Generic placeholder image

Current Organic Chemistry


ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Review of Synthetic Approaches to Dizocilpine

Author(s): Jan Konecny, Eva Mezeiova, Ondrej Soukup and Jan Korabecny*

Volume 25 , Issue 5 , 2021

Published on: 30 December, 2020

Page: [580 - 600] Pages: 21

DOI: 10.2174/1385272824999201230205835

Price: $65


N-Methyl-D-aspartate (NMDA) receptors, together with AMPA and kainite receptors, belong to the family of ionotropic glutamate receptors. NMDA receptors play a crucial role in neuronal plasticity and cognitive functions. Overactivation of those receptors leads to glutamate-induced excitotoxicity, which could be suppressed by NMDA antagonists. Dizocilpine was firstly reported in 1982 as an NMDA receptor antagonist with anticonvulsive properties, but due to serious side effects like neuronal vacuolization, its use in human medicine is restricted. However, dizocilpine is still used as a validated tool to induce the symptoms of schizophrenia in animal models and also as a standard for comparative purposes to newly developed NMDA receptor antagonists. For this reason, the synthesis of dizocilpine and especially its more active enantiomer (+)-dizocilpine is still relevant. In this review, we bring a collection of various synthetic approaches leading to dizocilpine and its analogues.

Keywords: Chemical synthesis, dizocilpine, MK-801, N-methyl-D-aspartate, NMDA receptor, receptor modulator.

Graphical Abstract
Eyjolfsson, E.M.; Brenner, E.; Kondziella, D.; Sonnewald, U. Repeated injection of MK801: an animal model of Schizophrenia? Neurochem. Int., 2006, 48(6-7), 541-546.
[] [PMID: 16517016]
Adell, A. Brain NMDA receptors in Schizophrenia and depression. Biomolecules, 2020, 10(6), 947.
[] [PMID: 32585886]
Neill, J.C.; Barnes, S.; Cook, S.; Grayson, B.; Idris, N.F.; McLean, S.L.; Snigdha, S.; Rajagopal, L.; Harte, M.K. Animal models of cognitive dysfunction and negative symptoms of Schizophrenia: focus on NMDA receptor antagonism. Pharmacol. Ther., 2010, 128(3), 419-432.
[] [PMID: 20705091]
Sircar, R.; Li, C.S. PCP/NMDA receptor-channel complex and brain development. Neurotoxicol. Teratol., 1994, 16(4), 369-375.
[] [PMID: 7526146]
Temme, L.; Schepmann, D.; Schreiber, J.A.; Frehland, B.; Wünsch, B. Comparative pharmacological study of common NMDA receptor open channel blockers regarding their affinity and functional activity toward GluN2A and GluN2B NMDA receptors. ChemMedChem, 2018, 13(5), 446-452.
[] [PMID: 29377520]
Christy, M.E.; Anderson, P.S.; Britcher, S.F.; Colton, C.D.; Evans, B.E.; Remy, D.C.; Engelhardt, E.L. Transannular reactions of dibenzo[a,d]-Cycloalkenes. 1. Synthesis of dibenzo[a,d]cycloocten-6,12-imines and dibe-nzo[a,d]cyclohepten-5,10-imines. J. Org. Chem., 1979, 44, 3117-3127.
Sparenborg, S.; Brennecke, L.H.; Jaax, N.K.; Braitman, D.J. Dizocilpine (MK-801) arrests status epilepticus and prevents brain damage induced by soman. Neuropharmacology, 1992, 31(4), 357-368.
[] [PMID: 1522953]
Yang, B.; Ren, Q.; Ma, M.; Chen, Q-X.; Hashimoto, K. Antidepressant effects of (+)-MK-801 and (-)-MK-801 in the social defeat stress model. Int. J. Neuropsychopharmacol., 2016, 19(12)pyw080
[] [PMID: 27608811]
Yang, B-K.; Qin, J.; Nie, Y.; Chen, J-C. Sustained antidepressant action of the N-methyl-D-aspartate receptor antagonist MK-801 in a chronic unpredictable mild stress model. Exp. Ther. Med., 2018, 16(6), 5376-5383.
[] [PMID: 30542498]
Olney, J.W.; Labruyere, J.; Wang, G.; Wozniak, D.F.; Price, M.T.; Sesma, M.A. NMDA antagonist neurotoxicity: mechanism and prevention. Science, 1991, 254(5037), 1515-1518.
[] [PMID: 1835799]
Fix, A.S. Pathological effects of MK-801 in the rat posterior cingulate/retrosplenial cortex. Psychopharmacol. Bull., 1994, 30(4), 577-583.
[PMID: 7770623]
Kovacic, P.; Somanathan, R. Clinical physiology and mechanism of dizocilpine (MK-801): electron transfer, radicals, redox metabolites and bioactivity. Oxid. Med. Cell. Longev., 2010, 3(1), 13-22.
[] [PMID: 20716924]
Xia, P.; Chen, H.S.; Zhang, D.; Lipton, S.A. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J. Neurosci., 2010, 30(33), 11246-11250.
[] [PMID: 20720132]
Chen, H.S.; Pellegrini, J.W.; Aggarwal, S.K.; Lei, S.Z.; Warach, S.; Jensen, F.E.; Lipton, S.A. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J. Neurosci., 1992, 12(11), 4427-4436.
[] [PMID: 1432103]
Moghaddam, B.; Javitt, D. From revolution to evolution: the glutamate hypothesis of Schizophrenia and its implication for treatment. Neuropsychopharmacology, 2012, 37(1), 4-15.
[] [PMID: 21956446]
Uno, Y.; Coyle, J.T. Glutamate hypothesis in Schizophrenia. Psychiatry Clin. Neurosci., 2019, 73(5), 204-215.
[] [PMID: 30666759]
Wong, E.H.; Kemp, J.A.; Priestley, T.; Knight, A.R.; Woodruff, G.N.; Iversen, L.L. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc. Natl. Acad. Sci. USA, 1986, 83(18), 7104-7108.
[] [PMID: 3529096]
Galbicka, G.; Kautz, M.A.; Jagers, T. Behavioral effects of enantiomers of dizocilpine under two “counting” procedures in rats. Pharmacol. Biochem. Behav., 1994, 49(4), 943-948.
[] [PMID: 7886111]
Dean, R.B.; Sandor, K.; Theresa, R. Process for 5-methyl-10,11-dihydro-5Hdibenzo[a,d]-cyclohepten-5,10-imine. U.S. Patent US4477668, October 16. 1984.
Constable, K.P.; Blough, B.E.; Carroll, F.I. Benzyne addition to N-Alkyl-4-hydroxy-1-methylisoquinolinium salts; a new and convenient synthesis of (±)-5-methyl-10,11-dihydro-5H-dibenzo-[a,d]cyclohepten-5,10-imine (MK801). Chem. Commun. (Camb.), 1996, 1996, 717-718.
Molander, G.A.; Dowdy, E.D. Lanthanide-catalyzed hydroamination of hindered alkenes in synthesis: rapid access to 10,11-dihydro-5H-dibenzo- [a,d]cyclohepten-5,10-imines. J. Org. Chem., 1999, 64, 6515-6517.
Schultz, D.M.; Wolfe, J.P. Intramolecular alkene carboamination reactions for the synthesis of enantiomerically enriched tropane derivatives. Org. Lett., 2011, 13(11), 2962-2965.
[] [PMID: 21561145]
James, A. Monn; Kenner, C. Rice. A bridgehead α-amino carbanion: facile preparation of C5(bridgehead)-substituted analogues of (±)-5H-dibenzo[a,d]-cyclohepten-5,10-imine including a stable α-iodo secondary amine. Tetrahedron Lett., 1989, 30, 911-914.
Chang, M-Y.; Huang, Y-P.; Lee, T-W.; Chen, Y-L. Synthesis of dizocilpine. Tetrahedron, 2012, 68, 3283-3287.
Funabashi, K.; Ratni, H.; Kanai, M.; Shibasaki, M. Enantioselective construction of quaternary stereocenter through a Reissert-type reaction catalyzed by an electronically tuned bifunctional catalyst: efficient synthesis of various biologically significant compounds. J. Am. Chem. Soc., 2001, 123(43), 10784-10785.
[] [PMID: 11674030]
Vardhan Reddy, K.H.; Yen-Pon, E.; Cohen-Kaminsky, S.; Messaoudi, S.; Alami, M. Convergent strategy to dizocilpine MK-801 and derivatives. J. Org. Chem., 2018, 83(7), 4264-4269.
[] [PMID: 29489358]
Linders, J.T.; Monn, J.A.; Mattson, M.V.; George, C.; Jacobson, A.E.; Rice, K.C. Synthesis and binding properties of MK-801 isothiocyanates; (+)-3-isothiocyanato-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten- 5,10-imine hydrochloride: a new, potent and selective electrophilic affinity ligand for the NMDA receptor-coupled phencyclidine binding site. J. Med. Chem., 1993, 36(17), 2499-2507.
[] [PMID: 8355251]
Andersson, Y.; Tyrefors, N.; Sihver, S.; Onoe, H.; Watanabe, Y.; Tsukada, H.; Långström, B. Synthesis of a 11C-labelled derivative of the N-methyl-D-aspartate receptor antagonist MK-801. J. Labelled Comp. Radiopharm., 1998, 41, 567-576.
Leeson, P.D.; Carling, R.W.; James, K.; Smith, J.D.; Moore, K.W.; Wong, E.H.; Baker, R. Role of hydrogen bonding in ligand interaction with the N-methyl-D-aspartate receptor ion channel. J. Med. Chem., 1990, 33(5), 1296-1305.
[ ]
Lamanec, T.R.; Bender, D.R.; DeMarco, A.M.; Karady, S.; Reamer, R.A.; Weinstock, L.M. Alpha.-effect nucleophiles: a novel and convenient method for the synthesis of dibenzo[a,d]cycloheptenimines. J. Org. Chem., 1988, 53, 1768-1774.
Cohen-Kaminsky, S.; Humbert, M.; Dumas, S.; Bru-Mercier, G.; Messaoudi, S.; Brion, J.D. Novel dizocilpine derivatives as peripheral nmda receptor antagonists.World Patent WO2017216159A1, December 21, 2017.
Paul, A.; Marcia, C.E.; Ben, E.E. 5-Alkyl or hydroxyalkyl substituted-10,11- dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imines and anticonvulsant use thereof. U.S. Patent US4399141, August 16,. 1983.
Lyle, T.A.; Magill, C.A.; Britcher, S.F.; Denny, G.H.; Thompson, W.J.; Murphy, J.S. Structure and activity of hydrogenated derivatives of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801). J. Med. Chem., 1990, 33(3), 1047-1052.
Monn, J.A.; Thurkauf, A.; Mattson, M.V.; Jacobson, A.E.; Rice, K.C. Synthesis and structure-activity relationship of C5-substituted analogues of (+-)-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine [(+-)-desmethyl-MK-801]: ligands for the NMDA receptor-coupled phencyclidine binding site. J. Med. Chem., 1990, 33(3), 1069-1076.
[] [PMID: 2155320]
Haire, M.J. Antidepressant compounds. U.S. Patent US4123546, Ocober 31,. 1978.
Cope, A.C.; Martin, M.M.; McKervey, M.A. Transannular reactions in medium-sized rings. Q. Rev. Chem. Soc., 1966, 20, 119-152.
Buhler, J.D. Reaction of lithium alkyls with aldehydes and ketones. General study. J. Org. Chem., 1973, 38, 904-906.
de Vries, J.G. Reduction of Azides.Catalytic Reduction in Organic Synthesis; Thieme Verlag, 2018.
Ferrayoli, C.G.; Palacio, M.A.; Bresina, M.F.; Palacios, S.M. Resolution of racemic albuterol via diastereomeric salts formation with di-p-toluoyl-D-tartaric acid. Enantiomer, 2000, 5(3-4), 289-291.
[PMID: 11126869]
Weber, B.T.; Pan, B. Enantiomeric separation of racemic nicotine by addition of an o,o’-disubstituted tartaric acid enantiomer. World Patent WO2019121- 649A1, June 27, . 2019.
Cisternas, L.A.; Rudd, D.F. Process designs for fractional crystallization from solution. Ind. Eng. Chem. Res., 1993, 32(9), 1993-2005.
Suga, H.; Inoue, K.; Inoue, S.; Kakehi, A.; Shiro, M. Chiral 2,6-bis(oxazolinyl)pyridine-rare earth metal complexes as catalysts for highly enantioselective 1,3-dipolar cycloaddition reactions of 2-benzopyrylium-4-olates. J. Org. Chem., 2005, 70(1), 47-56.
[] [PMID: 15624905]
Idiris, F.I.M.; Jones, C.R. Recent advances in fluoride-free aryne generation from arene precursors. Org. Biomol. Chem., 2017, 15(43), 9044-9056.
[] [PMID: 29077126]
Chen, Y.; Larock, R.C. Arylation Reactions Involving the Formation of Arynes; Wiley-VCH: Weinheim, 2009, pp. 401-473.
Nagai, H. Studies on the Components of in Ephedraceae Herb Medicine; Yahugaku Zasshi, 1893, pp. 901-933.
Li, Y.; Marks, T.J. Organolanthanide-catalyzed intramolecular hydroamination/cyclization of aminoalkynes. J. Am. Chem. Soc., 1996, 118, 9295-9306.
Witschard, G.; Griffin, C.E. The Wittig reaction with five- and six-membered cyclic ketones and their benzylidene derivatives1. J. Org. Chem., 1964, 29, 2335-2340.
Djerassi, C. Brominations with N-bromosuccinimide and related compounds; the Wohl-Ziegler reaction. Chem. Rev., 1948, 43(2), 271-317.
[] [PMID: 18887958]
Swamy, K.C.K.; Kumar, N.N.B.; Balaraman, E.; Kumar, K.V.P.P. Mitsunobu and related reactions: advances and applications. Chem. Rev., 2009, 109(6), 2551-2651.
[] [PMID: 19382806]
Wolfe, J.P. Stereoselective synthesis of saturated heterocycles via Pd-catalyzed alkene carboetherification and carboamination reactions. Synlett, 2007, 2007(4), 571-582.
Nakhla, J.S.; Kampf, J.W.; Wolfe, J.P. Intramolecular Pd-catalyzed carboetherification and carboamination. J. Am. Chem. Soc., 2006, 128(9), 2893-2901.
Verkade, J.; van Hemert, L.J.C.; Quaedflieg, P.; Alsters, P.L.; van Delft, F.; Rutjes, F.P.J.T. Mild and efficient deprotection of the amine protecting P-Methoxyphenyl (PMP) group. Tetrahedron Lett., 2006, 47, 8109-8113.
Takamura, M.; Funabashi, K.; Kanai, M.; Shibasaki, M. Catalytic enantioselective Reissert-type reaction: development and application to the synthesis of a potent NMDA receptor antagonist (-)-L-689,560 using a solid-supported catalyst. J. Am. Chem. Soc., 2001, 123(28), 6801-6808.
McEwen, W.E.; Cobb, R.L. The chemistry of N-acyldihydroquinaldonitriles and N-acyldihydroisoquinaldonitriles (Reissert compounds). Chem. Rev., 1955, 55(3), 511-549.
Le Gall, E.; Haurena, C.; Sengmany, S.; Martens, T.; Troupel, M. Three-component synthesis of α-branched amines under Barbier-like conditions. J. Org. Chem., 2009, 74(20), 7970-7973.
[] [PMID: 19769334]
Paul, J.; Presset, M.; Le Gall, E. Multicomponent Mannich-like reactions of organometallic species. Eur. J. Org. Chem., 2017, 2017, 2386-2406.
Thomas, S.E.G.; Middleton, R.J. The intramolecular Heck reaction. Contemp. Org. Synth., 1996, 3, 447-471.
Yamazaki, S.; Takebayashi, M. TiCl4-promoted cyclization reactions of aminoacetals and ethenetricarboxylates leading to nitrogen-containing heterocycles. J. Org. Chem., 2011, 76(15), 6432-6437.
[] [PMID: 21682281]
Rothman, R.B. PCP site 2: a high affinity MK-801-insensitive phencyclidine binding site. Neurotoxicol. Teratol., 1994, 16(4), 343-353.
Waterhouse, R.N. Imaging the PCP site of the NMDA ion channel. Nucl. Med. Biol., 2003, 30(8), 869-878.
Baker, R.; Carling, W.R.; James, K.; Leeson, P.D. Cyclo-octane neuroprotective agents.European Patent EP0319073A2, June 7, 1989.
Brown, H.C.; Krishnamurthy, S.; Yoon, N.M. Selective reductions. XXI. 9-borabicyclo[3.3.1]nonane in tetrahydrofuran as a new selective reducing agent in organic synthesis. Reaction with selected organic compounds containing representative functional groups. J. Org. Chem., 1976, 41, 1778-1791.
Jordão, A.K. Pyridinium dichromate - a mild oxidizing reagent in synthetic organic chemistry. Synlett, 2006, 2006, 3364-3365.
Kosak, T.M.; Conrad, H.A.; Korich, A.L.; Lord, R.L. Ether cleavage re-investigated: elucidating the mechanism of BBr3-facilitated demethylation of aryl methyl ethers. Eur. J. Org. Chem., 2015, 2015(34), 7460-7467.
[] [PMID: 26693209]
Gilmore, J.R.; Mellor, J.M. .Oxidation of olefins by manganese(III) acetate to give allylic acetates. J. Chem. Soc. C. Org., 1971, 2355-2357..
Rueping, M.; Leiendecker, M.; Das, A.; Poisson, T.; Bui, L. Potassium tert-butoxide mediated Heck-type cyclization/isomerization-benzofurans from organocatalytic radical cross-coupling reactions. Chem. Commun. (Camb.), 2011, 47(38), 10629-10631.
[] [PMID: 21892507]
Nystrom, R.F.; Brown, W.G. Reduction of organic compounds by lithium aluminum hydride. II. Carboxylic acids. J. Am. Chem. Soc., 1947, 69, 2548-2549.
Gilman, H.; van Ess, P.R. The preparation of ketones by the carbonation of organolithium compounds. J. Am. Chem. Soc., 1933, 55(3), 1258-1261.
Roberts, I.; Kimball, G.E. The halogenation of ethylenes. J. Am. Chem. Soc., 1937, 59, 947-948.
Huang, J.; Chen, Y.; Chan, J.; Ronk, M.L.; Larsen, R.D.; Faul, M.M. An efficient copper-catalyzed etherification of aryl halides. Synlett, 2011, 2011, 1419-1422.
Zhai, Y.; Chen, X.; Zhou, W.; Fan, M.; Lai, Y.; Ma, D. Copper-catalyzed diaryl ether formation from (hetero)aryl halides at low catalytic loadings. J. Org. Chem., 2017, 82(9), 4964-4969.
[] [PMID: 28427259]
Koelsch, C.F.; Whitney, A.G. The Rosenmund-von Braun nitrile synthesis1. J. Org. Chem., 1941, 6, 795-803.
Bardsley, K.; Hagigeorgiou, M.; Lengyel, I.; Cesare, V. New one-step synthesis of isonitriles. Synth. Commun., 2013, 43, 1727-1733.
McKinney, J.A.; Fukumoto, Y.; Chatani, N. Rhodium(III) chloride.Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, 2007.
Tucker, S.H. Catalytic hydrogenation using Raney nickel. J. Chem. Educ., 1950, 27, 489.
Rabideau, P.W.; Marcinow, Z. The B irch reduction of aromatic compounds. Org. React., 2004, 42, 1-334.
Wang, Z. Jones oxidation.Comprehensive Organic Name Reactions and Reagents; John Wiley & sons, 2010, pp. 1564-1568.
Bogert, M.T.; Roblin, R.O. The formation of cyclic acetals from aldehydes or ketones and alkylene oxides. J. Am. Chem. Soc., 1933, 55(9), 3741-3745.
Friedman, L.; Shechter, H. Preparation of nitriles from halides and sodium cyanide. an advantageous nucleophilic displacement in dimethyl sulfoxide1a. J. Org. Chem., 1960, 25, 877-879.
Wang, Z. Kolbe nitrile synthesis.Comprehensive Organic Name Reactions and Reagents; John Wiley & sons, 2010, pp. 1661-1663.
Dubinskii, R.A.; Klimova, V.A. Quantitative determination of nitro-compounds with stannous chloride and Fischer reagent in nonaqueous medium. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1970, 19, 1396-1400.
Mondal, M. Sodium methylsulfinylmethylide: a versatile reagent. Synlett, 2005, 2005, 2697-2698.
Shi, M.; Shen, Y-M. The reactions of DMSO with arylaldehydes in the presence of sodium hydride. J. Chem. Res., 2002, 2002, 422-427.
Geter-Douglass, B.; Witkin, J.M. Behavioral effects and anticonvulsant efficacies of low-affinity, uncompetitive NMDA antagonists in mice. Psychopharmacology (Berl.), 1999, 146(3), 280-289.
[] [PMID: 10541728]
Gonzalez, J.; Carroll, F.I. Bromine-promoted cyclization of an olefinic α-aminonitrile: a practical synthesis of 5-aminocarbonyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (ADCI). Tetrahedron Lett., 1996, 37, 8655-8658.
Weingarten, H.; Chupp, J.P.; White, W.A. Ketimine syntheses. Use of titanium tetrachloride in a new procedure for their preparation. J. Org. Chem., 1967, 32, 3246-3249.
Bandyopadhyay, D.; Velazquez, J.M.; Banik, B.K. A truly green synthesis of α-aminonitriles via Strecker reaction. Org. Med. Chem. Lett., 2011, 1(1), 11.
[] [PMID: 22373109]
Wang, Z. Strecker synthesis.Comprehensive Organic Name Reactions and Reagents; John Wiley & sons, 2010, pp. 2710-2717.
Bell, H.M.; Vanderslice, C.W.; Spehar, A. Reduction of organic halogen compounds by sodium borohydride. J. Org. Chem., 1969, 34, 3923-3926.
Bell, H.M.; Brown, H.C. Selective Reductions. XI. The reaction of sodium borohydride with alkyl halides under solvolytic conditions. Borohydride as a convenient trap for carbonium ions1,2. J. Am. Chem. Soc., 1966, 88, 1473-1477.
Snyder, H.R.; Elston, C.T. Polyphosphoric acid as a reagent in organic chemistry. VI.1 The hydrolysis of nitriles to amides. J. Am. Chem. Soc., 1954, 76, 3039-3040.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy