Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Recent Developments of Quinoline Derivatives and their Potential Biological Activities

Author(s): Mustapha Dib*, Hajiba Ouchetto, Khadija Ouchetto, Abderrafia Hafid and Mostafa Khouili

Volume 18, Issue 3, 2021

Published on: 16 December, 2020

Page: [248 - 269] Pages: 22

DOI: 10.2174/1570179417666201216162055

Price: $65

Abstract

Heterocyclic compounds containing the quinoline ring play a significant role in organic synthesis and therapeutic chemistry. Polyfunctionalized quinolines have attracted the attention of many research groups, especially those who work on drug discovery and development. These derivatives have been widely explored by the research biochemists and are reported to possess wide biological activities. This review focuses on the recent progress in the synthesis of heterocyclic compounds based-quinoline and their potential biological activities.

Keywords: Quinoline derivatives, synthesis, biological activity, heterocyclic compounds, therapeutic chemistry, SARS-CoV-2.

Graphical Abstract
[1]
Meldola, R. Coal and what we get from it: A romance of applied science; Society for Promoting Christian Knowledge: London, UK, 1913.
[2]
Boualia, I.; Debache, A.; Boulcina, R.; Roisnel, T.; Berrée, F.; Vidal, J.; Carboni, B. Synthesis of novel 3-(quinazol-2-yl)-quinolines via SNAr and aluminum chloride-induced (hetero) arylation reactions and biological evaluation as proteasome inhibitors. Tetrahedron Lett., 2020, 61151805
[http://dx.doi.org/10.1016/j.tetlet.2020.151805]
[3]
Fuchi, Y.; Sakuma, M.; Ohyama, K.; Hagihara, R.; Kohno, M.; Hamada, K.; Mizutani, A.; Karasawa, S. Selective synthesis of substituted amino-quinoline derivatives by C-H activation and fluorescence evaluation of their lipophilicity-responsive properties. Sci. Rep., 2019, 9(1), 17723.
[http://dx.doi.org/10.1038/s41598-019-53882-z] [PMID: 31776368]
[4]
Xie, R.; Lu, G.P.; Jiang, H.F.; Zhang, M. Selective reductive annulation reaction for direct synthesis of functionalized quinolines by a cobalt nanocatalyst. J. Catal., 2020, 383, 239-243.
[http://dx.doi.org/10.1016/j.jcat.2020.01.034]
[5]
Zou, L.H.; Zhu, H.; Zhu, S.; Shi, K.; Yan, C.; Li, P.G. Copper-catalyzed ring-opening/reconstruction of anthranils with oxo-compounds: Synthesis of quinoline derivatives. J. Org. Chem., 2019, 84(19), 12301-12313.
[http://dx.doi.org/10.1021/acs.joc.9b01577] [PMID: 31482711]
[6]
Hegde, H.; Shetty, N.S. Facile one-pot multicomponent synthesis of 1H-pyrazolo[3,4-b]quinolines using L-proline as a catalyst. Chem. Heterocycl. Compd., 2017, 53, 883-886.
[http://dx.doi.org/10.1007/s10593-017-2152-3]
[7]
Mandewale, M.C.; Patil, U.C.; Shedge, S.V. Dappadwad, UtR.; Yamgar, RS. A review on quinoline hydrazone derivatives as a new class of potent antitubercular and anticancer agents. Beni-Suef Univ. J. Basic Appl. Sci., 2017, 6, 354-361.
[http://dx.doi.org/10.1016/j.bjbas.2017.07.005]
[8]
Karkara, B.B.; Mishra, S.S.; Singh, B.N.; Panda, G. Synthesis of 2-methoxy-3-(thiophen-2-ylmethyl)quinoline containing amino carbinols as antitubercular agents. Bioorg. Chem., 2020.99103775
[http://dx.doi.org/10.1016/j.bioorg.2020.103775] [PMID: 32222618]
[9]
Ghosha, S.; Pa, S.; Praveena, K.s.S.J. 2-Chloro-7-methyl-3-((4-((p-tolyloxy)methyl)-1H-1,2,3-triazol-1-yl)methyl) quinoline: Crystal structure, hydrogen bonding and anti-bacterial activity. J. Mol. Struct., 2020, 121(2)128137
[10]
Sridhar, P.; Alagumuthu, M.; Arumugam, S.; Rajasekhara Reddy, S. Synthesis of quinoline acetohydrazide-hydrazone derivatives evaluated as DNA gyrase inhibitors and potent antimicrobial agents. RSC Advances, 2016, 6, 64460-64468.
[http://dx.doi.org/10.1039/C6RA09891F]
[11]
Jin, G.; Xiao, F.; Li, Z.; Qi, X.; Zhao, L.; Sun, X. Design, Synthesis, and dual evaluation of quinoline and quinolinium iodide salt derivatives as potential anticancer and antibacterial agents. ChemMedChem, 2020, 15(7), 600-609.
[http://dx.doi.org/10.1002/cmdc.202000002] [PMID: 32068948]
[12]
Sri Ramya, P.V.; Guntuku, L.; Angapelly, S.; Karri, S.; Digwal, C.S.; Babu, B.N.; Naidu, V.G.M.; Kamal, A. Curcumin inspired 2-chloro/phenoxy quinoline analogues: Synthesis and biological evaluation as potential anticancer agents. Bioorg. Med. Chem. Lett., 2018, 28(5), 892-898.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.070] [PMID: 29429834]
[13]
Shah, S.R.; Katariya, K.D.; Reddy, D. Quinoline‐1,3‐Oxazole Hybrids: Syntheses, Anticancer Activity and Molecular Docking Studies. ChemistrySelect, 2020, 5, 1097-1102.
[http://dx.doi.org/10.1002/slct.201903763]
[14]
Hu, Y.Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L.S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.061] [PMID: 28800458]
[15]
Mukherjee, S.; Pal, M. Medicinal chemistry of quinolines as emerging anti-inflammatory agents: An overview. Curr. Med. Chem., 2013, 20(35), 4386-4410.
[http://dx.doi.org/10.2174/09298673113209990170] [PMID: 23862618]
[16]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[17]
Adsule, S.; Barve, V.; Chen, D.; Ahmed, F.; Dou, Q.P.; Padhye, S.; Sarkar, F.H. Novel Schiff base copper complexes of quinoline-2 carboxaldehyde as proteasome inhibitors in human prostate cancer cells. J. Med. Chem., 2006, 49(24), 7242-7246.
[http://dx.doi.org/10.1021/jm060712l] [PMID: 17125278]
[18]
Gonçalves, R.S.B.; Kaiser, C.R.; Lourenço, M.C.S.; de Souza, M.V.N.; Wardell, J.L.; Wardell, S.M.S.V.; da Silva, A.D. Synthesis and antitubercular activity of new mefloquine-oxazolidine derivatives. Eur. J. Med. Chem., 2010, 45(12), 6095-6100.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.024] [PMID: 20932608]
[19]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[20]
Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5)105938
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[21]
Akhramez, S.; Hafid, A.; Khouili, M.; Saadi, M.; El Ammari, L.; Ketatni, E. Synthesis, crystal structure and Hirshfeld surface analysis of 2-chloro-3-[(E)-(2-phenylhydrazinylidene)methyl]quinoline. ActaCryst, 2019, E75, 964-968.
[http://dx.doi.org/10.1107/S2056989019007692]
[22]
Wu, J.; Zhang, H.; Ding, X.; Tan, X.; Shen, H.C.; Chen, J.; He, W.; Deng, H.; Song, L.; Cao, W. Facile synthesis of fluoroalkylated quinolones using fluoroalk-2-ynoates as fluorinated building blocks. J. Fluor. Chem., 2019, 220, 54-60.
[http://dx.doi.org/10.1016/j.jfluchem.2019.02.002]
[23]
Kalurazi, S.Y.; Moghadam, K.R.; Moradi, S. A four-component Pfitzinger reaction: synthesis of 2-pyronylquinolin-4-carbamides. Res. Chem. Intermed., 2017, 43, 4401-4411.
[http://dx.doi.org/10.1007/s11164-017-2885-8]
[24]
Elghamry, I.; Al-Faiyz, Y. A simple one-pot synthesis of quinoline-4-carboxylic acids by the Pfitzinger reaction of isatin with enaminones in water. Tetrahedron Lett., 2016, 57, 110-112.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.070]
[25]
Zhou, P.; Hu, B.; Zhao, S.; Zhang, Q.; Wang, Y.; Li, X.; Yu, F. An improved Pfitzinger reaction for the direct synthesis of quinoline-4-carboxylic esters/acids mediated by TMSCl. Tetrahedron Lett., 2018, 59, 3116-3119.
[http://dx.doi.org/10.1016/j.tetlet.2018.07.006]
[26]
Qinghe, G.; Zhaomin, L.; Yakun, W.; Xia, W.; Jixia, Z.; Anxin, W. I2‐Triggered reductive generation of n‐centered iminyl radicals: isatin- to‐quinoline strategy for the introduction of primary amides. Adv. Synth. Catal., 2018, 360, 1364-1369.
[http://dx.doi.org/10.1002/adsc.201701610]
[27]
Ahmed, W.; Zhang, S.; Yu, X.; Yamamotoab, Y. Bao. M. Brønsted acid-catalyzed metal- and solvent-free quinoline synthesis from N-alkyl anilines and alkynes or alkenes. Green Chem., 2018, 20, 261-265.
[http://dx.doi.org/10.1039/C7GC03175K]
[28]
Kumar, V.; Chaudhary, S.; Mathur, M.; Swami, A.K.; Malakar, C.C.; Singh, V. A tandem approach towards diastereoselective synthesis of quinoline c‐ 3 tethered γ‐Lactones. ChemistrySelect, 2018, 3, 399-404.
[http://dx.doi.org/10.1002/slct.201702923]
[29]
Shee, S.; Ganguli, K.; Jana, K.; Kundu, S. Cobalt complex catalyzed atom-economical synthesis of quinoxaline, quinoline and 2-alkylaminoquinoline derivatives. Chem. Commun. (Camb.), 2018, 54(50), 6883-6886.
[http://dx.doi.org/10.1039/C8CC02366B] [PMID: 29790492]
[30]
Shahabi, D.; Tavakol, H. One-pot synthesis of quinoline derivatives using choline chloride/tin (II) chloride deep eutectic solvent as a green catalyst. J. Mol. Liq., 2016, 220, 324-328.
[http://dx.doi.org/10.1016/j.molliq.2016.04.094]
[31]
Sarode, P.B.; Bahekar, S.P.; Chandak, H.S. Zn(OTf)2-mediated CH activation: An expeditious and solvent-free synthesis of aryl/alkyl substituted quinolines. Tetrahedron Lett., 2016, 57, 5753-5756.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.113]
[32]
Manickam, S.; Kulathu Iyer, S. A new approach for fluorescent tetrahydrobenzo[f]pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-b]pyrimidines. Dyes Pigments, 2017, 147, 300-312.
[http://dx.doi.org/10.1016/j.dyepig.2017.07.041]
[33]
Asadi, B.L. IsfahaniIraj, A.; Baltork, M.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Rudbari, HA.Microwave-assisted, regioselective one-pot synthesis of quinolines and bis-quinolines catalyzed by Bi(III) immobilized on triazine dendrimer stabilized magnetic nanoparticles. Tetrahedron Lett., 2017, 58, 71-74.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.102]
[34]
Chi, Y.; Yan, H.; Zhang, W.X.; Xi, Z. Synthesis of quinoline derivatives via cu-catalyzed cascade annulation of heterocumulenes, alkynes, and diaryliodonium salts. Org. Lett., 2017, 19(10), 2694-2697.
[http://dx.doi.org/10.1021/acs.orglett.7b01025] [PMID: 28481555]
[35]
Akpotu, S.O.; Moodley, B.; Vamsi, B.; Ofomaja, A.; Maddila, S.; Jonnalagadda, S.B. Citric acid/mcm‐48 catalyzed multicomponent reaction: an efficient method for the novel synthesis of quinoline derivatives. ChemistrySelect, 2019, 4, 7003-7009.
[http://dx.doi.org/10.1002/slct.201900907]
[36]
Kumbhar, D.; Chandam, D.; Patil, R.; Jadhav, S.; Patil, D.; Patravale, A.; Deshmukh, M. Synthesis and Antimicrobial Activity of Novel Derivatives of 7‐ aryl‐ 10‐ thioxo‐ 7, 10, 11, 12 – tertahydro‐9H‐benzo[H] pyrimido [4,5‐b] quinoline‐8‐one. J. Heterocycl. Chem., 2018, 55, 692-698.
[http://dx.doi.org/10.1002/jhet.3089]
[37]
Arya, A.; Mahajan, A.; Chundawat, S.T. Microwave-assisted One-pot Synthesis of 2-Substituted quinolines by using palladium nanoparticles as a catalyst developed from green alga botryococcus braunii. Curr. Organocatal., 2020, 7, 82-88.
[http://dx.doi.org/10.2174/2213337206666190625112833]
[38]
Mehedi, M.S.A.; Tepe, J.J. Sc(OTf)3-Mediated One-Pot Synthesis of 2,3-Disubstituted Quinolines from Anilines and Epoxides. J. Org. Chem., 2020, 85(10), 6741-6746.
[http://dx.doi.org/10.1021/acs.joc.0c00803] [PMID: 32319294]
[39]
Jiang, K.M.; Kang, J.A.; Jin, Yi.; Lin, J. Synthesis of substituted 4-hydroxyalkyl-quinoline derivatives by a three-component reaction using CuCl/AuCl as sequential catalysts. Org. Chem. Front., 2018, 5, 434-441.
[http://dx.doi.org/10.1039/C7QO00637C]
[40]
Dhiman, S.H.; Saini, K.; Nandwana, N.K.; Kumara, D.; Kumar, A. Copper-catalyzed synthesis of quinoline derivatives via tandem Knoevenagel condensation, amination and cyclization. RSC Advances, 2016, 6, 23987-23994.
[http://dx.doi.org/10.1039/C6RA03798D]
[41]
Chelucci, G.; Porcheddu, A. Synthesis of quinolines via a metal-catalyzed dehydrogenative n-heterocyclization. Chem. Rec., 2017, 17(2), 200-216.
[http://dx.doi.org/10.1002/tcr.201600083] [PMID: 27524555]
[42]
Filimonov, V.O.V.; Abaev, T.; Beryozkina, T.V.; Galata, K.A.; Slepukhin, PA.; Kostenko, M.A.; Berseneva, V.S. Tandem knoevenagel condensation and intramolecular cycloaddition reactions of 2-azidobenzaldehydes with 2-cyanoacetamides in the synthesis of 4-thiocarbamoyltetrazolo-[1,5-a]quinolines. Chem. Heterocycl. Compd., 2016, 52, 721-726.
[http://dx.doi.org/10.1007/s10593-016-1954-z]
[43]
Fang, Y.M.; Zhang, R.R.; Shen, Z.H.; Wu, H.K.; Tan, C.X.; Weng, J.Q.; Xu, T.M.; Liu, X.H. Synthesis, antifungal activity, and sar study of some new 6‐perfluoropropanyl quinoline derivatives. J. Heterocycl. Chem., 2018, 55, 240-245.
[http://dx.doi.org/10.1002/jhet.3031]
[44]
Dai, H.; Li, C.X.; Yu, C.; Wang, Z.; Yan, H.; Lu, C. Copper(ii) catalyzed domino synthesis of quinoline derivatives from arylamines and alkynes. Org. Chem. Front., 2017, 4, 2008-2011.
[http://dx.doi.org/10.1039/C7QO00333A]
[45]
Li, Y.; Zhang, Q.; Xu, X.; Zhang, X.; Yang, Y.; Yi, W. One-pot synthesis of 2,4-disubstituted quinolines via silver-catalyzed three-component cascade annulation of amines, alkyne esters and terminal alkynes. Tetrahedron Lett., 2019, 60, 965-970.
[http://dx.doi.org/10.1016/j.tetlet.2019.03.003]
[46]
Hu, W.; Yang, W.; Yan, T.; Cai, M. An efficient heterogeneous gold(I)-catalyzed intermolecular cycloaddition of 2-aminoaryl carbonyls and internal alkynes leading to polyfunctionalized quinolines. Synth. Commun., 2019, 49, 799-813.
[http://dx.doi.org/10.1080/00397911.2019.1567788]
[47]
Tasqeeruddin, S.; Asiri, Y.I. An environmentally benign, green, and efficient ionic liquid catalyzed synthesis of Quinoline derivatives via Knoevenagel condensation. J. Heterocycl. Chem., 2020, 57, 132-139.
[http://dx.doi.org/10.1002/jhet.3754]
[48]
Nematpour, M.; Rezaee, E.; Jahani, M.; Abbas Tabatabai, S. Novel one‐pot synthesis of functionalized quinolines from isocyanides, aniline, and acetylene dicarboxylate via cu‐catalyzed intramolecular c—h activation reactions. J. Heterocycl. Chem., 2019, 56, 1254-1259.
[http://dx.doi.org/10.1002/jhet.3477]
[49]
Chen, D.; Wang, X.; Wang, R.; Zhan, Y.; Peng, X.; Xia, T.; Zhang, Z.; Li, R.; Li, S. A Facile one-pot synthesis of substituted quinolines via cascade friedlander reaction from isoxazoles with ammonium formate-pd/c and ketones. Lett. Org. Chem., 2020, 17, 211-215.
[http://dx.doi.org/10.2174/1570178616666190618091617]
[50]
Patel, D.B.; Darji, D.G.; Patel, K.R.; Rajani, D.P.; Rajani, S.D.; Patel, H.D. Synthesis of novel quinoline‐thiosemicarbazide hybrids and evaluation of their biological activities, molecular docking, molecular dynamics, pharmacophore model studies, and ADME‐Tox properties. J. Heterocycl. Chem., 2020, 57, 1183-1200.
[http://dx.doi.org/10.1002/jhet.3855]
[51]
Yue, X.; Storozhenko, O.A.; Festa, A.A.; Sorokina, E.A.; Varlamov, A.V.; Voskressensky, L.G. Microwave-assisted sequential three-component synthesis of pyrrolyl-substituted chromeno[2,3-c]isoquinolin-5-amines. Chem. Heterocycl. Compd., 2020, 56, 495-498.
[http://dx.doi.org/10.1007/s10593-020-02686-5]
[52]
Tasqeeruddin, S.; Asiri, Y.; Abdullah Alsherhri, J. An efficient and green microwave-assisted synthesis of quinoline derivatives via knoevengal condensation. Lett. Org. Chem., 2020, 17, 157-163.
[http://dx.doi.org/10.2174/1570178616666190618153721]
[53]
Pallavi, B.; Prakash Singh, R.; Nath Jha, P.; Chander, S.; Murugesan, S.; Sharma, P.; Shukla, P. Green synthesis, in-vitro antimicrobial evaluation, docking, and sar studies of potent quinoline-4-carboxylic acids. Lett. Org. Chem., 2019, 16, 874-883.
[http://dx.doi.org/10.2174/1570178616666190123121506]
[54]
Xuan, D.D. Recent progress in the synthesis of quinolines. Curr. Org. Synth., 2019, 16(5), 671-708.
[http://dx.doi.org/10.2174/1570179416666190719112423] [PMID: 31984888]
[55]
Man, R.J.; Jeelani, N.; Zhou, C.; Yang, Y.S.; Recent, Y. Recent progress in the development of quinoline derivatives for the exploitation of anti-cancer agents. Anticancer. Agents Med. Chem., 2020, 20, 1-15.
[http://dx.doi.org/10.2174/1871520620666200516150345] [PMID: 32416703]
[56]
Chokkar, N.; Kalra, S.; Chauhan, M.; Kumar, R. A review on quinoline derived scaffolds as anti-hiv agents. Mini Rev. Med. Chem., 2019, 19(6), 510-526.
[http://dx.doi.org/10.2174/1389557518666181018163448] [PMID: 30338737]
[57]
Li, H.T.; Zhu, X. Quinoline-based compounds with potential activity against drugresistant cancers. Curr. Top. Med. Chem., 2020, 20, 1-12.
[http://dx.doi.org/10.2174/1568026620666200618113957]
[58]
Khalafy, J.; Arlan, F.M.; Chalanchi, S.S. One‐pot, three‐component synthesis of a new series of 2‐amino‐4‐aroyl‐5‐oxo‐5,6‐dihydro‐2h‐pyrano[3,2‐c]quinoline‐3‐carbonitrile in the presence of sba‐15 as a nanocatalyst. J. Heterocycl. Chem., 2018, 55, 149-153.
[http://dx.doi.org/10.1002/jhet.3017]
[59]
Rammyani, P.; Chatterjee, N.; Roy, M. El Said, Nouh, A.; Sarkar, S.; Sankar, P.; Sarkar, S.;Sena, AK. Reusable palladium nanoparticles in one-pot domino Sonogashira-cyclization: regio- and stereo-selective syntheses of (Z)-3-methyleneisoindoline-1-ones and furo[3,2-h]quinolines in water. Tetrahedron Lett., 2016, 57, 43-47.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.059]
[60]
Umamatheswari, S.; Sankar, C. Synthesis, identification and in vitro biological evaluation of some novel quinoline incorporated 1,3-thiazinan-4-one derivatives. Bioorg. Med. Chem. Lett., 2017, 27(3), 695-699.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.038] [PMID: 28065567]
[61]
Xu, J.; Qiao, L.; Ying, B.; Zhu, X.; Shenb, C.; Zhang, P. Transition-metal-free direct perfluoroalkylation of quinoline amides at C5 position through radical cross-coupling under mild conditions. Org. Chem. Front., 2017, 4, 1116-1120.
[http://dx.doi.org/10.1039/C6QO00655H]
[62]
Kim, D.G.; Vershinina, E.A.; Ovchinnikova, I.G.; Slepukhin, P.A.; Ezhikova, M.A.; Kodess, M.I. Synthesis and halocyclization of 4-methylquinolin-2(1H)-one N- and O-methallyl derivatives. Chem. Heterocycl. Compd., 2018, 54, 977-980.
[http://dx.doi.org/10.1007/s10593-018-2374-z]
[63]
Taheri, S.; Nazifi, M.; Mansourian, M.; Hosseinzadeh, L.; Shokoohinia, Y. Ugi efficient synthesis, biological evaluation and molecular docking of coumarin-quinoline hybrids as apoptotic agents through mitochondria-related pathways. Bioorg. Chem., 2019, 91, 103-147.
[http://dx.doi.org/10.1016/j.bioorg.2019.103147] [PMID: 31377390]
[64]
Almandil, N.B.; Taha, M.; Rahim, F.; Wadood, A.; Imran, S.; Alqahtani, M.A.; Bamarouf, Y.A.; Ibrahim, M.; Mosaddik, A.; Gollapalli, M. Synthesis of novel quinoline-based thiadiazole, evaluation of their antileishmanial potential and molecular docking studies. Bioorg. Chem., 2019, 85, 109-116.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.025] [PMID: 30605884]
[65]
Aly, A.A.; Sayed, S.M.; Abdelhafez, E.M.N.; Abdelhafez, S.M.N.; Abdelzaher, W.Y.; Raslan, M.A.; Ahmed, A.E.; Thabet, K.; El-Reedy, A.A.M.; Brown, A.B.; Bräse, S. New quinoline-2-one/pyrazole derivatives; design, synthesis, molecular docking, anti-apoptotic evaluation, and caspase-3 inhibition assay. Bioorg. Chem., 2020, 94, 103-348.
[http://dx.doi.org/10.1016/j.bioorg.2019.103348] [PMID: 31699387]
[66]
Bandehali-Naeini, F.; Shiri, M.; Ramezani, B.; Rajai-Daryasarei, S. Quinoline-based polyazaheterocycles by a hydrogen peroxide-mediated isocyanide insertion. Polycycl. Aromat. Compd., 2019, 39, 403.
[http://dx.doi.org/10.1080/10406638.2019.1599403]
[67]
Nagaraju, R.; Gopichand, K.; Rao, N.N.; Ganai, A.M.; Kishan, E.; Venkateswar Rao, P. Synthesis and Anticancer Activity of a Novel Series of Tetrazolo[1,5-a]quinoline Based 1,2,3-Triazole Derivatives. Russ. J. Gen. Chem., 2020, 90, 314-318.
[http://dx.doi.org/10.1134/S1070363220020255]
[68]
Thirumurugana, C.; Vadivel, P.; Lalithab, A.; Lakshmanan, S. Synthesis, characterization of novel quinoline-2-carboxamide based chalcone derivatives and their molecular docking, photochemical studies. Synth. Commun., 2020, 50, 831-839.
[http://dx.doi.org/10.1080/00397911.2020.1720737]
[69]
Li, Y.H.Zou., A Simple and Facile Synthesis of 4‐Phenylquinoline‐fused Pyrrolidin‐2‐ones. J. Heterocycl. Chem., 2018, 55, 346-350.
[http://dx.doi.org/10.1002/jhet.3052]
[70]
Marjani, A.P.; Khalafy, J.; Farajollahi, A. Synthesis of ethyl2‐amino‐4‐benzoyl‐5‐oxo‐5,6‐dihydro‐4h‐pyrano[3,2‐c] quinoline‐3‐carboxylates by a one‐pot, three‐component reaction in the presence of TPAB. J. Heterocycl. Chem., 2019, 56, 268-274.
[http://dx.doi.org/10.1002/jhet.3404]
[71]
Shabeeb, I.; Al-Essa, L.; Shtaiwi, M.; Al-Shalabi, E. Eyad Younes, Okasha, R.; Abu Sini, M. New hydrazide-hydrazone derivatives of quinoline 3-Carboxylic acid hydrazide: synthesis, theoretical modeling and antibacterial evaluation. Lett. Org. Chem., 2019, 16, 430-436.
[http://dx.doi.org/10.2174/1570178616666181227122326]
[72]
Kumar, R.; Sharma, R.; Kumar, I.; Upadhyay, P.; Dhiman, A.K.; Kumar, R.; Kumar, R.; Purohit, R.; Sahal, D.; Sharma, U. Evaluation of Antiplasmodial Potential of C2 and C8 Modified Quinolines: In vitro and in silico Study. Med. Chem., 2019, 15(7), 790-800.
[http://dx.doi.org/10.2174/1573406414666181015144413] [PMID: 30324888]
[73]
Upadhyay, K.D.; Shah, A.K. Evaluation of Pyrano[3,2 C] quinoline analogues as anticancer agents. Anticancer. Agents Med. Chem., 2019, 19(10), 1285-1292.
[http://dx.doi.org/10.2174/1871520619666190308122734] [PMID: 30854977]
[74]
Zaheer, Z.; Shaikh, S.I.; Mokale, S.N.; Lokwani, D.K. Synthesis, biological evaluation and computational study of new quinoline hybrids as antitubercular agent. Lett. Drug Des. Discov., 2018, 15, 914-922.
[http://dx.doi.org/10.2174/1570180814666171026155930]
[75]
Reddy, P.L.; Khan, S.I.; Ponnan, P.; Tripathi, M.; Rawat, D.S. Design, synthesis and evaluation of 4-aminoquinoline-purine hybrids as potential antiplasmodial agents. Eur. J. Med. Chem., 2017, 126, 675-686.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.057] [PMID: 27936446]
[76]
Wong, W.; Bai, X.C.; Sleebs, B.E.; Triglia, T.; Brown, A.; Thompson, J.K.; Jackson, K.E.; Hanssen, E.; Marapana, D.S.; Fernandez, I.S.; Ralph, S.A.; Cowman, A.F.; Scheres, S.H.W.; Baum, J. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat. Microbiol., 2017, 2, 17031.
[http://dx.doi.org/10.1038/nmicrobiol.2017.31] [PMID: 28288098]
[77]
Herraiz, T.; Guillén, H. González-peña, D.; Arán, V J. Antimalarial Qu.inoline Drugs Inhibit β-Hematin and Increase Free Hemin Catalyzing Peroxidative Reactions and Inhibition of Cysteine Proteases. Sci. Rep., 2019, 9, 15398.
[http://dx.doi.org/10.1038/s41598-019-51604-z] [PMID: 31659177]
[78]
Overacker, R.D.; Banerjee, S.; Neuhaus, G.F.; Milicevic Sephton, S.; Herrmann, A.; Strother, J.A.; Brack-Werner, R.; Blakemore, P.R.; Loesgen, S. Biological evaluation of molecules of the azaBINOL class as antiviral agents: Inhibition of HIV-1 RNase H activity by 7-isopropoxy-8-(naphth-1-yl)quinoline. Bioorg. Med. Chem., 2019, 27(16), 3595-3604.
[http://dx.doi.org/10.1016/j.bmc.2019.06.044] [PMID: 31285097]
[79]
Mittal, R.K. Purohit; P. Quinoline-3-carboxylate derivatives: A new hope as an antiproliferative Agent. Anticancer. Agents Med. Chem., 2020, 20, 1-13.
[http://dx.doi.org/10.2174/1871520620666200619175906]
[80]
Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov., 2020, 6, 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 32194981]
[81]
Sahraei, Z.; Shabani, M.; Shokouhi, S.; Saffaei, A. Aminoquinolines against coronavirus disease 2019 (COVID-19): Chloroquine or hydroxychloroquine. Int. J. Antimicrob. Agents, 2020, 55(4)105945
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105945] [PMID: 32194152]
[82]
da Rosa Monte Machado, G.; Diedrich, D.; Ruaro, T.C.; Zimmer, A.R.; Lettieri Teixeira, M.; de Oliveira, L.F.; Jean, M.; Van de Weghe, P.; de Andrade, S.F.; Baggio Gnoatto, S.C.; Fuentefria, A.M. Quinolines derivatives as promising new antifungal candidates for the treatment of candidiasis and dermatophytosis. Braz. J. Microbiol., 2020, 4, 10.
[http://dx.doi.org/10.1007/s42770-020-00348-4] [PMID: 32737869]
[83]
Tejería, A.; Pérez-Pertejo, Y.; Reguera, R.M.; Carbajo-Andrés, R.; Balaña-Fouce, R.; Alonso, C.; Martin-Encinas, E.; Selas, A.; Rubiales, G.; Palacios, F. Antileishmanial activity of new hybrid tetrahydroquinoline and quinoline derivatives with phosphorus substituents. Eur. J. Med. Chem., 2019, 162(162), 18-31.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.065] [PMID: 30408746]
[84]
Ramírez-Prada, J.; Robledo, S.M.; Vélez, I.D.; Crespo, M.D.P.; Quiroga, J.; Abonia, R.; Montoya, A.; Svetaz, L.; Zacchino, S.; Insuasty, B. Synthesis of novel quinoline-based 4,5-dihydro-1H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur. J. Med. Chem., 2017, 131, 237-254.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.016] [PMID: 28329730]
[85]
El Shehry, M.F.; Ghorab, M.M.; Abbas, S.Y.; Fayed, E.A.; Shedid, S.A.; Ammar, Y.A. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur. J. Med. Chem., 2018, 143, 1463-1473.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.046] [PMID: 29113746]
[86]
Jin, G.; Li, Z.; Xiao, F.; Qi, X.; Sun, X. Optimization of activity localization of quinoline derivatives: Design, synthesis, and dual evaluation of biological activity for potential antitumor and antibacterial agents. Bioorg. Chem., 2020, 99103837
[http://dx.doi.org/10.1016/j.bioorg.2020.103837] [PMID: 32299019]
[87]
Aly, R.M.; Serya, R.A.T.; El-Motwally, A.M.; Esmat, A.; Abbas, S.; Abou El Ella, D.A. Novel quinoline-3-carboxamides (Part 2): Design, optimization and synthesis of quinoline based scaffold as EGFR inhibitors with potent anticancer activity. Bioorg. Chem., 2017, 75, 368-392.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.018] [PMID: 29096097]
[88]
Köprülü, T.K.; Ökten, S.; Tekin, Ş.; Çakmak, O. Biological evaluation of some quinoline derivatives with different functional groups as anticancer agents. J. Biochem. Mol. Toxicol., 2019, 33(3)e22260
[http://dx.doi.org/10.1002/jbt.22260] [PMID: 30431695]
[89]
Li, B.; Zhu, F.; He, F.; Huang, Q.; Liu, X.; Wu, T.; Zhao, T.; Qiu, Y.; Wu, Z.; Xue, Y.; Fang, M. Synthesis and biological evaluations of N′-substituted methylene-4-(quinoline-4-amino) benzoylhydrazides as potential anti-hepatoma agents. Bioorg. Chem., 2020, 96103592
[http://dx.doi.org/10.1016/j.bioorg.2020.103592] [PMID: 32044517]
[90]
Sureshkumar, K.; Maheshwaran, V.; Rao, T.D.; Themmila, K.; Ponnuswamy, M.N.; Kadhirvel, S.; Dhandayutham, S. Synthesis, characterization, crystal structure, in-vitro anti-inflammatory and molecular docking studies of 5-mercapto-1-substituted tetrazole incorporated quinoline derivative. J. Mol. Struct., 2017, 1146, 314-323.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.085]
[91]
Yang, Y.T.; Du, S.; Wang, S.; Jia, X.; Wang, X.; Zhang, X. Synthesis of new steroidal quinolines with antitumor properties. Steroids, 2019, 151108465
[http://dx.doi.org/10.1016/j.steroids.2019.108465] [PMID: 31351940]
[92]
Massoud, M A M.; El-Sayed, M.A.; Bayoumi, W.A.; Mansour, B. Cytotoxicity and molecular targeting study of novel 2-chloro-3- substituted quinoline derivatives as antitumor agents. Lett. Drug Des. Discov., 2019, 16, 273-283.
[http://dx.doi.org/10.2174/1570180815666180604090924]
[93]
Mahajan, P.; Nikam, M.; Asrondkar, A.; Bobade, A.; Gill, C. Synthesis, antioxidant, and anti‐ inflammatory evaluation of novel thiophene‐ fused quinoline based β‐ diketones and derivatives. J. Heterocycl. Chem., 2017, 54, 1415-1422.
[http://dx.doi.org/10.1002/jhet.2722]
[94]
Olayinka, O.A.; Iyaye, K.T.; Audu, O.Y.; Olorunshola, S.J.; Kuye, A.O.; Olanrewaju, I.O. Microwave assisted synthesis and antimicrobial potential of quinoline‐ based 4‐ hydrazide‐ hydrazone derivatives. J. Heterocycl. Chem., 2018, 55, 302-312.
[http://dx.doi.org/10.1002/jhet.3050]
[95]
Alsayed, S.S.R.; Lun, S.; Luna, G.; Chun Beh, C.; Payne, A.D. Foster, N.; Bishai, W R.; Gunosewoyo. Design, H. Synthesis, and biological evaluation of novel arylcarboxamide derivatives as anti-tubercular agents. RSC Advances, 2020, 10, 7523-7540.
[http://dx.doi.org/10.1039/C9RA10663D] [PMID: 33014349]
[96]
Ibrahim, M.K.; Eissa, I.H.; Abdallah, A.E.; Metwaly, A.M.; Radwan, M.M.; ElSohly, M.A. Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of novel quinoxaline derivatives as potential PPARγ and SUR agonists. Bioorg. Med. Chem., 2017, 25(4), 1496-1513.
[http://dx.doi.org/10.1016/j.bmc.2017.01.015] [PMID: 28117121]
[97]
Bharadwaj, S.S.; Poojary, B.; Nandish, S.K.M.; Kengaiah, J.; Kirana, M.P.; Shankar, M.K.; Das, A.J.; Kulal, A.; Sannaningaiah, D. Efficient synthesis and in silico studies of the benzimidazole hybrid scaffold with the quinolinyloxadiazole skeleton with potential α-glucosidase inhibitory, anticoagulant, and antiplatelet activities for type-ii diabetes mellitus management and treating thrombotic disorders. ACS Omega, 2018, 3(10), 12562-12574.
[http://dx.doi.org/10.1021/acsomega.8b01476] [PMID: 30411010]
[98]
Perin, N.; Alić, J.; Liekens, S.; Aerschot, A.V.; Vervaeke, P.; Gadakh, B.; Hranjec, M. Different positions of amide side chains on the benzimidazo[1,2-a]quinoline skeleton strongly influence biological activity. New J. Chem., 2018, 42, 7096-7104.
[http://dx.doi.org/10.1039/C8NJ00416A]
[99]
Coa, J.C.; Cardona-Galeano, W.; Restrepo, A. .Fe3+ chelating quinolinehydrazone hybrids with proven cytotoxicity, leishmanicidal, and trypanocidal activities. Phys. Chem. Chem. Phys., 2018, 20(31), 20382-20390..
[http://dx.doi.org/10.1039/C8CP04174A ] [PMID: 30043008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy