Generic placeholder image

Current Nanoscience


ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Thermophysical Properties of Nanofluids

Author(s): R. Arslan, V.A. Özdemir, E. Akyol, A.S. Dalkilic* and S. Wongwises

Volume 17, Issue 5, 2021

Published on: 28 December, 2020

Page: [694 - 727] Pages: 34

DOI: 10.2174/1573413716999201228130519

Price: $65


Nanofluids, which consist of base liquid and nano-sized conductive particles, are widely acclaimed as a new generation liquid for heat transfer applications. Since they possess a variety of conductive particles, they can be efficiently utilized in a heat exchanger. These nano-sized conductive particles can increase the surface area, thus the heat transfer area, changing their thermophysical features. Density, thermal conductivity, viscosity, and heat capacity are crucial parameters and cannot be underestimated in heat transfer. These properties can be manipulated by the particle and baseliquid and can significantly influence the performance of nanofluids. In the last decade, several models, equations, and investigations have been performed to examine the parameters that promote these properties. A review is necessary to locate terms for classifying studies that are both compatible and contradictory to the effects of density, thermal conductivity, viscosity, and heat capacity on the performance of nanofluids.

Keywords: Review, nanofluids, viscosity, specific heat, thermal conductivity, density.

Graphical Abstract
Maxwell, J.C. Maxwell Electricity and Magnetism; Clarendon: Oxford, UK, 1873.
Choi, S. Enhancing Thermal Conductivity of Fluids with Nanoparticles.Developments Applications of Non-Newtonian Flows; D.A. 722 Siginer, H.P. Wang (Eds.); 723 FED-Vol. 231/MD-Vol. 66, ASME, New York, 1995, p. 99-105.
Ali, F.M.; Yunus, W.M.M. Study of the effect of volume fraction concentration and particle materials on thermal conductivity and thermal diffusivity of nanofluids. Jpn. J. Appl. Phys., 2011, 50(8R), 085201.
Das, S.K.; Choi, S.U.; Patel, H.E. Heat transfer in nanofluids-a review. Heat Transf. Eng., 2006, 27(10), 3-19.
Abdullah, A.M.; Chowdhury, A.R.; Yang, Y.; Vasquez, H.; Moore, H.J.; Parsons, J.G. Tailoring the viscosity of water and ethylene glycol based TiO2 nanofluids. J. Mol. Liq., 2019, 297, 111982.
Subramanian, K.R.V.; Rao, T.N.; Balakrishnan, A. Nanofluids and Their Engineering Applications; CRC Press, 2019.
Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S. A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf., 2013, 57(2), 582-594.
Srikant, R.R.; Rao, D.N.; Subrahmanyam, M.S.; Krishna, V.P. Applicability of cutting fluids with nanoparticle inclusion as coolants in machining. Proc. Inst. Mech. Eng., Part J J. Eng. Tribol., 2009, 223(2), 221-225.
Ganvir, R.B.; Walke, P.V.; Kriplani, V.M. Heat transfer characteristics in nanofluid- a review. Renew. Sustain. Energy Rev., 2017, 75, 451-460.
Saidur, R.; Leong, K.Y.; Mohammed, H.A. A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev., 2011, 15(3), 1646-1668.
Selvakumar, R.D.; Wu, J. A comprehensive model for effective density of nanofluids based on particle clustering and interfacial layer formation. J. Mol. Liq., 2019, 292, 111415.
Chavan, D.; Pise, A. Experimental investigation of effective viscosity and density of nanofluids. Materials Today: Proc., 2019, 16, 504-515.
Mostafizur, R.M.; Saidur, R.; Aziz, A.A.; Bhuiyan, M.H.U. Thermophysical properties of methanol based Al2O3 nanofluids. Int. J. Heat Mass Transf., 2015, 85, 414-419.
Sommers, A.D.; Yerkes, K.L. Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid. J. Nanopart. Res., 2010, 12(3), 1003-1014.
Teng, T.P.; Hung, Y.H. Estimation and experimental study of the density and specific heat for alumina nanofluid. J. Exp. Nanosci., 2014, 9(7), 707-718.
Mahbubul, I.M.; Saidur, R.; Amalina, M.A. Latest developments on the viscosity of nanofluids. Int. J. Heat Mass Transf., 2012, 55(4), 874-885.
Eastman, J.A.; Choi, S.U.S.; Li, S.; Yu, W.; Thompson, L.J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett., 2001, 78(6), 718-720.
Zhu, H.T.; Lin, Y.S.; Yin, Y.S. A novel one-step chemical method for preparation of copper nanofluids. J. Colloid Interface Sci., 2004, 277(1), 100-103.
[] [PMID: 15276044]
Azmi, W.H.; Sharma, K.V.; Mamat, R.; Najafi, G.; Mohamad, M.S. The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids- a review. Renew. Sustain. Energy Rev., 2016, 53, 1046-1058.
Ghadimi, A.; Saidur, R.; Metselaar, H.S.C. A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf., 2011, 54(17-18), 4051-4068.
Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf., 1998, 11(2), 151-170.
Goharshadi, E.K.; Ding, Y.; Jorabchi, M.N.; Nancarrow, P. Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic liquid [hmim][NTf2]. Ultrason. Sonochem., 2009, 16(1), 120-123.
[] [PMID: 18640864]
Wen, D.; Ding, Y. Formulation of nanofluids for natural convective heat transfer applications. Int. J. Heat Fluid Flow, 2005, 26(6), 855-864.
Ajitha, B.; Divya, A.; Reddy, P.S. Impact of ph on the properties of spherical silver nanoparticles capped by PVA. Int. J. Adv. Mater. Manuf. Charact., 2013, 3(1), 403-406.
Devaraj, N.K.; Han, T.C.; Low, P.L.; Ong, B.H.; Sin, Y.K. Synthesis and characterisation of zinc oxide nanoparticles for thermoelectric application. Mater. Res. Innov., 2014, 18(6), 6-350.
Zhang, S.; Yan, C.; Zhang, H.; Lu, G. Effects of bath temperature on the morphology of ZnO nano-rods and its optical properties. Mater. Lett., 2015, 148, 1-4.
Muradova, A.G.; Zaytseva, M.P.; Sharapaev, A.I.; Yurtov, E.V. Influence of temperature and synthesis time on shape and size distribution of Fe3O4 nanoparticles obtained by ageing method. Colloids Surf. A Physicochem. Eng. Asp., 2016, 509, 229-234.
Sankar, S.; Kaur, N.; Lee, S.; Kim, D.Y. Rapid sonochemical synthesis of spherical silica nanoparticles derived from brown rice husk. Ceram. Int., 2018, 44(7), 8720-8724.
Wang, B.; Wei, S.; Wang, Y.; Liang, Y.; Guo, L.; Xue, J. Effect of milling time on microstructure and properties of Nano-titanium polymer by high-energy ball milling. Appl. Surf. Sci., 2018, 434, 1248-1256.
Maji, N.C.; Krishna, H.P.; Chakraborty, J. Low-cost and high-throughput synthesis of copper nanopowder for nanofluid applications. Chem. Eng. J., 2018, 353, 34-45.
Amalraj, S.; Michael, P.A. Synthesis and characterization of Al2O3 and CuO nanoparticles into nanofluids for solar panel applications. Results Physics, 2019, 15, 102797.
Pauzi, N.; Zain, N.M.; Yusof, N.A.A. Gum arabic as natural stabilizing agent in green synthesis of ZnO nanofluids for antibacterial application. J. Environ. Chem. Eng., 2019, 8(3), 103331.
Sharma, S.; Reddy, A.V.D.; Jayarambabu, N.; Kumar, N.V.M.; Saineetha, A.; Rao, K.V.; Kailasa, S. Synthesis and characterization of Titanium dioxide nanopowder for various energy and environmental applications. Materials Today: Proc., 2019, 26, 158-161.
Einstein, A. A new determination of molecular dimensions. Ann. Phys., 1906, 19, 289-306.
Einstein, A. Investigations on the Theory of the Brownian Movement; Courier Corporation, 1956.
Brinkman, H.C. The viscosity of concentrated suspensions and solutions. J. Chem. Phys., 1952, 20(4), 571.
Bashirnezhad, K.; Bazri, S.; Safaei, M.R.; Goodarzi, M.; Dahari, M.; Mahian, O.; Dalkılıç, A.S.; Wongwises, S. Viscosity of nanofluids: a review of recent experimental studies. Int. Commun. Heat Mass Transf., 2016, 73, 114-123.
Mishra, P.C.; Mukherjee, S.; Nayak, S.K.; Panda, A. A brief review on viscosity of nanofluids. Int. Nano Lett., 2014, 4(4), 109-120.
Krieger, I.M.; Dougherty, T.J. A mechanism for non‐Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol., 1959, 3(1), 137-152.
Frankel, N.A.; Acrivos, A. On the viscosity of a concentrated suspension of solid spheres. Chem. Eng. Sci., 1967, 22(6), 847-853.
Nielsen, L.E. Generalized equation for the elastic moduli of composite materials. J. Appl. Phys., 1970, 41(11), 4626-4627.
Lundgren, T.S. Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech., 1972, 51(2), 273-299.
Batchelor, G.K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech., 1977, 83(1), 97-117.
Graham, A.L. On the viscosity of suspensions of solid spheres. Appl. Sci. Res., 1981, 37(3-4), 275-286.
Kitano, T.; Kataoka, T.; Shirota, T. An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers. Rheol. Acta, 1981, 20(2), 207-209.
Bicerano, J.; Douglas, J.F.; Brune, D.A. Model for the viscosity of particle dispersions. J. Mol. Sci., 1999, 39(4), 561-642.
Chen, H.; Ding, Y.; Tan, C. Rheological behaviour of nanofluids. New J. Phys., 2007, 9(10), 367.
White, F.M.; Corfield, I. Viscous fluid flow; McGraw-Hill: New York, 2006, Vol. 3, pp. 433-434.
Wang, X.; Xu, X.; Choi, S.U. Thermal conductivity of nanoparticle-fluid mixture. J. Thermophysics Heat Transfer, 1999, 13(4), 474-480.
Tseng, W.J.; Lin, K.C. Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mater. Sci. Eng. A, 2003, 355(1-2), 186-192.
Maiga, S.E.B.; Palm, S.J.; Nguyen, C.T.; Roy, G.; Galanis, N. Heat transfer enhancement by using nanofluids in forced convection flows. Int. J. Heat Fluid Flow, 2005, 26(4), 530-546.
Song, S.; Peng, C.; Gonzalez-Olivares, M.A.; Lopez-Valdivieso, A.; Fort, T. Study on hydration layers near nanoscale silica dispersed in aqueous solutions through viscosity measurement. J. Colloid Interface Sci., 2005, 287(1), 114-120.
[] [PMID: 15914155]
Prasher, R.; Song, D.; Wang, J.; Phelan, P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl. Phys. Lett., 2006, 89(13), 133108.
Kulkarni, D.P.; Das, D.K.; Chukwu, G.A. Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid). J. Nanosci. Nanotechnol., 2006, 6(4), 1150-1154.
[] [PMID: 16736780]
Buongiorno, J. Convective transport in nanofluids. J. Heat Transfer, 2006, 128(3), 240-250.
Nguyen, C.T.; Desgranges, F.; Roy, G.; Galanis, N.; Maré, T.; Boucher, S.; Mintsa, H.A. Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon. Int. J. Heat Fluid Flow, 2007, 28(6), 1492-1506.
Namburu, P.K.; Kulkarni, D.P.; Misra, D.; Das, D.K. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp. Therm. Fluid Sci., 2007, 32(2), 397-402.
Garg, J.; Poudel, B.; Chiesa, M.; Gordon, J.B.; Ma, J.J.; Wang, J.B. Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J. Appl. Phys., 2008, 103(7), 074301.
Williams, W.; Buongiorno, J.; Hu, L.W. Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. J. Heat Transfer, 2008, 130(4)
Masoumi, N.; Sohrabi, N.; Behzadmehr, A. A new model for calculating the effective viscosity of nanofluids. J. Phys. D Appl. Phys., 2009, 42(5), 055501.
Duangthongsuk, W.; Wongwises, S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp. Therm. Fluid Sci., 2009, 33(4), 706-714.
Chandrasekar, M.; Suresh, S.; Bose, A.C. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp. Therm. Fluid Sci., 2010, 34(2), 210-216.
Vajjha, R.S.; Das, D.K.; Namburu, P.K. Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator. Int. J. Heat Fluid Flow, 2010, 31(4), 613-621.
Vajjha, R.S.; Das, D.K. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int. J. Heat Mass Transf., 2009, 52(21-22), 4675-4682.
Kole, M.; Dey, T.K. Effect of aggregation on the viscosity of copper oxide–gear oil nanofluids. Int. J. Therm. Sci., 2011, 50(9), 1741-1747.
Corcione, M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manage., 2011, 52(1), 789-793.
Sundar, L.S.; Sharma, K.V.; Naik, M.T.; Singh, M.K. Empirical and theoretical correlations on viscosity of nanofluids: a review. Renew. Sustain. Energy Rev., 2013, 25, 670-686.
Sharifpur, M.; Adio, S.A.; Meyer, J.P. Experimental investigation and model development for effective viscosity of Al2O3–glycerol nanofluids by using dimensional analysis and GMDH-NN methods. Int. Commun. Heat Mass Transf., 2015, 68, 208-219.
Das, S.K.; Putra, N.; Roetzel, W. Pool boiling characteristics of nano-fluids. Int. J. Heat Mass Transf., 2003, 46(5), 851-862.
Heris, S.Z.; Etemad, S.G.; Esfahany, M.N. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int. Commun. Heat Mass Transf., 2006, 33(4), 529-535.
He, Y.; Jin, Y.; Chen, H.; Ding, Y.; Cang, D.; Lu, H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int. J. Heat Mass Transf., 2007, 50(11-12), 2272-2281.
Nguyen, C.T.; Desgranges, F.; Galanis, N.; Roy, G.; Maré, T.; Boucher, S.; Mintsa, H.A. Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable? Int. J. Therm. Sci., 2008, 47(2), 103-111.
Lee, J.H.; Hwang, K.S.; Jang, S.P.; Lee, B.H.; Kim, J.H.; Choi, S.U.; Choi, C.J. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int. J. Heat Mass Transf., 2008, 51(11-12), 2651-2656.
Murshed, S.M.S.; Leong, K.C.; Yang, C. Investigations of thermal conductivity and viscosity of nanofluids. Int. J. Therm. Sci., 2008, 47(5), 560-568.
Tavman, I.; Turgut, A.; Chirtoc, M.; Schuchmann, H.P.; Tavman, S. Experimental investigation of viscosity and thermal conductivity of suspensions containing nanosized ceramic particles. Arch. Materials Sci., 2008, 34, 99-103.
Lee, S.W.; Park, S.D.; Kang, S.; Bang, I.C.; Kim, J.H. Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. Int. J. Heat Mass Transf., 2011, 54(1-3), 433-438.
Turgut, A.; Tavman, I.; Chirtoc, M.; Schuchmann, H.P.; Sauter, C.; Tavman, S. Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids. Int. J. Thermophys., 2009, 30(4), 1213-1226.
Yu, W.; France, D.M.; Smith, D.S.; Singh, D.; Timofeeva, E.V.; Routbort, J.L. Heat transfer to a silicon carbide/water nanofluid. Int. J. Heat Mass Transf., 2009, 52(15-16), 3606-3612.
Kole, M.; Dey, T.K. Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. J. Phys. D Appl. Phys., 2010, 43(31), 315501.
Azmi, W.H.; Sharma, K.V.; Sarma, P.K.; Mamat, R.; Anuar, S.; Rao, V.D. Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Exp. Therm. Fluid Sci., 2013, 51, 103-111.
Dalkılıç, A.S.; Küçükyıldırım, B.O.; Eker, A.A.; Yıldız, F.; Akpinar, A.; Jumpholkul, C.; Wongwises, S. Effects of sonication time on the stability and viscosity of functionalized MWCNT-based nanolubricants. Curr. Nanosci., 2019, 15(4), 1-17.
Dalkılıç, A.S.; Küçükyıldırım, B.O.; Eker, A.A.; Çebi, A.; Tapan, S.; Jumpholkul, C.; Wongwises, S. Experimental investigation on the viscosity of Water-CNT and Antifreeze-CNT nanofluids. Int. Commun. Heat Mass Transf., 2017, 80, 47-59.
Yiamsawas, T.; Dalkilic, A.S.; Mahian, O.; Wongwises, S. Measurement and correlation of the viscosity of water-based Al2O3 and TiO2 nanofluids in high temperatures and comparisons with literature reports. J. Dispers. Sci. Technol., 2013, 34(12), 1697-1703.
Dalkılıç, A.S.; Mahian, O.; Kucukyildirim, B.O.; Eker, A.A.; Ozturk, T.H.; Jumpholkul, C.; Wongwises, S. Experimental study on the stability and viscosity for the blends of functionalized MWCNTs with refrigeration compressor oils. Curr. Nanosci., 2018, 14(3), 216-226.
Dalkılıç, A.S.; Çebi, A.; Celen, A.; Yıldız, O.; Acikgoz, O.; Jumpholkul, C. Prediction of graphite nanofluids’ dynamic viscosity by means of artificial neural networks. Int. Commun. Heat Mass Transf., 2016, 73, 33-42.
Yiamsawas, T.; Mahian, O.; Dalkilic, A.S.; Kaewnai, S.; Wongwises, S. Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Appl. Energy, 2013, 111, 40-45.
Sahoo, R.R.; Kumar, V. Development of a new correlation to determine the viscosity of ternary hybrid nanofluid. Int. Commun. Heat Mass Transf., 2020, 111, 104451.
Esfe, M.H.; Arani, A.A.A.; Rezaie, M.; Yan, W.M.; Karimipour, A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass Transf., 2015, 66, 189-195.
Asadi, M.; Asadi, A. Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: an experimental investigation and new correlation in different temperatures and solid concentrations. Int. Commun. Heat Mass Transf., 2016, 76, 41-45.
Dalkılıç, A.S.; Açıkgöz, Ö.; Küçükyıldırım, B.O.; Eker, A.A.; Lüleci, B.; Jumpholkul, C.; Wongwises, S. Experimental investigation on the viscosity characteristics of water based SiO2-graphite hybrid nanofluids. Int. Commun. Heat Mass Transf., 2018, 97, 30-38.
Dittus, F.W.; Boelter, L.M.K. Heat transfer in automobile radiators of the tubular type. Int. Commun. Heat Mass Transf., 1985, 12(1), 3-22.
Cheremisinoff, N.P. Encyclopedia of Fluid Mechanics; Slurry Flow Technology; Golf Pub. Co., 1986, p. 5.
Pastoriza-Gallego, M.J.; Casanova, C.; Páramo, R.; Barbés, B.; Legido, J.L.; Piñeiro, M.M. A study on stability and thermophysical properties (density and viscosity) of Al2O3 in water nanofluid. J. Appl. Phys., 2009, 106(6), 064301.
Vajjha, R.S.; Das, D.K.; Mahagaonkar, B.M. Density measurement of different nanofluids and their comparison with theory. Petrol. Sci. Technol., 2009, 27(6), 612-624.
Vajjha, R.S.; Das, D.K. Measurements of specific heat and density of Al2O3 Nanofluid. No. 1; AIP Conference Proceedings American Institute of Physics, 2008, 1063, pp. 361-370.
Mahian, O.; Kianifar, A.; Wongwises, S. Dispersion of ZnO nanoparticles in a mixture of ethylene glycol-water, exploration of temperature-dependent density, and sensitivity analysis. J. Cluster Sci., 2013, 24(4), 1103-1114.
Mahbubul, I.M.; Saidur, R.; Amalina, M.A. Thermal conductivity, viscosity and density of R141b refrigerant based nanofluid. Procedia Eng., 2013, 56, 310-315.
Mariano, A.; Pastoriza-Gallego, M.J.; Lugo, L.; Camacho, A.; Canzonieri, S.; Piñeiro, M.M. Thermal conductivity, rheological behaviour and density of non-Newtonian ethylene glycol-based SnO2 nanofluids. Fluid Phase Equilib., 2013, 337, 119-124.
Mahbubul, I.M.; Shahrul, I.M.; Khaleduzzaman, S.S.; Saidur, R.; Amalina, M.A.; Turgut, A. Experimental investigation on effect of ultrasonication duration on colloidal dispersion and thermophysical properties of alumina–water nanofluid. Int. J. Heat Mass Transf., 2015, 88, 73-81.
Mariano, A.; Pastoriza-Gallego, M.J.; Lugo, L.; Mussari, L.; Piñeiro, M.M. Co3O4 ethylene glycol-based nanofluids: thermal conductivity, viscosity and high pressure density. Int. J. Heat Mass Transf., 2015, 85, 54-60.
Xie, H.; Zhao, Z.; Zhao, J.; Gao, H. Measurement of thermal conductivity, viscosity and density of ionic liquid [EMIM][DEP]-based nanofluids. Chin. J. Chem. Eng., 2016, 24(3), 331-338.
Sharifpur, M.; Yousefi, S.; Meyer, J.P. A new model for density of nanofluids including nanolayer. Int. Commun. Heat Mass Transf., 2016, 78, 168-174.
Li, X.; Zou, C. Thermo-physical properties of water and ethylene glycol mixture based SiC nanofluids: An experimental investigation. Int. J. Heat Mass Transf., 2016, 101, 412-417.
Ilyas, S.U.; Pendyala, R.; Narahari, M. Stability and thermal analysis of MWCNT-thermal oil-based nanofluids. Colloids Surf. A Physicochem. Eng. Asp., 2017, 527, 11-22.
Montazer, E.; Salami, E.; Yarmand, H.; Chowdhury, Z.Z.; Dahari, M.; Kazi, S.N.; Badarudin, A. Development of a new density correlation for carbon-based nanofluids using response surface methodology. J. Therm. Anal. Calorim., 2018, 132(2), 1399-1407.
Shoghl, S.N.; Jamali, J.; Moraveji, M.K. Electrical conductivity, viscosity, and density of different nanofluids: an experimental study. Exp. Therm. Fluid Sci., 2016, 74, 339-346.
Sundar, L.S.; Ramana, E.V.; Singh, M.K.; Sousa, A.C. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: An experimental study. Int. Commun. Heat Mass Transf., 2014, 56, 86-95.
Elias, M.M.; Mahbubul, I.M.; Saidur, R.; Sohel, M.R.; Shahrul, I.M.; Khaleduzzaman, S.S.; Sadeghipour, S. Experimental investigation on the thermo-physical properties of Al2O3 nanoparticles suspended in car radiator coolant. Int. Commun. Heat Mass Transf., 2014, 54, 48-53.
Kedzierski, M.A. Viscosity and density of CuO nanolubricant. Int. J. Refrig., 2012, 35(7), 1997-2002.
Chon, C.H.; Kihm, K.D.; Lee, S.P.; Choi, S.U. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl. Phys. Lett., 2005, 87(15), 153107.
Li, C.H.; Peterson, G.P. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J. Appl. Phys., 2006, 99(8), 084314.
Timofeeva, E.V.; Gavrilov, A.N.; McCloskey, J.M.; Tolmachev, Y.V.; Sprunt, S.; Lopatina, L.M.; Selinger, J.V. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2007, 76(6 Pt 1), 061203.
[] [PMID: 18233838]
Mintsa, H.A.; Roy, G.; Nguyen, C.T.; Doucet, D. New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci., 2009, 48(2), 363-371.
Patel, H.E.; Sundararajan, T.; Das, S.K. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J. Nanopart. Res., 2010, 12(3), 1015-1031.
Godson, L.; Raja, B.; Lal, D.M.; Wongwises, S.J.E.H.T. Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid. Exp. Heat Transf., 2010, 23(4), 317-332.
Bruggeman, V.D. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys., 1935, 416(7), 636-664.
Hamilton, R.L.; Crosser, O.K. Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam., 1962, 1(3), 187-191.
Wasp, E.J.; Kenny, J.P.; Gandhi, R.L. Solid liquid flow: slurry pipeline transportation [Pumps, valves, mechanical equipment, economics]. Ser. Bulk Mater. Handl., 1977, 1(4)
Davis, R.H. The effective thermal conductivity of a composite material with spherical inclusions. Int. J. Thermophys., 1986, 7(3), 609-620.
Yu, W.; Choi, S.U.S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nanopart. Res., 2003, 5(1-2), 167-171.
Bhattacharya, P.S.S.K.; Saha, S.K.; Yadav, A.; Phelan, P.E.; Prasher, R.S. Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J. Appl. Phys., 2004, 95(11), 6492-6494.
Nan, C.W.; Liu, G.; Lin, Y.; Li, M. Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett., 2004, 85(16), 3549-3551.
Koo, J.; Kleinstreuer, C. A new thermal conductivity model for nanofluids. J. Nanopart. Res., 2004, 6(6), 577-588.
Koo, J.; Kleinstreuer, C. Laminar nanofluid flow in microheat-sinks. Int. J. Heat Mass Transf., 2005, 48(13), 2652-2661.
Xue, Q.Z. Model for thermal conductivity of carbon nanotube-based composites. Physica B, 2005, 368(1-4), 302-307.
Prasher, R.; Bhattacharya, P.; Phelan, P. E. Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. 2006, 2006, 588-595.
Leong, K.C.; Yang, C.; Murshed, S.M.S. A model for the thermal conductivity of nanofluids–the effect of interfacial layer. J. Nanopart. Res., 2006, 8(2), 245-254.
Pil Jang, S.; Choi, S. U. Effects of various parameters on nanofluid thermal conductivity. 2007, 129(5), 617-623.
Yang, L.; Du, K.; Zhang, X. A theoretical investigation of thermal conductivity of nanofluids with particles in cylindrical shape by anisotropy analysis. Powder Technol., 2017, 314, 328-338.
Masuda, H.; Ebata, A.; Teramae, K.; Hishinuma, N.; Ebata, Y. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei, 1993, 7(4), 227-233.
Eastman, J.A.; Choi, U.S.; Li, S.; Thompson, L.J.; Lee, S. Enhanced thermal conductivity through the development of nanofluids; MRS Online Proc. Library Arch, 1996, p. 457.
Lee, S.; Choi, S.S.; Li, S.A.; Eastman, J.A. Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transfer, 1999, 121(2), 280-289.
Xuan, Y.; Li, Q. Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow, 2000, 21(1), 58-64.
Wang, Y.; Fisher, T.; Davidson, J.; Jiang, L. Thermal conductivity of nanoparticle suspensions. In: 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 2002, p. 3345.
Patel, H.E.; Das, S.K.; Sundararajan, T.; Sreekumaran Nair, A.; George, B.; Pradeep, T. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects. Appl. Phys. Lett., 2003, 83(14), 2931-2933.
Wen, D.; Ding, Y. Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J. Therm. Heat Transfer, 2004, 18(4), 481-485.
Assael, M.J.; Metaxa, I.N.; Arvanitidis, J.; Christofilos, D.; Lioutas, C. Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. Int. J. Thermophys., 2005, 26(3), 647-664.
Chopkar, M.; Das, P.K.; Manna, I. Synthesis and characterization of nanofluid for advanced heat transfer applications. Scr. Mater., 2006, 55(6), 549-552.
Ding, Y.; Alias, H.; Wen, D.; Williams, R.A. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Transf., 2006, 49(1-2), 240-250.
Hwang, Y.J.; Ahn, Y.C.; Shin, H.S.; Lee, C.G.; Kim, G.T.; Park, H.S.; Lee, J.K. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr. Appl. Phys., 2006, 6(6), 1068-1071.
Li, C.H.; Peterson, G.P. The effect of particle size on the effective thermal conductivity of Al 2O3-water nanofluids. J. Appl. Phys., 2007, 101(4), 044312.
Zhang, X.; Gu, H.; Fujii, M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. J. Appl. Phys., 2006, 100(4), 044325.
Yu, W.; Xie, H.; Chen, L.; Li, Y. Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids Surf. A Physicochem. Eng. Asp., 2010, 355(1-3), 109-113.
Sundar, L.S.; Farooky, M.H.; Sarada, S.N.; Singh, M.K. Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. Int. Commun. Heat Mass Transf., 2013, 41, 41-46.
Yiamsawasd, T.; Dalkilic, A.S.; Wongwises, S. Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochim. Acta, 2012, 545, 48-56.
Esfe, M.H.; Wongwises, S.; Naderi, A.; Asadi, A.; Safaei, M.R.; Rostamian, H. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. Int. Commun. Heat Mass Transf., 2015, 66, 100-104.
Toghraie, D.; Chaharsoghi, V.A.; Afrand, M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J. Therm. Anal. Calorim., 2016, 125(1), 527-535.
Zadkhast, M.; Toghraie, D.; Karimipour, A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J. Therm. Anal. Calorim., 2017, 129(2), 859-867.
Dalkılıç, A.S.; Yalçın, G.; Küçükyıldırım, B.O.; Öztuna, S.; Eker, A.A.; Jumpholkul, C.; Nakkaew, S.; Wongwises, S. Experimental study on the thermal conductivity of water-based CNT-SiO2 hybrid nanofluids. Int. Commun. Heat Mass Transf., 2018, 99, 18-25.
Namburu, P.K.; Kulkarni, D.P.; Dandekar, A.; Das, D.K. Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro & Nano Lett., 2007, 2(3), 67-71.
Zhou, S.Q.; Ni, R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl. Phys. Lett., 2008, 92(9), 093123.
Barbés, B.; Páramo, R.; Blanco, E.; Pastoriza-Gallego, M.J.; Pineiro, M.M.; Legido, J.L.; Casanova, C. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J. Therm. Anal. Calorim., 2013, 111(2), 1615-1625.
O’Hanley, H.; Buongiorno, J.; McKrell, T.; Hu, L.W. Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry. Adv. Mech. Eng., 2012, 4, 181079.
Sekhar, Y.R.; Sharma, K.V. Study of viscosity and specific heat capacity characteristics of water-based Al2O3 nanofluids at low particle concentrations. J. Exp. Nanosci., 2015, 10(2), 86-102.
Akilu, S.; Baheta, A.T.; Sharma, K.V.; Said, M.A. Experimental determination of nanofluid specific heat with SiO2 nanoparticles in different base fluids. No. 1; AIP Conference ProceedingsAIP Publishing LLC, 2017, 1877, p. 090001.
Li, X.; Chen, W.; Zou, C. An experimental study on β-cyclodextrin modified carbon nanotubes nanofluids for the direct absorption solar collector (DASC): Specific heat capacity and photo-thermal conversion performance. Sol. Energy Mater. Sol. Cells, 2020, 204, 110240.
Hu, Y.; He, Y.; Zhang, Z.; Wen, D. Enhanced heat capacity of binary nitrate eutectic salt-silica nanofluid for solar energy storage. Sol. Energy Mater. Sol. Cells, 2019, 192, 94-102.
Wole-Osho, I.; Okonkwo, E.C.; Kavaz, D.; Abbasoglu, S. An experimental investigation into the effect of particle mixture ratio on specific heat capacity and dynamic viscosity of Al2O3-ZnO hybrid nanofluids. Powder Technol., 2020, 363, 699-716.
Riazi, H.; Murphy, T.; Webber, G.B.; Atkin, R.; Tehrani, S.S.M.; Taylor, R.A. Specific heat control of nanofluids: A critical review. Int. J. Therm. Sci., 2016, 107, 25-38.
Alade, I.O.; Rahman, M.A.A.; Saleh, T.A. Modeling and prediction of the specific heat capacity of Al2O3/water nanofluids using hybrid genetic algorithm/support vector regression model. Nano-Struct. Nano-Objects, 2019, 17, 103-111.
Zhou, L.P.; Wang, B.X.; Peng, X.F.; Du, X.Z.; Yang, Y.P. On the specific heat capacity of CuO nanofluid. Adv. Mech. Eng., 2010, 2, 172085.
Avsec, J.; Oblak, M. The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics. Int. J. Heat Mass Transf., 2007, 50(21-22), 4331-4341.
Yiamsawasd, T.S.; Dalkilic, A.; Wongwises, S. Measurement of specific heat of nanofluids. Curr. Nanosci., 2012, 8(6), 939-944.
Wang, L.; Tan, Z.; Meng, S.; Liang, D.; Li, G. Enhancement of molar heat capacity of nanostructured Al2O3. J. Nanopart. Res., 2001, 3(5-6), 483-487.
Sang, L.; Ai, W.; Wu, Y.; Ma, C. SiO2-ternary carbonate nanofluids prepared by mechanical mixing at high temperature: Enhanced specific heat capacity and thermal conductivity. Sol. Energy Mater. Sol. Cells, 2019, 203, 110193.
Cingarapu, S.; Singh, D.; Timofeeva, E.V.; Moravek, M.R. Nanofluids with encapsulated tin nanoparticles for advanced heat transfer and thermal energy storage. Int. J. Energy Res., 2014, 38(1), 51-59.
Karimi, A.; Sadatlu, M.A.A.; Saberi, B.; Shariatmadar, H.; Ashjaee, M. Experimental investigation on thermal conductivity of water based nickel ferrite nanofluids. Adv. Powder Technol., 2015, 26(6), 1529-1536.

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy