pichia pastoris. Biochemical and structural analyses were performed by using pure SsExo-PG.

Results: The purification of SsExo-PG was achieved using a Ni-NTA chromatography system. The enzyme was found to have a molecular mass of approximately 52 kDa. SsExo-PG presented as stable at a wide range of temperature and pH values, and to be more storage stable than other commercial pectinolytic enzyme mixtures. Structural analysis revealed that the catalytic residues of SsExo- PG are somewhat similar to other Exo-PGs. The KM and kcat values for the degradation of polygalacturonic acid (PGA) by the purified enzyme were found to be 0.5868 μM and 179 s-1, respectively. Cu2+ was found to enhance SsExo-PG activity while Ag2+ and Fe2+ almost completely inhibited enzyme activity. The enzyme reduced turbidity up to 80% thus enhanced the clarification of apple juice. SsExo-PG showed promising performance when compared with other commercial pectinolytic enzyme mixtures.

Conclusion: The clarification potential of SsExo-PG was revealed by comparing it with commercial pectinolytic enzymes. The following parameters of the process of apple juice clarification processes showed that SsExo-PG is highly stable and has a novel performance.

Keywords: Sporothrix schenckii 1099-18, Exo-polygalacturonase, heterologous expression, Pichia pastoris, apple juice clarification, structural modelling.

Graphical Abstract
[1]
Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol., 2008, 11(3), 266-277.
[http://dx.doi.org/10.1016/j.pbi.2008.03.006] [PMID: 18486536]
[2]
Yadav, P.K.; Singh, V.K.; Yadav, S.; Yadav, K.D.S.; Yadav, D. In silico analysis of pectin lyase and pectinase sequences. Biochemistry (Mosc.), 2009, 74(9), 1049-1055.
[http://dx.doi.org/10.1134/S0006297909090144] [PMID: 19916917]
[3]
Ma, Y.; Sun, S.; Hao, H.; Xu, C. Production, purification and characterization of an exo-polygalacturonase from Penicillium janthinellum sw09. An. Acad. Bras. Cienc., 2016, 88(Suppl. 1), 479-487.
[http://dx.doi.org/10.1590/0001-3765201620150051] [PMID: 27142550]
[4]
Tounsi, H.; Sassi, A.H.; Romdhane, Z.B.; Lajnef, M.; Dupuy, J.W.; Lapaillerie, D.; Lomenech, A.M.; Bonneu, M.; Gargouri, A.; Hadj-Taieb, N. Catalytic properties of a highly thermoactive polygalacturonase from the mesophilic fungus Penicillium occitanis and use in juice clarification. J. Mol. Catal., B Enzym., 2016, 127, 56-66.
[http://dx.doi.org/10.1016/j.molcatb.2016.02.012]
[5]
Bonnin, E.; Garnier, C.; Ralet, M.C. Pectin-modifying enzymes and pectin-derived materials: applications and impacts. Appl. Microbiol. Biotechnol., 2014, 98(2), 519-532.
[http://dx.doi.org/10.1007/s00253-013-5388-6] [PMID: 24270894]
[6]
Amin, F.; Bhatti, H.N.; Bilal, M.; Asgher, M. Improvement of activity, thermo-stability and fruit juice clarification characteristics of fungal exo-polygalacturonase. Int. J. Biol. Macromol., 2017, 95, 974-984.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.086] [PMID: 27984141]
[7]
Quiroga, E.N.; Sgariglia, M.A.; Molina, C.F.; Sampietro, D.A.; Soberón, J.R.; Vattuone, M.A. Purification and characterization of an exo-polygalacturonase from Pycnoporus sanguineus. Mycol. Res., 2009, 113(Pt 12), 1404-1410.
[http://dx.doi.org/10.1016/j.mycres.2009.09.007] [PMID: 19781642]
[8]
Dey, T.B.; Banerjee, R. Application of decolourized and partially purified polygalacturonase and α-amylase in apple juice clarification. Braz. J. Microbiol., 2014, 45(1), 97-104.
[http://dx.doi.org/10.1590/S1517-83822014000100014] [PMID: 24948919]
[9]
Garg, G.; Singh, A.; Kaur, A.; Singh, R.; Kaur, J.; Mahajan, R. Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech, 2016, 6, 47.
[10]
Trindade, L.V.; Desagiacomo, C.; de Polizeli, M.L.T.; de Lima Damasio, A.R.; Lima, A.M.F.; Gomes, E.; Bonilla-Rodriguez, G.O. Biochemical characterization, thermal stability, and partial sequence of a novel exo-polygalacturonase from the thermophilic fungus Rhizomucor pusillus A13. 36 obtained by submerged cultivation. BioMed Res. Int., 2016, 8653583, 10.
[http://dx.doi.org/10.1155/2016/8653583]
[11]
Yuan, P.; Meng, K.; Huang, H.; Shi, P.; Luo, H.; Yang, P.; Yao, B. A novel acidic and low-temperature-active endo-polygalacturonase from Penicillium sp. CGMCC 1669 with potential for application in apple juice clarification. Food Chem., 2011, 129, 1369-1375.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.065]
[12]
Patil, N.P.; Patil, K.P.; Chaudhari, B.L.; Chincholkar, S.B. Production, purification of exo-polygalacturonase from soil isolate Paecilomyces variotii NFCCI 1769 and its application. Indian J. Microbiol., 2012, 52(2), 240-246.
[http://dx.doi.org/10.1007/s12088-011-0162-x] [PMID: 23729888]
[13]
Sathya, G.N.N.; Panda, T. Application of response surface methodology to evaluate some aspects on stability of pectolytic enzymes from Aspergillus niger. Biochem. Eng. J., 1998, 2, 71-77.
[http://dx.doi.org/10.1016/S1369-703X(98)00019-9]
[14]
Karbalaei, M.; Rezaee, S.A.; Farsiani, H. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. J. Cell. Physiol., 2020, 235(9), 5867-5881.
[http://dx.doi.org/10.1002/jcp.29583] [PMID: 32057111]
[15]
Adalberto, P.R.; Camilla, C.G.; Ariele, C.M.; Fernando, H.A.; Douglas, F.; Quezia, B.C.; Dulce, H.F.S. Characterization of an exopolygalacturonase from Leucoagaricus gongylophorus, the symbiotic fungus of Atta sexdens. Adv. Enzyme Res., 2016, 4, 7-19.
[http://dx.doi.org/10.4236/aer.2016.41002]
[16]
Anand, G.; Yadav, S.; Yadav, D. Purification and biochemical characterization of an exo-polygalacturonase from Aspergillus flavus MTCC 7589. Biocatal. Agric. Biotechnol., 2017, 10, 264-269.
[http://dx.doi.org/10.1016/j.bcab.2017.03.018]
[17]
Kluskens, L.D.; van Alebeek, G.J.; Walther, J.; Voragen, A.G.J.; de Vos, W.M.; van der Oost, J. Characterization and mode of action of an exopolygalacturonase from the hyperthermophilic bacterium Thermotoga maritima. FEBS J., 2005, 272(21), 5464-5473.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04935.x] [PMID: 16262687]
[18]
Joseph, S.; David, W.R. Molecular cloning: a laboratory manual. Q. Rev. Biol., 2001, 76, 348-349.
[http://dx.doi.org/10.1086/394015]
[19]
Miller, G.L. Modified DNS method for reducing sugars. Anal. Chem., 1959, 31, 426-428.
[http://dx.doi.org/10.1021/ac60147a030]
[20]
Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics, 2016, 54(1), 1-, 37.
[http://dx.doi.org/10.1002/cpbi.3] [PMID: 27322406]
[21]
Rozeboom, H.J.; Beldman, G.; Schols, H.A.; Dijkstra, B.W. Crystal structure of endo-xylogalacturonan hydrolase from Aspergillus tubingensis. FEBS J., 2013, 280(23), 6061-6069.
[http://dx.doi.org/10.1111/febs.12524] [PMID: 24034788]
[22]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[23]
Rice, P.; Longden, I.; Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet., 2000, 16(6), 276-277.
[http://dx.doi.org/10.1016/S0168-9525(00)02024-2] [PMID: 10827456]
[24]
Cerreti, M.; Liburdi, K.; Benucci, I.; Esti, M. The effect of pectinase and protease treatment on turbidity and on haze active molecules in pomegranate juice. LWT, 2016, 73, 326-333.
[http://dx.doi.org/10.1016/j.lwt.2016.06.030]
[25]
Fahmy, A.S.; El-Beih, F.M.; Mohamed, S.A.; Abdel-Gany, S.S.; Abd-Elbaky, E.A. Characterization of an exopolygalacturonase from Aspergillus niger. Appl. Biochem. Biotechnol., 2008, 149(3), 205-217.
[http://dx.doi.org/10.1007/s12010-007-8107-x] [PMID: 18500582]
[26]
Kester, H.C.M.; Kusters-van Someren, M.A.; Müller, Y.; Visser, J. Primary structure and characterization of an exopolygalacturonase from Aspergillus tubingensis. Eur. J. Biochem., 1996, 240(3), 738-746.
[http://dx.doi.org/10.1111/j.1432-1033.1996.0738h.x] [PMID: 8856078]
[27]
Petersen, T.N.; Kauppinen, S.; Larsen, S. The crystal structure of rhamnogalacturonase A from Aspergillus aculeatus: a right-handed parallel β helix. Structure, 1997, 5(4), 533-544.
[http://dx.doi.org/10.1016/S0969-2126(97)00209-8] [PMID: 9115442]
[28]
Xu, H.; Zhang, P.; Zhang, Y.; Liu, Z.; Zhang, X.; Li, Z.; Li, J.J.; Du, Y. Overexpression and biochemical characterization of an Endo-α-1,4-polygalacturonase from Aspergillus nidulans in Pichia pastoris. Int. J. Mol. Sci., 2020, 21(6), 2100.
[http://dx.doi.org/10.3390/ijms21062100] [PMID: 32204337]
[29]
Armand, S.; Wagemaker, M.J.M.; Sánchez-Torres, P.; Kester, H.C.M.; van Santen, Y.; Dijkstra, B.W.; Visser, J.; Benen, J.A. The active site topology of Aspergillus niger endopolygalacturonase II as studied by site-directed mutagenesis. J. Biol. Chem., 2000, 275(1), 691-696.
[http://dx.doi.org/10.1074/jbc.275.1.691] [PMID: 10617668]
[30]
Abbott, D.W.; Boraston, A.B. The structural basis for exopolygalacturonase activity in a family 28 glycoside hydrolase. J. Mol. Biol., 2007, 368(5), 1215-1222.
[http://dx.doi.org/10.1016/j.jmb.2007.02.083] [PMID: 17397864]
[31]
Shanley, N.A.; Van Den Broek, L.A.M.; Voragen, A.G.J.; Coughlan, M.P. Isolation and characterization of an endopolygalacturonase from Phanerochaete chrysosporium. J. Biotechnol., 1993, 28, 179-197.
[http://dx.doi.org/10.1016/0168-1656(93)90169-N]
[32]
Hemilä, H.; Pakkanen, R.; Heikinheimo, R.; Palva, E.T.; Palva, I. Expression of the Erwinia carotovora polygalacturonase-encoding gene in Bacillus subtilis: role of signal peptide fusions on production of a heterologous protein. Gene, 1992, 116(1), 27-33.
[http://dx.doi.org/10.1016/0378-1119(92)90625-Y] [PMID: 1628841]
[33]
Raemaekers, R.J.M.; de Muro, L.; Gatehouse, J.A.; Fordham-Skelton, A.P. Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris correct N-terminal processing and secretion of heterologous proteins expressed using the PHA-E signal peptide. Eur. J. Biochem., 1999, 265(1), 394-403.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00749.x] [PMID: 10491197]
[34]
Massahi, A.; Çalık, P. In-silico determination of Pichia pastoris signal peptides for extracellular recombinant protein production. J. Theor. Biol., 2015, 364, 179-188.
[http://dx.doi.org/10.1016/j.jtbi.2014.08.048] [PMID: 25218497]
[35]
Ding, S.; Ge, W.; Buswell, J.A. Secretion, purification and characterisation of a recombinant Volvariella volvacea endoglucanase expressed in the yeast Pichia pastoris. Enzyme Microb. Technol., 2002, 31, 621-626.
[http://dx.doi.org/10.1016/S0141-0229(02)00168-0]
[36]
Lang, C.; Looman, A.C. Efficient expression and secretion of Aspergillus niger RH5344 polygalacturonase in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 1995, 44(1-2), 147-156.
[http://dx.doi.org/10.1007/BF00164494] [PMID: 8579828]
[37]
Blanco, P.; Thow, G.; Simpson, C.G.; Villa, T.G.; Williamson, B. Mutagenesis of key amino acids alters activity of a Saccharomyces cerevisiae endo-polygalacturonase expressed in Pichia pastoris. FEMS Microbiol. Lett., 2002, 210(2), 187-191.
[http://dx.doi.org/10.1111/j.1574-6968.2002.tb11179.x] [PMID: 12044673]
[38]
Maltese, W.A. Posttranslational modification of proteins by isoprenoids in mammalian cells. FASEB J., 1990, 4(15), 3319-3328.
[http://dx.doi.org/10.1096/fasebj.4.15.2123808] [PMID: 2123808]
[39]
Woosley, B.D.; Kim, Y.H.; Kumar Kolli, V.S.; Wells, L.; King, D.; Poe, R.; Orlando, R.; Bergmann, C. Glycan analysis of recombinant Aspergillus niger endo-polygalacturonase A. Carbohydr. Res., 2006, 341(14), 2370-2378.
[http://dx.doi.org/10.1016/j.carres.2006.06.006] [PMID: 16854399]
[40]
Woosley, B.; Xie, M.; Wells, L.; Orlando, R.; Garrison, D.; King, D.; Bergmann, C. Comprehensive glycan analysis of recombinant Aspergillus niger endo-polygalacturonase C. Anal. Biochem., 2006, 354(1), 43-53.
[http://dx.doi.org/10.1016/j.ab.2006.02.002] [PMID: 16697346]
[41]
Xie, M.; Krooshof, G.H.; Benen, J.A.E.; Atwood, J.A., III; King, D.; Bergmann, C.; Orlando, R. Post-translational modifications of recombinant B. cinerea EPG 6. Rapid Commun. Mass Spectrom., 2005, 19(22), 3389-3397.
[http://dx.doi.org/10.1002/rcm.2194] [PMID: 16259040]
[42]
Sieiro, C.; Sestelo, A.B.F.; Villa, T.G. Cloning, characterization, and functional analysis of the EPG1-2 gene: a new allele coding for an endopolygalacturonase in Kluyveromyces marxianus. J. Agric. Food Chem., 2009, 57(19), 8921-8926.
[http://dx.doi.org/10.1021/jf900352q] [PMID: 19725536]
[43]
Shimizu, T.; Miyairi, K.; Okuno, T. Determination of glycosylation sites, disulfide bridges, and the C-terminus of Stereum purpureum mature endopolygalacturonase I by electrospray ionization mass spectrometry. Eur. J. Biochem., 2000, 267(8), 2380-2389.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01249.x] [PMID: 10759864]
[44]
Wagschal, K.; Rose Stoller, J.; Chan, V.J.; Lee, C.C.; Grigorescu, A.A.; Jordan, D.B. Expression and characterization of hyperthermostable exo-polygalacturonase TtGH28 from Thermotoga thermophilus. Mol. Biotechnol., 2016, 58(7), 509-519.
[http://dx.doi.org/10.1007/s12033-016-9948-8] [PMID: 27209035]
[45]
Ahmed, A.; Sohail, M. Characterization of pectinase from Geotrichum candidum AA15 and its potential application in orange juice clarification. J. King Saud Univ. Sci., 2020, 32, 955-961.
[http://dx.doi.org/10.1016/j.jksus.2019.07.002]
[46]
Patidar, M.K.; Nighojkar, A.; Nighojkar, S.; Kumar, A. Purification and characterization of polygalacturonase produced by Aspergillus niger AN07 in Solid State Fermentation. Can. J. Biotech., 2017, 1, 11-18.
[http://dx.doi.org/10.24870/cjb.2017-000102]
[47]
Gomes, E.; Leite, R.S.R.; Da Silva, R.; Silva, D. Purification of an exopolygalacturonase from Penicillium viridicatum RFC3 produced in submerged fermentation. Int. J. Microbiol., 2010, 631942, 8.
[PMID: 20148174]
[48]
Gomes, J.; Zeni, J.; Cence, K.; Toniazzo, G.; Treichel, H.; Valduga, E. Evaluation of production and characterization of polygalacturonase by Aspergillus niger ATCC 9642. Food Bioprod. Process., 2011, 89, 281-287.
[http://dx.doi.org/10.1016/j.fbp.2010.10.002]
[49]
Kant, S.; Vohra, A.; Gupta, R. Purification and physicochemical properties of polygalacturonase from Aspergillus niger MTCC 3323. Protein Expr. Purif., 2013, 87(1), 11-16.
[http://dx.doi.org/10.1016/j.pep.2012.09.014] [PMID: 23069766]
[50]
Asgher, M.; Ramzan, M.; Bilal, M. Purification and characterization of manganese peroxidases from native and mutant Trametes versicolor IBL-04. Chin. J. Catal., 2016, 37, 561-570.
[http://dx.doi.org/10.1016/S1872-2067(15)61044-0]
[51]
Siddiqui, M.A.; Pande, V.; Arif, M. Production, purification, and characterization of polygalacturonase from Rhizomucor pusillus isolated from decomposting orange peels. Enzyme Res., 2012, 2012, 138634.
[PMID: 23125919]
[52]
Nirmaladevi, D.; Anilkumar, M.; Srinivas, C. Production and characterization of exopolygalacturonase from Fusarium oxysporum F. Sp. Lycopersici. Int. J. Pharma Bio Sci., 2014, 5, 666-675.
[53]
Kothori, M.N.; Kulkarni, J.A.; Maid, P.M.; Baig, M.M.V. Clarification of apple juice by using enzymes and their mixture. World Research Journal of Biotechnology, 2013, 1(2), 29-31.
[54]
Kaur, G.; Kumar, S.; Satyanarayana, T. Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis. Bioresour. Technol., 2004, 94(3), 239-243.
[http://dx.doi.org/10.1016/j.biortech.2003.05.003] [PMID: 15182829]
[55]
Hwang, W.; Yoo, J.; Lee, Y.; Park, S.; Hoang, P.L.; Cho, H.; Yu, J.; Hoa Vo, T.M.; Shin, M.; Jin, M.S.; Park, D.; Hyeon, C.; Lee, G. Dynamic coordination of two-metal-ions orchestrates λ-exonuclease catalysis. Nat. Commun., 2018, 9(1), 4404.
[http://dx.doi.org/10.1038/s41467-018-06750-9] [PMID: 30353000]
[56]
Sinha, R.; Khare, S.K. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Front. Microbiol., 2014, 5, 165.
[http://dx.doi.org/10.3389/fmicb.2014.00165] [PMID: 24782853]
[57]
Rehman, S.; Bhatti, H.N.; Bilal, M.; Asgher, M. Optimization of process variables for enhanced production of extracellular lipase by Pleurotus ostreatus IBL-02 in solid-state fermentation. Pak. J. Pharm. Sci., 2019, 32(2), 617-624.
[PMID: 31081774]
[58]
Ferrari, S.; Savatin, D.V.; Sicilia, F.; Gramegna, G.; Cervone, F.; Lorenzo, G.D. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci., 2013, 4, 49.
[http://dx.doi.org/10.3389/fpls.2013.00049] [PMID: 23493833]
[59]
Gulec, H.A.; Bagci, P.O.; Bagci, U. Clarification of apple juice using polymeric ultrafiltration membranes: a comparative evaluation of membrane fouling and juice quality. Food Bioprocess Technol., 2017, 10, 875-885.
[http://dx.doi.org/10.1007/s11947-017-1871-x]
[60]
Klavons, J.A.; Bennett, R.D.; Vannier, S.H. Physical/chemical nature of pectin associated with commercial orange juice cloud. J. Food Sci., 1994, 59, 399-401.
[http://dx.doi.org/10.1111/j.1365-2621.1994.tb06976.x]
[61]
Yamasaki, M.; Tsuneo, Y.; Arima, M. Pectic enzymes in the clarification of apple juice: part I. Study on the clarification reaction in a simplified model. Agric. Biol. Chem., 1964, 28, 779-787.
[http://dx.doi.org/10.1080/00021369.1964.10858304]
[62]
Benedetti, M.; Andreani, F.; Leggio, C.; Galantini, L.; Di Matteo, A.; Pavel, N.V.; De Lorenzo, G.; Cervone, F.; Federici, L.; Sicilia, F. A single amino-acid substitution allows endo-polygalacturonase of Fusarium verticillioides to acquire recognition by PGIP2 from Phaseolus vulgaris. PLoS One, 2013, 8(11), e80610.
[http://dx.doi.org/10.1371/journal.pone.0080610] [PMID: 24260434]
[63]
Kashyap, D.R.; Vohra, P.K.; Chopra, S.; Tewari, R. Applications of pectinases in the commercial sector: a review. Bioresour. Technol., 2001, 77(3), 215-227.
[http://dx.doi.org/10.1016/S0960-8524(00)00118-8] [PMID: 11272008]
[64]
Lutz, S. Beyond directed evolution--semi-rational protein engineering and design. Curr. Opin. Biotechnol., 2010, 21(6), 734-743.
[http://dx.doi.org/10.1016/j.copbio.2010.08.011] [PMID: 20869867]
[65]
Bolivar, J.M.; Wilson, L.; Ferrarotti, S.A.; Fernandez-Lafuente, R.; Guisan, J.M.; Mateo, C. Evaluation of different immobilization strategies to prepare an industrial biocatalyst of formate dehydrogenase from Candida boidinii. Enzyme Microb. Technol., 2007, 40, 540-546.
[http://dx.doi.org/10.1016/j.enzmictec.2006.05.009]
[66]
Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol., 2007, 40, 1451-1463.
[http://dx.doi.org/10.1016/j.enzmictec.2007.01.018]
[67]
Fernandez-Lafuente, R. Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme Microb. Technol., 2009, 45, 405-418.
[http://dx.doi.org/10.1016/j.enzmictec.2009.08.009]
[68]
Velasco-Lozano, S.; Benítez-Mateos, A.I.; López-Gallego, F. Co‐immobilized phosphorylated cofactors and enzymes as self‐sufficient heterogeneous biocatalysts for chemical processes. Angew. Chem. Int. Ed. Engl., 2017, 56(3), 771-775.
[http://dx.doi.org/10.1002/anie.201609758] [PMID: 28000978]
[69]
Yildirim, D.; Alagöz, D.; Toprak, A.; Tükel, S.; Fernandez-Lafuente, R. Tuning dimeric formate dehydrogenases reduction/oxidation activities by immobilization. Process Biochem., 2019, 85, 97-105.
[http://dx.doi.org/10.1016/j.procbio.2019.07.001]
[70]
Pagnonceli, J.; Rasbold, L.M.; Rocha, G.B.; Silva, J.L.C.; Kadowaki, M.K.; Simão, R.C.G.; Maller, A. Biotechnological potential of an exo-polygalacturonase of the new strain Penicillium janthinellum VI2R3M: biochemical characterization and clarification of fruit juices. J. Appl. Microbiol., 2019, 127(6), 1706-1715.
[http://dx.doi.org/10.1111/jam.14426] [PMID: 31461202]
[71]
Gautam, A.; Sangeeta, Y.; Dinesh, Y. Purification and characterization of polygalacturonase from Aspergillus fumigatus MTCC 2584 and elucidating its application in retting of Crotalaria juncea fiber. 3 Biotech, 2016, 6, 201.
[72]
Maisuria, V.B.; Patel, V.A.; Nerurkar, A.S. Biochemical and thermal stabilization parameters of polygalacturonase from Erwinia carotovora subsp. carotovora BR1. J. Microbiol. Biotechnol., 2010, 20(7), 1077-1085.
[http://dx.doi.org/10.4014/jmb.0908.08008] [PMID: 20668400]
[73]
Mertens, J.A. Kinetic properties of two Rhizopus exo-polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry. Appl. Biochem. Biotechnol., 2013, 170(8), 2009-2020.
[http://dx.doi.org/10.1007/s12010-013-0336-6] [PMID: 23813338]
[74]
Pedrolli, D.B.; Carmona, E.C. Purification and characterization of the exopolygalacturonase produced by Aspergillus giganteus in submerged cultures. J. Ind. Microbiol. Biotechnol., 2010, 37(6), 567-573.
[http://dx.doi.org/10.1007/s10295-010-0702-0] [PMID: 20204453]
[75]
Cho, I.J.; Yeo, I.C.; Lee, N.K.; Jung, S.H.; Hahm, Y.T. Heterologous expression of polygalacturonase genes isolated from Galactomyces citri-aurantii IJ-1 in Pichia pastoris. J. Microbiol., 2012, 50(2), 332-340.
[http://dx.doi.org/10.1007/s12275-012-1290-7] [PMID: 22538664]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy