Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Inhaled Antifungal Agents for the Treatment and Prophylaxis of Pulmonary Mycoses

Author(s): Qiuying Liao and Jenny K.W. Lam*

Volume 27 , Issue 12 , 2021

Published on: 01 January, 2021

Page: [1453 - 1468] Pages: 16

DOI: 10.2174/1381612826666210101153547

Price: $65

Abstract

Pulmonary mycoses are associated with high morbidity and mortality. The current standard treatment by systemic administration is limited by inadequate local bioavailability and systemic toxic effects. Aerosolisation of antifungals is an attractive approach to overcome these problems, but no inhaled antifungal formulation is currently available for the treatment of pulmonary mycoses. Hence, the development of respirable antifungals formulations is of interest and in high demand. In this review, the recent advances in the development of antifungal formulations for pulmonary delivery are discussed, including both nebulised and dry powder formulations. Although the clinical practices of nebulised parenteral amphotericin B and voriconazole formulations (off-label use) are reported to show promising therapeutic effects with few adverse effects, there is no consensus about the dosage regimen (e.g. the dose, frequency, and whether they are used as single or combination therapy). To maximise the benefits of nebulised antifungal therapy, it is important to establish standardised protocol that clearly defines the dose and specifies the device and the administration conditions. Dry powder formulations of antifungal agents such as itraconazole and voriconazole with favourable physicochemical and aerosol properties are developed using various powder engineering technologies, but it is important to consider their suitability for use in patients with compromised lung functions. In addition, more biological studies on the therapeutic efficacy and pharmacokinetic profile are needed to demonstrate their clinical potential.

Keywords: Aerosol, amphotericin, aspergillosis, dry powder inhaler, echinocandin, nebulisation, triazole.

[1]
Walsh TJ, Anaissie EJ, Denning DW, et al. Infectious Diseases Society of America. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 2008; 46(3): 327-60.
[http://dx.doi.org/10.1086/525258] [PMID: 18177225]
[2]
Alanio A, Denis B, Hamane S, et al. New therapeutic strategies for invasive aspergillosis in the era of azole resistance: how should the prevalence of azole resistance be defined? J Antimicrob Chemother 2016; 71(8): 2075-8.
[http://dx.doi.org/10.1093/jac/dkw036] [PMID: 27494830]
[3]
Snelders E, Camps SM, Karawajczyk A, et al. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS One 2012; 7(3)e31801
[http://dx.doi.org/10.1371/journal.pone.0031801] [PMID: 22396740]
[4]
Smith JA, Kauffman CA. Pulmonary fungal infections. Respirology 2012; 17(6): 913-26.
[http://dx.doi.org/10.1111/j.1440-1843.2012.02150.x] [PMID: 22335254]
[5]
Steinbach WJ, Marr KA, Anaissie EJ, et al. Clinical epidemiology of 960 patients with invasive aspergillosis from the PATH Alliance registry. J Infect 2012; 65(5): 453-64.
[http://dx.doi.org/10.1016/j.jinf.2012.08.003] [PMID: 22898389]
[6]
Bains SN, Judson MA. Allergic bronchopulmonary aspergillosis. Clin Chest Med 2012; 33(2): 265-81.
[http://dx.doi.org/10.1016/j.ccm.2012.02.003] [PMID: 22640845]
[7]
Barac A, Kosmidis C, Alastruey-Izquierdo A, Salzer HJF. CPAnet. Chronic pulmonary aspergillosis update: A year in review. Med Mycol 2019; 57(Supplement_2): S104-9.
[http://dx.doi.org/10.1093/mmy/myy070] [PMID: 30816975]
[8]
Cadena J, Thompson GR III, Patterson TF. Invasive Aspergillosis: Current Strategies for Diagnosis and Management. Infect Dis Clin North Am 2016; 30(1): 125-42.
[http://dx.doi.org/10.1016/j.idc.2015.10.015] [PMID: 26897064]
[9]
Kousha M, Tadi R, Soubani AO. Pulmonary aspergillosis: a clinical review. Eur Respir Rev 2011; 20(121): 156-74.
[http://dx.doi.org/10.1183/09059180.00001011] [PMID: 21881144]
[10]
Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 2013; 73(9): 919-34.
[http://dx.doi.org/10.1007/s40265-013-0069-4] [PMID: 23729001]
[11]
Gubbins PO. Triazole antifungal agents drug-drug interactions involving hepatic cytochrome P450. Expert Opin Drug Metab Toxicol 2011; 7(11): 1411-29.
[http://dx.doi.org/10.1517/17425255.2011.627854] [PMID: 21995615]
[12]
Kyriakidis I, Tragiannidis A, Munchen S, Groll AH. Clinical hepatotoxicity associated with antifungal agents. Expert Opin Drug Saf 2017; 16(2): 149-65.
[PMID: 27927037]
[13]
Chang CC, Slavin MA, Chen SC. New developments and directions in the clinical application of the echinocandins. Arch Toxicol 2017; 91(4): 1613-21.
[http://dx.doi.org/10.1007/s00204-016-1916-3] [PMID: 28180946]
[14]
Martindale: The Complete Drug Reference 2017. Available at: https://about.medicinescomplete.com/publication/martindale-the-complete-drug-reference/
[15]
British Medical Association; Royal Pharmaceutical Society British National Formulary. BMJ Group and Pharmaceutical Press 2018.
[16]
Busca A, Pagano L. Prophylaxis for aspergillosis in patients with haematological malignancies: pros and cons. Expert Rev Anti Infect Ther 2018; 16(7): 531-42.
[http://dx.doi.org/10.1080/14787210.2018.1496329] [PMID: 30033822]
[17]
Le J, Schiller DS. Aerosolized Delivery of Antifungal Agents. Curr Fungal Infect Rep 2010; 4(2): 96-102.
[http://dx.doi.org/10.1007/s12281-010-0011-0] [PMID: 20502511]
[18]
Velkov T, Abdul Rahim N, Zhou QT, Chan HK, Li J. Inhaled anti-infective chemotherapy for respiratory tract infections: successes, challenges and the road ahead. Adv Drug Deliv Rev 2015; 85: 65-82.
[http://dx.doi.org/10.1016/j.addr.2014.11.004] [PMID: 25446140]
[19]
Zhou QT, Leung SS, Tang P, Parumasivam T, Loh ZH, Chan HK. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev 2015; 85: 83-99.
[http://dx.doi.org/10.1016/j.addr.2014.10.022] [PMID: 25451137]
[20]
Alothman GA, Alsaadi MM, Ho BL, et al. Evaluation of bronchial constriction in children with cystic fibrosis after inhaling two different preparations of tobramycin. Chest 2002; 122(3): 930-4.
[http://dx.doi.org/10.1378/chest.122.3.930] [PMID: 12226034]
[21]
Daniels LM, Juliano J, Marx A, Weber DJ. Inhaled Antibiotics for Hospital-Acquired and Ventilator-Associated Pneumonia. Clin Infect Dis 2017; 64(3): 386-7.
[http://dx.doi.org/10.1093/cid/ciw726] [PMID: 27803096]
[22]
McCoy KS. Compounded colistimethate as possible cause of fatal acute respiratory distress syndrome. N Engl J Med 2007; 357(22): 2310-1.
[http://dx.doi.org/10.1056/NEJMc071717] [PMID: 18046039]
[23]
Lowry RH, Wood AM, Higenbottam TW. Effects of pH and osmolarity on aerosol-induced cough in normal volunteers. Clin Sci (Lond) 1988; 74(4): 373-6.
[http://dx.doi.org/10.1042/cs0740373] [PMID: 3356109]
[24]
Conole D, Keating GM. Colistimethate sodium dry powder for inhalation: a review of its use in the treatment of chronic Pseudomonas aeruginosa infection in patients with cystic fibrosis. Drugs 2014; 74(3): 377-87.
[http://dx.doi.org/10.1007/s40265-014-0181-0] [PMID: 24510624]
[25]
Elson EC, Mermis J, Polineni D, Oermann CM. Aztreonam Lysine Inhalation Solution in Cystic Fibrosis. Clin Med Insights Circ Respir Pulm Med 2019.131179548419842822
[http://dx.doi.org/10.1177/1179548419842822] [PMID: 31019373]
[26]
Greenwood J, Schwarz C, Sommerwerck U, et al. Ease of use of tobramycin inhalation powder compared with nebulized tobramycin and colistimethate sodium: a crossover study in cystic fibrosis patients with pulmonary Pseudomonas aeruginosa infection. Ther Adv Respir Dis 2017; 11(7): 249-60.
[http://dx.doi.org/10.1177/1753465817710596] [PMID: 28614995]
[27]
Vazquez-Espinosa E, Marcos C, Alonso T, et al. Tobramycin inhalation powder (TOBI Podhaler) for the treatment of lung infection in patients with cystic fibrosis. Expert Rev Anti Infect Ther 2016; 14(1): 9-17.
[http://dx.doi.org/10.1586/14787210.2016.1118344] [PMID: 26559549]
[28]
Hickey AJ, da Rocha SR. Pharmaceutical inhalation aerosol technology. CRC Press 2019.
[http://dx.doi.org/10.1201/9780429055201]
[29]
Martin AR, Finlay WH. Nebulisers for drug delivery to the lungs. Expert Opin Drug Deliv 2015; 12(6): 889-900.
[http://dx.doi.org/10.1517/17425247.2015.995087] [PMID: 25534396]
[30]
Le J, Ashley ED, Neuhauser MM, et al. Society of Infectious Diseases Pharmacists Aerosolized Antimicrobials Task Force; Insights from the Society of Infectious Diseases Pharmacists. Consensus summary of aerosolized antimicrobial agents: application of guideline criteria. Pharmacotherapy 2010; 30(6): 562-84.
[http://dx.doi.org/10.1592/phco.30.6.562] [PMID: 20500046]
[31]
Weers J. Inhaled antimicrobial therapy - barriers to effective treatment. Adv Drug Deliv Rev 2015; 85: 24-43.
[http://dx.doi.org/10.1016/j.addr.2014.08.013] [PMID: 25193067]
[32]
Tiddens HA, Bos AC, Mouton JW, Devadason S, Janssens HM. Inhaled antibiotics: dry or wet? Eur Respir J 2014; 44(5): 1308-18.
[http://dx.doi.org/10.1183/09031936.00090314] [PMID: 25323242]
[33]
Tsai RJ, Boiano JM, Steege AL, Sweeney MH. Precautionary Practices of Respiratory Therapists and Other Health-Care Practitioners Who Administer Aerosolized Medications. Respir Care 2015; 60(10): 1409-17.
[http://dx.doi.org/10.4187/respcare.03817] [PMID: 26152473]
[34]
Denyer J, Nikander K, Smith NJ. Adaptive Aerosol Delivery (AAD) technology. Expert Opin Drug Deliv 2004; 1(1): 165-76.
[http://dx.doi.org/10.1517/17425247.1.1.165] [PMID: 16296727]
[35]
Weers J, Clark A. The Impact of Inspiratory Flow Rate on Drug Delivery to the Lungs with Dry Powder Inhalers. Pharm Res 2017; 34(3): 507-28.
[http://dx.doi.org/10.1007/s11095-016-2050-x] [PMID: 27738953]
[36]
Mahler DA. Peak Inspiratory Flow Rate as a Criterion for Dry Powder Inhaler Use in Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2017; 14(7): 1103-7.
[http://dx.doi.org/10.1513/AnnalsATS.201702-156PS] [PMID: 28481631]
[37]
Sibum I, Hagedoorn P, de Boer AH, Frijlink HW, Grasmeijer F. Challenges for pulmonary delivery of high powder doses. Int J Pharm 2018; 548(1): 325-36.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.008] [PMID: 29991452]
[38]
de Jongh FH, Rinkel MJ, Hoeijmakers HWM. Aerosol deposition in the upper airways of a child. J Aerosol Med 2006; 19(3): 279-89.
[http://dx.doi.org/10.1089/jam.2006.19.279] [PMID: 17034304]
[39]
Laube BL, Geller DE, Lin T-C, Dalby RN, Diener-West M, Zeitlin PL. Positive expiratory pressure changes aerosol distribution in patients with cystic fibrosis. Respir Care 2005; 50(11): 1438-44.
[PMID: 16253150]
[40]
Roth AP, Lange CF, Finlay WH. The effect of breathing pattern on nebulizer drug delivery. J Aerosol Med 2003; 16(3): 325-39.
[http://dx.doi.org/10.1089/089426803769017677] [PMID: 14572328]
[41]
Moon C, Smyth HDC, Watts AB, Williams RO III. Delivery Technologies for Orally Inhaled Products: an Update. AAPS PharmSciTech 2019; 20(3): 117.
[http://dx.doi.org/10.1208/s12249-019-1314-2] [PMID: 30783904]
[42]
Chan HK. Dry powder aerosol delivery systems: current and future research directions. J Aerosol Med 2006; 19(1): 21-7.
[http://dx.doi.org/10.1089/jam.2006.19.21] [PMID: 16551211]
[43]
Feng AL, Boraey MA, Gwin MA, Finlay PR, Kuehl PJ, Vehring R. Mechanistic models facilitate efficient development of leucine containing microparticles for pulmonary drug delivery. Int J Pharm 2011; 409(1-2): 156-63.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.049] [PMID: 21356284]
[44]
Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res 2008; 25(5): 999-1022.
[http://dx.doi.org/10.1007/s11095-007-9475-1] [PMID: 18040761]
[45]
Mitchell J, Newman S, Chan HK. In vitro and in vivo aspects of cascade impactor tests and inhaler performance: a review. AAPS PharmSciTech 2007; 8(4)
[http://dx.doi.org/10.1208/pt0804110] [PMID: 18181531]
[47]
United States Pharmacopeia United States Pharmacopeial Convention Available at: https://www.usp.org/?gclid=CjwKCAjw6qqDBhBEiwACBs6x8qEEZ-9AXYoB2AD1LBJu-XMGkSVXn45cq97moPZk70jX3ZEoG8FehoCRtQQAvD_BwE
[48]
Mitchell JP, Nagel MW, Nichols S, Nerbrink O. Laser diffractometry as a technique for the rapid assessment of aerosol particle size from inhalers. J Aerosol Med 2006; 19(4): 409-33.
[http://dx.doi.org/10.1089/jam.2006.19.409] [PMID: 17196072]
[49]
Ziegler J, Wachtel H. Comparison of cascade impaction and laser diffraction for particle size distribution measurements. J Aerosol Med 2005; 18(3): 311-24.
[http://dx.doi.org/10.1089/jam.2005.18.311] [PMID: 16181006]
[50]
Monforte V, López-Sánchez A, Zurbano F, et al. Prophylaxis with nebulized liposomal amphotericin B for Aspergillus infection in lung transplant patients does not cause changes in the lipid content of pulmonary surfactant. J Heart Lung Transplant 2013; 32(3): 313-9.
[http://dx.doi.org/10.1016/j.healun.2012.11.013] [PMID: 23332731]
[51]
Hanada S, Uruga H, Takaya H, et al. Nebulized liposomal amphotericin B for treating Aspergillus empyema with bronchopleural fistula. Am J Respir Crit Care Med 2014; 189(5): 607-8.
[http://dx.doi.org/10.1164/rccm.201311-2086LE] [PMID: 24579838]
[52]
Chong GL, Broekman F, Polinder S, et al. Aerosolised liposomal amphotericin B to prevent aspergillosis in acute myeloid leukaemia: Efficacy and cost effectiveness in real-life. Int J Antimicrob Agents 2015; 46(1): 82-7.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.02.023] [PMID: 25956843]
[53]
Godet C, Cateau E, Rammaert B, et al. Nebulized Liposomal Amphotericin B for Treatment of Pulmonary Infection Caused by Hormographiella aspergillata: Case Report and Literature Review. Mycopathologia 2017; 182(7-8): 709-13.
[http://dx.doi.org/10.1007/s11046-017-0117-9] [PMID: 28144821]
[54]
Otu AA, Langridge P, Denning DW. An evaluation of nebulised amphotericin B deoxycholate (Fungizone®) for treatment of pulmonary aspergillosis in the UK National Aspergillosis Centre. Mycoses 2019; 62(11): 1049-55.
[http://dx.doi.org/10.1111/myc.12996] [PMID: 31479538]
[55]
Hilberg O, Andersen CU, Henning O, Lundby T, Mortensen J, Bendstrup E. Remarkably efficient inhaled antifungal monotherapy for invasive pulmonary aspergillosis. Eur Respir J 2012; 40(1): 271-3.
[http://dx.doi.org/10.1183/09031936.00163511] [PMID: 22753838]
[56]
Holle J, Leichsenring M, Meissner PE. Nebulized voriconazole in infections with Scedosporium apiospermum-case report and review of the literature. J Cyst Fibros 2014; 13(4): 400-2.
[http://dx.doi.org/10.1016/j.jcf.2013.10.014] [PMID: 24263169]
[57]
Andersen CU, Sønderskov LD, Bendstrup E, et al. Voriconazole Concentrations in Plasma and Epithelial Lining Fluid after Inhalation and Oral Treatment. Basic Clin Pharmacol Toxicol 2017; 121(5): 430-4.
[http://dx.doi.org/10.1111/bcpt.12820] [PMID: 28609608]
[58]
Gangadhar KN, Adhikari K, Srichana T. Synthesis and evaluation of sodium deoxycholate sulfate as a lipid drug carrier to enhance the solubility, stability and safety of an amphotericin B inhalation formulation. Int J Pharm 2014; 471(1-2): 430-8.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.066] [PMID: 24907597]
[59]
Usman F, Khalil R, Ul-Haq Z, Nakpheng T, Srichana T. Bioactivity, Safety, and Efficacy of Amphotericin B Nanomicellar Aerosols Using Sodium Deoxycholate Sulfate as the Lipid Carrier. AAPS PharmSciTech 2018; 19(5): 2077-86.
[http://dx.doi.org/10.1208/s12249-018-1013-4] [PMID: 29691753]
[60]
Vaughn JM, McConville JT, Burgess D, et al. Single dose and multiple dose studies of itraconazole nanoparticles. Eur J Pharm Biopharm 2006; 63(2): 95-102.
[http://dx.doi.org/10.1016/j.ejpb.2006.01.006] [PMID: 16516450]
[61]
Yang W, Tam J, Miller DA, et al. High bioavailability from nebulized itraconazole nanoparticle dispersions with biocompatible stabilizers. Int J Pharm 2008; 361(1-2): 177-88.
[http://dx.doi.org/10.1016/j.ijpharm.2008.05.003] [PMID: 18556158]
[62]
Yang W, Chow KT, Lang B, Wiederhold NP, Johnston KP, Williams RO III. In vitro characterization and pharmacokinetics in mice following pulmonary delivery of itraconazole as cyclodextrin solubilized solution. Eur J Pharm Sci 2010; 39(5): 336-47.
[http://dx.doi.org/10.1016/j.ejps.2010.01.001] [PMID: 20093186]
[63]
Yang W, Johnston KP, Williams RO III. Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats. Eur J Pharm Biopharm 2010; 75(1): 33-41.
[http://dx.doi.org/10.1016/j.ejpb.2010.01.011] [PMID: 20102737]
[64]
Rundfeldt C, Steckel H, Scherliess H, Wyska E, Wlaź P. Inhalable highly concentrated itraconazole nanosuspension for the treatment of bronchopulmonary aspergillosis. Eur J Pharm Biopharm 2013; 83(1): 44-53.
[http://dx.doi.org/10.1016/j.ejpb.2012.09.018] [PMID: 23064325]
[65]
Jafarinejad S, Gilani K, Moazeni E, Ghazi-Khansari M, Najafabadi AR, Mohajel N. Development of chitosan-based nanoparticles for pulmonary delivery of itraconazole as dry powder formulation. Powder Technol 2012; 222: 65-70.
[http://dx.doi.org/10.1016/j.powtec.2012.01.045]
[66]
Duret C, Wauthoz N, Sebti T, Vanderbist F, Amighi K. New inhalation-optimized itraconazole nanoparticle-based dry powders for the treatment of invasive pulmonary aspergillosis. Int J Nanomedicine 2012; 7: 5475-89.
[http://dx.doi.org/10.2147/IJN.S34091] [PMID: 23093903]
[67]
Duret C, Wauthoz N, Sebti T, Vanderbist F, Amighi K. New respirable and fast dissolving itraconazole dry powder composition for the treatment of invasive pulmonary aspergillosis. Pharm Res 2012; 29(10): 2845-59.
[http://dx.doi.org/10.1007/s11095-012-0779-4] [PMID: 22644590]
[68]
Duret C, Wauthoz N, Sebti T, Vanderbist F, Amighi K. Solid dispersions of itraconazole for inhalation with enhanced dissolution, solubility and dispersion properties. Int J Pharm 2012; 428(1-2): 103-13.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.002] [PMID: 22414388]
[69]
Duret C, Merlos R, Wauthoz N, Sebti T, Vanderbist F, Amighi K. Pharmacokinetic evaluation in mice of amorphous itraconazole-based dry powder formulations for inhalation with high bioavailability and extended lung retention. Eur J Pharm Biopharm 2014; 86(1): 46-54.
[http://dx.doi.org/10.1016/j.ejpb.2013.03.005] [PMID: 23523546]
[70]
Merlos R, Wauthoz N, Levet V, et al. Optimization and scaling-up of ITZ-based dry powders for inhalation. J Drug Deliv Sci Technol 2017; 37: 147-57.
[http://dx.doi.org/10.1016/j.jddst.2016.12.009]
[71]
Karashima M, Sano N, Yamamoto S, et al. Enhanced pulmonary absorption of poorly soluble itraconazole by micronized cocrystal dry powder formulations. Eur J Pharm Biopharm 2017; 115: 65-72.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.013] [PMID: 28223260]
[72]
Huang Z, Lin L, McGoverin C, et al. Dry powder inhaler formulations of poorly water-soluble itraconazole: A balance between in-vitro dissolution and in-vivo distribution is necessary. Int J Pharm 2018; 551(1-2): 103-10.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.018] [PMID: 30217767]
[73]
Lin L, Quan G, Peng T, et al. Development of fine solid-crystal suspension with enhanced solubility, stability, and aerosolization performance for dry powder inhalation. Int J Pharm 2017; 533(1): 84-92.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.024] [PMID: 28903066]
[74]
Weng J, Wong SN, Xu X, et al. Cocrystal Engineering of Itraconazole with Suberic Acid via Rotary Evaporation and Spray Drying. Cryst Growth Des 2019.
[http://dx.doi.org/10.1021/acs.cgd.8b01873]
[75]
Beinborn NA, Lirola HL, Williams RO III. Effect of process variables on morphology and aerodynamic properties of voriconazole formulations produced by thin film freezing. Int J Pharm 2012; 429(1-2): 46-57.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.010] [PMID: 22433472]
[76]
Beinborn NA, Du J, Wiederhold NP, Smyth HDC, Williams RO III. Dry powder insufflation of crystalline and amorphous voriconazole formulations produced by thin film freezing to mice. Eur J Pharm Biopharm 2012; 81(3): 600-8.
[http://dx.doi.org/10.1016/j.ejpb.2012.04.019] [PMID: 22569473]
[77]
Sinha B, Mukherjee B, Pattnaik G. Poly-lactide-co-glycolide nanoparticles containing voriconazole for pulmonary delivery: in vitro and in vivo study. Nanomedicine (Lond) 2013; 9(1): 94-104.
[http://dx.doi.org/10.1016/j.nano.2012.04.005] [PMID: 22633899]
[78]
Arora S, Haghi M, Loo C-Y, Traini D, Young PM, Jain S. Development of an inhaled controlled release voriconazole dry powder formulation for the treatment of respiratory fungal infection. Mol Pharm 2015; 12(6): 2001-9.
[http://dx.doi.org/10.1021/mp500808t] [PMID: 25923171]
[79]
Arora S, Mahajan RR, Kushwah V, Baradia D, Misra A, Jain S. Development of voriconazole loaded large porous particles for inhalation delivery: effect of surface forces on aerosolisation performance, assessment of in vitro safety potential and uptake by macrophages. RSC Advances 2015; 5: 38030-43.
[http://dx.doi.org/10.1039/C5RA00248F]
[80]
Arora S, Haghi M, Young PM, Kappl M, Traini D, Jain S. Highly respirable dry powder inhalable formulation of voriconazole with enhanced pulmonary bioavailability. Expert Opin Drug Deliv 2016; 13(2): 183-93.
[http://dx.doi.org/10.1517/17425247.2016.1114603] [PMID: 26609733]
[81]
Das PJ, Paul P, Mukherjee B, et al. Pulmonary Delivery of Voriconazole Loaded Nanoparticles Providing a Prolonged Drug Level in Lungs: A Promise for Treating Fungal Infection. Mol Pharm 2015; 12(8): 2651-64.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00064] [PMID: 25941882]
[82]
Paul P, Sengupta S, Mukherjee B, Shaw TK, Gaonkar RH, Debnath MC. Chitosan-coated nanoparticles enhanced lung pharmacokinetic profile of voriconazole upon pulmonary delivery in mice. Nanomedicine (Lond) 2018; 13(5): 501-20.
[http://dx.doi.org/10.2217/nnm-2017-0291] [PMID: 29383985]
[83]
Liao Q, Yip L, Chow MYT, et al. Porous and highly dispersible voriconazole dry powders produced by spray freeze drying for pulmonary delivery with efficient lung deposition. Int J Pharm 2019; 560: 144-54.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.057] [PMID: 30731259]
[84]
Liao Q, Lam ICH, Lin HHS, et al. Effect of formulation and inhaler parameters on the dispersion of spray freeze dried voriconazole particles. Int J Pharm 2020.584119444
[http://dx.doi.org/10.1016/j.ijpharm.2020.119444] [PMID: 32445908]
[85]
Moen MD, Lyseng-Williamson KA, Scott LJ. Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs 2009; 69(3): 361-92.
[http://dx.doi.org/10.2165/00003495-200969030-00010] [PMID: 19275278]
[86]
Cornely OA. Aspergillus to Zygomycetes: causes, risk factors, prevention, and treatment of invasive fungal infections. Infection 2008; 36(4): 296-313.
[http://dx.doi.org/10.1007/s15010-008-7357-z] [PMID: 18642109]
[87]
Botero Aguirre JP, Restrepo Hamid AM. Amphotericin B deoxycholate versus liposomal amphotericin B: effects on kidney function. Cochrane Database Syst Rev 2015; (11): CD010481
[http://dx.doi.org/10.1002/14651858.CD010481.pub2] [PMID: 26595825]
[88]
Knechtel SA, Klepser ME. Safety of aerosolized amphotericin B. Expert Opin Drug Saf 2007; 6(5): 523-32.
[http://dx.doi.org/10.1517/14740338.6.5.523] [PMID: 17877440]
[89]
Kamalaporn H, Leung K, Nagel M, et al. Aerosolized liposomal Amphotericin B: a potential prophylaxis of invasive pulmonary aspergillosis in immunocompromised patients. Pediatr Pulmonol 2014; 49(6): 574-80.
[http://dx.doi.org/10.1002/ppul.22856] [PMID: 23843366]
[90]
Ari A. Jet, Ultrasonic, and Mesh Nebulisers: An Evaluation of Nebulisers for Better Clinical Outcomes. Eurasian Journal of Pulmonology 2014; 16: 1-7.
[http://dx.doi.org/10.5152/ejp.2014.00087]
[91]
Takazono T, Izumikawa K, Mihara T, et al. Efficacy of combination antifungal therapy with intraperitoneally administered micafungin and aerosolized liposomal amphotericin B against murine invasive pulmonary aspergillosis. Antimicrob Agents Chemother 2009; 53(8): 3508-10.
[http://dx.doi.org/10.1128/AAC.00285-09] [PMID: 19528281]
[92]
Mihara T, Kakeya H, Izumikawa K, et al. Efficacy of aerosolized liposomal amphotericin B against murine invasive pulmonary mucormycosis. J Infect Chemother 2014; 20(2): 104-8.
[http://dx.doi.org/10.1016/j.jiac.2013.09.002] [PMID: 24462443]
[93]
Xia D, Sun W-K, Tan M-M, et al. Aerosolized amphotericin B as prophylaxis for invasive pulmonary aspergillosis: a meta-analysis. Int J Infect Dis 2015; 30: 78-84.
[http://dx.doi.org/10.1016/j.ijid.2014.11.004] [PMID: 25461661]
[94]
Lee. JD, Kugler AR, Samford LK, Gerety RJ, Eldon MA. Amphotericin B Inhalation Powder (ABIP) is Well-Tolerated with Low Systemic Amphotericin B Exposure in Healthy Subjects. 2nd Advances against Aspergillosis: Athens, Greece 2006.
[95]
Kirkpatrick WR, Najvar LK, Vallor AC, et al. Prophylactic efficacy of single dose pulmonary administration of amphotericin B inhalation powder in a guinea pig model of invasive pulmonary aspergillosis. J Antimicrob Chemother 2012; 67(4): 970-6.
[http://dx.doi.org/10.1093/jac/dkr567] [PMID: 22240402]
[96]
Kugler AR, Lee JD, Samford LK, Gerety RJ, Eldon MA. Amphotericin B Inhalation Powder (ABIP) Achieves Significant Pulmonary and Low Systemic Amphotericin B Concentrations. The 16 th Congress of the International Society for Human and Animal Mycology: Paris, France 2006.
[97]
Grant SM, Clissold SP. Itraconazole. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in superficial and systemic mycoses. Drugs 1989; 37(3): 310-44.
[http://dx.doi.org/10.2165/00003495-198937030-00003] [PMID: 2540949]
[98]
Lestner J, Hope WW. Itraconazole: an update on pharmacology and clinical use for treatment of invasive and allergic fungal infections. Expert Opin Drug Metab Toxicol 2013; 9(7): 911-26.
[http://dx.doi.org/10.1517/17425255.2013.794785] [PMID: 23641752]
[99]
Pulmatrix Inc. Pulmatrix Receives IND Approval for Pulmazole Phase 2 Clinical Study 2019. Available at: https://www.prnewswire.com/news-releases/pulmatrix-receives-ind-approval-for-pulmazole-phase-2-clinical-study-300791399.html
[100]
Pardeike J, Weber S, Haber T, et al. Development of an itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. Int J Pharm 2011; 419(1-2): 329-38.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.040] [PMID: 21839157]
[101]
Pardeike J, Weber S, Zarfl HP, Pagitz M, Zimmer A. Itraconazole-loaded nanostructured lipid carriers (NLC) for pulmonary treatment of aspergillosis in falcons. Eur J Pharm Biopharm 2016; 108: 269-76.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.018] [PMID: 27449629]
[102]
Sathisaran I, Dalvi SV. Engineering Cocrystals of PoorlyWater-Soluble Drugs to Enhance Dissolution in Aqueous Medium. Pharmaceutics 2018; 10(3): 10.
[http://dx.doi.org/10.3390/pharmaceutics10030108] [PMID: 30065221]
[103]
Lipp, Sung MM, Jean C. Monovalent metal cation dry powders for inhalation. 2019.Available at: https://uspto.report/patent/app/20190388342
[104]
Hava DL, Tan L, Johnson P, et al. A phase 1/1b study of PUR1900, an inhaled formulation of itraconazole, in healthy volunteers and asthmatics to study safety, tolerability and pharmacokinetics. Br J Clin Pharmacol 2020; 86(4): 723-33.
[http://dx.doi.org/10.1111/bcp.14166] [PMID: 31696544]
[105]
Herbrecht R, Denning DW, Patterson TF, et al. Invasive Fungal Infections Group of the European Organisation for Research and Treatment of Cancer and the Global Aspergillus Study Group. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 2002; 347(6): 408-15.
[http://dx.doi.org/10.1056/NEJMoa020191] [PMID: 12167683]
[106]
Scott LJ, Simpson D. Voriconazole: a review of its use in the management of invasive fungal infections. Drugs 2007; 67(2): 269-98.
[http://dx.doi.org/10.2165/00003495-200767020-00009] [PMID: 17284090]
[107]
Tolman JA, Wiederhold NP, McConville JT, et al. Inhaled voriconazole for prevention of invasive pulmonary aspergillosis. Antimicrob Agents Chemother 2009; 53(6): 2613-5.
[http://dx.doi.org/10.1128/AAC.01657-08] [PMID: 19289523]
[108]
Tolman JA, Nelson NA, Son YJ, et al. Characterization and pharmacokinetic analysis of aerosolized aqueous voriconazole solution. Eur J Pharm Biopharm 2009; 72(1): 199-205.
[http://dx.doi.org/10.1016/j.ejpb.2008.12.014] [PMID: 19348016]
[109]
Beteta O, Ivanova SJCEP. Cool down with liquid nitrogen 2015.111: 30-5. Available at: https://www.aiche.org/resources/publications/cep/2015/september/cool-down-liquid-nitrogen
[110]
Alexander BD, Winkler TP, Shi S, Ashley ESD, Hickey AJ. Nebulizer delivery of micafungin aerosols. Pharmacotherapy 2011; 31(1): 52-7.
[http://dx.doi.org/10.1592/phco.31.1.52] [PMID: 21182358]
[111]
Wong-Beringer A, Lambros MP, Beringer PM, Johnson DL. Suitability of caspofungin for aerosol delivery: physicochemical profiling and nebulizer choice. Chest 2005; 128(5): 3711-6.
[http://dx.doi.org/10.1378/chest.128.5.3711] [PMID: 16304338]
[112]
Kurtz MB, Bernard EM, Edwards FF, et al. Aerosol and parenteral pneumocandins are effective in a rat model of pulmonary aspergillosis. Antimicrob Agents Chemother 1995; 39(8): 1784-9.
[http://dx.doi.org/10.1128/AAC.39.8.1784] [PMID: 7486919]
[113]
Shi S, Ashley ES, Alexander BD, Hickey AJ. Initial characterization of micafungin pulmonary delivery via two different nebulisers and multivariate data analysis of aerosol mass distribution profiles. AAPS PharmSciTech 2009; 10(1): 129-37.
[http://dx.doi.org/10.1208/s12249-009-9185-6] [PMID: 19189220]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy