Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Ultrasound Elastography in Ocular and Periocular Tissues: A Review

Author(s): Georgios Bontzos*, Vivian Paraskevi Douglas, Konstantinos A.A. Douglas, Zoi Kapsala, Eleni E. Drakonaki and Efstathios T. Detorakis

Volume 17, Issue 9, 2021

Published on: 14 December, 2020

Page: [1041 - 1053] Pages: 13

DOI: 10.2174/1573405616666201214123117

Price: $65

Abstract

Ultrasound elastography has become available in everyday practice, allowing direct measurement of tissue elasticity with important and expanding clinical applications. Several studies that have evaluated pathological and non-pathological tissues have demonstrated that ultrasound elastography can actually improve the diagnostic accuracy of the underlying disease process by detecting differences in their elasticity. Ocular and periocular tissues can also be characterized by their elastic properties. In this context, a comprehensive review of literature on ultrasound elastography as well as its current applications in Ophthalmology is presented.

Keywords: Ultrasound elastography, strain elastography, shear wave elastography, ocular tissues, periocular tissues, imaging.

Graphical Abstract
[1]
Garra BS. Elastography: history, principles, and technique comparison. Abdom Imaging 2015; 40(4): 680-97.
[http://dx.doi.org/10.1007/s00261-014-0305-8] [PMID: 25637125]
[2]
Dietrich CF, Jenssen C, Arcidiacono PG, et al. Endoscopic ultrasound: Elastographic lymph node evaluation. Endosc Ultrasound 2015; 4(3): 176-90.
[http://dx.doi.org/10.4103/2303-9027.162995] [PMID: 26374575]
[3]
Walker HK. The Origins of the History and Physical Examination Clinical Methods: The History, Physical, and Laboratory Examinations 1990. http://www.ncbi.nlm.nih.gov/pubmed/21250276
[4]
Katz AM, Katz PB. Diseases of the heart in the works of Hippocrates. Br Heart J 1962; 24: 257-64.
[http://dx.doi.org/10.1136/hrt.24.3.257] [PMID: 14454369]
[5]
Muthupillai R, Ehman RL. Magnetic resonance elastography. Nat Med 1996; 2(5): 601-3.
[http://dx.doi.org/10.1038/nm0596-601] [PMID: 8616724]
[6]
Jajamovich GH, Dyvorne H, Donnerhack C, Taouli B. Quantitative liver MRI combining phase contrast imaging, elastography, and DWI: assessment of reproducibility and postprandial effect at 3.0 T. PLoS One 2014; 9(5): e97355.
[http://dx.doi.org/10.1371/journal.pone.0097355] [PMID: 24840288]
[7]
Park CC, Nguyen P, Hernandez C, et al. Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology 2017; 152(3): 598-607.e2.
[http://dx.doi.org/10.1053/j.gastro.2016.10.026] [PMID: 27911262]
[8]
Curiel L, Souchon R, Rouvière O, Gelet A, Chapelon JY. Elastography for the follow-up of high-intensity focused ultrasound prostate cancer treatment: initial comparison with MRI. Ultrasound Med Biol 2005; 31(11): 1461-8.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2005.06.013] [PMID: 16286025]
[9]
Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK. Ultrasound elastography: Review of techniques and clinical applications. Vol. 7. Theranostics 2017; 7(5): 1303-29.
[http://dx.doi.org/10.7150/thno.18650] [PMID: 28435467]
[10]
Ophir J, Alam SK, Garra B, et al. Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc Inst Mech Eng H 1999; 213(3): 203-33.
[http://dx.doi.org/10.1243/0954411991534933] [PMID: 10420776]
[11]
Yuan S, Magarik M, Lex AM, Fleischer AC. Clinical applications of sonoelastography. Expert Rev Med Devices 2016; 13(12): 1107-17.
[http://dx.doi.org/10.1080/17434440.2016.1257938] [PMID: 27819141]
[12]
Gennisson J-L, Deffieux T, Fink M, Tanter M. Ultrasound elastography: principles and techniques. Diagn Interv Imaging 2013; 94(5): 487-95.
[http://dx.doi.org/10.1016/j.diii.2013.01.022] [PMID: 23619292]
[13]
Detorakis ET, Drakonaki EE, Tsilimbaris MK, Pallikaris IG, Giarmenitis S. Real-time ultrasound elastographic imaging of ocular and periocular tissues: a feasibility study. Ophthalmic Surg Lasers Imaging 2010; 41(1): 135-41.
[http://dx.doi.org/10.3928/15428877-20091230-24] [PMID: 20128584]
[14]
Detorakis ET, Drakonaki EE, Ginis H, Karyotakis N, Pallikaris IG. Evaluation of iridociliary and lenticular elasticity using shear-wave elastography in rabbit eyes. Acta Med (Hradec Kralove) 2014; 57(1): 9-14.
[http://dx.doi.org/10.14712/18059694.2014.2] [PMID: 25006657]
[15]
Pekel G, Ağladioğlu K, Acer S, Bozkurt K, Çetin EN, Yağcı R. Evaluation of ocular elasticity in high myopia. Optom Vis Sci 2015; 92(5): 573-8.
[http://dx.doi.org/10.1097/OPX.0000000000000588] [PMID: 25875687]
[16]
Sit AJ, Kazemi A, Zhou B, Zhang X. Comparison of ocular biomechanical properties in normal and glaucomatous eyes using ultrasound surface wave elastography. Invest Ophthalmol Vis Sci 2018; 59(9): 1218.
[17]
Batur M, Batur A, Çilingir V, et al. Ultrasonic elastography evaluation in optic neuritis.Seminars in ophthalmology. Taylor & Francis 2018; pp. 237-41.
[18]
Brandenburg JE, Eby SF, Song P, et al. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness. Arch Phys Med Rehabil 2014; 95(11): 2207-19.
[http://dx.doi.org/10.1016/j.apmr.2014.07.007] [PMID: 25064780]
[19]
Hoskins PR. Principles of ultrasound elastography. Ultrasound 2012; 20(1): 8-15.
[http://dx.doi.org/10.1258/ult.2011.011005]
[20]
Dewall RJ. Ultrasound elastography: principles, techniques, and clinical applications. Crit Rev Biomed Eng 2013; 41(1): 1-19.
[http://dx.doi.org/10.1615/CritRevBiomedEng.2013006991] [PMID: 23510006]
[21]
Cespedes EI, De Korte CL, Van Der Steen AF, Von Birgelen C, Lancée CT. Intravascular elastography: principles and potentials. Seminars in interventional cardiology. SIIC 1997; pp. 55-62.
[22]
DeJong HM, Abbott S, Zelesco M, Kennedy BF, Ziman MR, Wood FM. The validity and reliability of using ultrasound elastography to measure cutaneous stiffness, a systematic review. Int J Burns Trauma 2017; 7(7): 124-41.
http://www.ncbi.nlm.nih.gov/pubmed/29348976%0A
http://www. pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5768929

[PMID: 29348976]
[23]
Shiina T, Nightingale KR, Palmeri ML, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol 2015; 41(5): 1126-47.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2015.03.009] [PMID: 25805059]
[24]
Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991; 13(2): 111-34.
[http://dx.doi.org/10.1177/016173469101300201] [PMID: 1858217]
[25]
Dietrich CF, Barr RG, Farrokh A, et al. Strain elastography - how to do it? Ultrasound Int Open 2017; 3(4): E137-49.
[http://dx.doi.org/10.1055/s-0043-119412] [PMID: 29226273]
[26]
Sandrin L, Fourquet B, Hasquenoph JM, et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 2003; 29(12): 1705-13.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2003.07.001] [PMID: 14698338]
[27]
Frulio N, Trillaud H. Ultrasound elastography in liver. Diagn Interv Imaging 2013; 94(5): 515-34.
[http://dx.doi.org/10.1016/j.diii.2013.02.005] [PMID: 23623211]
[28]
Ferraioli G, Wong VW-S, Castera L, et al. Liver ultrasound elastography: an update to the world federation for ultrasound in medicine and biology guidelines and recommendations. Ultrasound Med Biol 2018; 44(12): 2419-40.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2018.07.008] [PMID: 30209008]
[29]
Strachinaru M, Bosch JG, van Dalen BM, et al. Cardiac shear wave elastography using a clinical ultrasound system. Ultrasound Med Biol 2017; 43(8): 1596-606.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2017.04.012] [PMID: 28545859]
[30]
Varghese T, Zagzebski JA, Rahko P, Breburda CS. Ultrasonic imaging of myocardial strain using cardiac elastography. Ultrason Imaging 2003; 25(1): 1-16.
[http://dx.doi.org/10.1177/016173460302500101] [PMID: 12747424]
[31]
Chen H, Varghese T, Rahko PS, Zagzebski JA. Ultrasound frame rate requirements for cardiac elastography: experimental and in vivo results. Ultrasonics 2009; 49(1): 98-111.
[http://dx.doi.org/10.1016/j.ultras.2008.05.007] [PMID: 18657839]
[32]
Itoh A, Ueno E, Tohno E, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology 2006; 239(2): 341-50.
[http://dx.doi.org/10.1148/radiol.2391041676] [PMID: 16484352]
[33]
Barr RG. Sonographic breast elastography: a primer. J Ultrasound Med 2012; 31(5): 773-83.
[http://dx.doi.org/10.7863/jum.2012.31.5.773] [PMID: 22535725]
[34]
Ozturk A, Grajo JR, Dhyani M, Anthony BW, Samir AE. Principles of ultrasound elastography. Abdom Radiol (NY) 2018; 43(4): 773-85.
[http://dx.doi.org/10.1007/s00261-018-1475-6] [PMID: 29487968]
[35]
Piscaglia F, Salvatore V, Mulazzani L, Cantisani V, Schiavone C. Ultrasound shear wave elastography for liver disease. A critical appraisal of the many actors on the stage. Ultraschall Med 2016; 37(1): 1-5.
[http://dx.doi.org/10.1055/s-0035-1567037] [PMID: 26871407]
[36]
Yoshitake Y, Takai Y, Kanehisa H, Shinohara M. Muscle shear modulus measured with ultrasound shear-wave elastography across a wide range of contraction intensity. Muscle Nerve 2014; 50(1): 103-13.
[http://dx.doi.org/10.1002/mus.24104] [PMID: 24155045]
[37]
Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 2004; 51(4): 396-409.
[http://dx.doi.org/10.1109/TUFFC.2004.1295425] [PMID: 15139541]
[38]
Carlsen JF, Ewertsen C, Lönn L, Nielsen MB. Strain elastography ultrasound: an overview with emphasis on breast cancer diagnosis. Diagnostics (Basel) 2013; 3(1): 117-25.
[http://dx.doi.org/10.3390/diagnostics3010117] [PMID: 26835671]
[39]
Thomas A, Degenhardt F, Farrokh A, Wojcinski S, Slowinski T, Fischer T. Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol 2010; 17(5): 558-63.
[http://dx.doi.org/10.1016/j.acra.2009.12.006] [PMID: 20171905]
[40]
Sarvazyan AP, Skovoroda AR, Emelianov SY, et al. Biophysical bases of elasticity imaging. In: 1995; pp. 223-40.
[http://dx.doi.org/10.1007/978-1-4615-1943-0_23]
[41]
Eby SF, Song P, Chen S, Chen Q, Greenleaf JF, An KN. Validation of shear wave elastography in skeletal muscle. J Biomech 2013; 46(14): 2381-7.
[http://dx.doi.org/10.1016/j.jbiomech.2013.07.033] [PMID: 23953670]
[42]
Gennisson JL, Deffieux T, Macé E, Montaldo G, Fink M, Tanter M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 2010; 36(5): 789-801.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2010.02.013] [PMID: 20420970]
[43]
Song P, Macdonald M, Behler R, et al. Two-dimensional shear-wave elastography on conventional ultrasound scanners with time-aligned sequential tracking (TAST) and comb-push ultrasound shear elastography (CUSE). IEEE Trans Ultrason Ferroelectr Freq Control 2015; 62(2): 290-302.
[http://dx.doi.org/10.1109/TUFFC.2014.006628] [PMID: 25643079]
[44]
Mundt GH Jr, Hughes WF Jr. Ultrasonics in ocular diagnosis. Am J Ophthalmol 1956; 41(3): 488-98.
[http://dx.doi.org/10.1016/0002-9394(56)91262-4] [PMID: 13302351]
[45]
Oksala A, Lehtinen A. Diagnostic value of ultrasonics in ophthalmology Ophthalmol J Int d’ophtalmologie Int J Ophthalmol Zeitschrift für Augenheilkd 1957; 134(6): 387-95. http://www.ncbi.nlm.nih.gov/pubmed/13493993
[46]
Lizzi FL, Coleman DJ. History of ophthalmic ultrasound. J Ultrasound Med 2004; 23(10): 1255-66.
[http://dx.doi.org/10.7863/jum.2004.23.10.1255] [PMID: 15448314]
[47]
Preim B, Botha C. Acquisition of medical image data. Book: Visual Computing for Medicine 2014; 15-67.
[http://dx.doi.org/10.1016/B978-0-12-415873-3.00002-X]
[48]
Meyer-Baese A, Schmid Volker JJ. Pattern Recognition and Signal Analysis in Medical Imaging: Second Edition 2014; 1-444.
[49]
Shahbazi S, Mokhtari-Dizaji M, Mansori MR. Noninvasive estimation of the ocular elastic modulus for age-related macular degeneration in the human eye using sequential ultrasound imaging. Ultrasonics 2012; 52(2): 208-14.
[http://dx.doi.org/10.1016/j.ultras.2011.08.004] [PMID: 21944993]
[50]
Silverman RH, Urs R, Lloyd HO. Effect of ultrasound radiation force on the choroid. Invest Ophthalmol Vis Sci 2013; 54(1): 103-9.
[http://dx.doi.org/10.1167/iovs.12-10773] [PMID: 23211817]
[51]
Chen K, Rowley AP, Weiland JD, Humayun MS. Elastic properties of human posterior eye. J Biomed Mater Res A 2014; 102(6): 2001-7.
[http://dx.doi.org/10.1002/jbm.a.34858] [PMID: 23852923]
[52]
Wollensak G, Spoerl E, Grosse G, Wirbelauer C. Biomechanical significance of the human internal limiting lamina. Retina 2006; 26(8): 965-8.
[http://dx.doi.org/10.1097/01.iae.0000250001.45661.95] [PMID: 17031303]
[53]
Wollensak G, Spoerl E. Biomechanical characteristics of retina. Retina 2004; 24(6): 967-70.
[http://dx.doi.org/10.1097/00006982-200412000-00021] [PMID: 15579999]
[54]
Pekel G, Ağladıoğlu K, Acer S, Yağcı R, Kaşıkçı A. Evaluation of ocular and periocular elasticity after panretinal photocoagulation: an ultrasonic elastography study. Curr Eye Res 2015; 40(3): 332-7.
[http://dx.doi.org/10.3109/02713683.2014.918151] [PMID: 24833498]
[55]
Wallow IH. Long-term changes in photocoagulation burns. Dev Ophthalmol 1981; 2: 318-27.
[http://dx.doi.org/10.1159/000395341] [PMID: 7262417]
[56]
Riemann CD, Foster JA, Kosmorsky GS. Direct orbital manometry in patients with thyroid-associated orbitopathy. Ophthalmology 1999; 106(7): 1296-302.
[http://dx.doi.org/10.1016/S0161-6420(99)00712-5] [PMID: 10406609]
[57]
Zemanová M. Usage of shear wave elastography for diagnosis of changes of oculomotor muscles in endocrine orbitopathy. Cesk Slov Oftalmol 2019; 75(1): 14-24.
[PMID: 31382752]
[58]
Weinreb RN, Tee Khaw P. Primary open-angle glaucoma. Lancet 2004; 363(9422): 1711-20.
[59]
Quigley HA. Glaucoma. In: Lancet. 2011; 377: pp. 1367-77.
[60]
Hollands H, Johnson D, Hollands S, Simel DL, Jinapriya D, Sharma S. Do findings on routine examination identify patients at risk for primary open-angle glaucoma? The rational clinical examination systematic review. JAMA 2013; 309(19): 2035-42.
[http://dx.doi.org/10.1001/jama.2013.5099] [PMID: 23677315]
[61]
Dikici AS, Mihmanli I, Kilic F, et al. In vivo evaluation of the biomechanical properties of optic nerve and peripapillary structures by ultrasonic shearwave elastography in glaucoma. Iran J Radiol 2016; 13(2): e36849.
[http://dx.doi.org/10.5812/iranjradiol.36849] [PMID: 27703662]
[62]
Unal O, Cay N, Yulek F, Taslipinar AG, Bozkurt S, Gumus M. Real-time ultrasound elastographic features of primary open angle glaucoma. Ultrasound Q 2016; 32(4): 333-7.
[http://dx.doi.org/10.1097/RUQ.0000000000000250] [PMID: 27599308]
[63]
Özen Ö, Özer MA, Tosun A, Özen S. Evaluation of the optic nerve and scleral-choroidal-retinal layer with ultrasound elastography in glaucoma and physiological optic nerve head cupping. Med Ultrason 2018; 1(1): 76-9.
[http://dx.doi.org/10.11152/mu-1116] [PMID: 29400372]
[64]
Agladioglu K, Pekel G, Altintas Kasikci S, Yagci R, Kiroglu Y. An evaluation of ocular elasticity using real-time ultrasound elastography in primary open-angle glaucoma. Br J Radiol 2016; 89(1060): 20150429.
[http://dx.doi.org/10.1259/bjr.20150429] [PMID: 26838949]
[65]
Schneider M, Fuchshofer R. The role of astrocytes in optic nerve head fibrosis in glaucoma. Exp Eye Res 2016; 142: 49-55.
[http://dx.doi.org/10.1016/j.exer.2015.08.014] [PMID: 26321510]
[66]
Burgoyne CF, Downs JC, Bellezza AJ, Hart RT. Three-dimensional reconstruction of normal and early glaucoma monkey optic nerve head connective tissues. Invest Ophthalmol Vis Sci 2004; 45(12): 4388-99.
[http://dx.doi.org/10.1167/iovs.04-0022] [PMID: 15557447]
[67]
Ebneter A, Wagels B, Zinkernagel MS. Non-invasive biometric assessment of ocular rigidity in glaucoma patients and controls. Eye (Lond) 2009; 23(3): 606-11.
[http://dx.doi.org/10.1038/eye.2008.47] [PMID: 18309334]
[68]
Guazzaroni M, Ferrari D, Lamacchia F, et al. Biomechanical properties of optic nerve and retrobulbar structures with 2D and 3D shear wave elastography in patients affected by glaucoma. Clin Imaging 2020; 61: 106-14.
[http://dx.doi.org/10.1016/j.clinimag.2020.01.015] [PMID: 32036260]
[69]
Ma Y, Pavlatos E, Clayson K, Kwok S, Pan X, Liu J. Three-dimensional inflation response of porcine optic nerve head using high-frequency ultrasound elastography. J Biomech Eng 2020; 142(5): 0510131-7.
[http://dx.doi.org/10.1115/1.4045503]
[70]
Last JA, Pan T, Ding Y, et al. Elastic modulus determination of normal and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci 2011; 52(5): 2147-52.
[http://dx.doi.org/10.1167/iovs.10-6342] [PMID: 21220561]
[71]
Wang K, Read AT, Sulchek T, Ethier CR. Trabecular meshwork stiffness in glaucoma. Exp Eye Res 2017; 158: 3-12.
[http://dx.doi.org/10.1016/j.exer.2016.07.011] [PMID: 27448987]
[72]
Juhasz T, Loesel FH, Kurtz RM, Horvath C, Bille JF, Mourou G. Corneal refractive surgery with femtosecond lasers. IEEE J Sel Top Quantum Electron 1999; 5(4): 902-10.
[http://dx.doi.org/10.1109/2944.796309]
[73]
Morén H, Malmsjö M, Mortensen J, Ohrström A. Riboflavin and ultraviolet a collagen crosslinking of the cornea for the treatment of keratitis. Cornea 2010; 29(1): 102-4.
[http://dx.doi.org/10.1097/ICO.0b013e31819c4e43] [PMID: 19730094]
[74]
Han Z, Sui X, Zhou D, Zhou C, Ren Q. Biomechanical and refractive behaviors of keratoconic cornea based on three-dimensional anisotropic hyperelastic models. J Refract Surg 2013; 29(4): 282-90.
[http://dx.doi.org/10.3928/1081597X-20130318-08] [PMID: 23557227]
[75]
Sinha Roy A, Dupps WJ Jr. Effects of altered corneal stiffness on native and postoperative LASIK corneal biomechanical behavior: A whole-eye finite element analysis. J Refract Surg 2009; 25(10): 875-87.
[http://dx.doi.org/10.3928/1081597X-20090917-09] [PMID: 19835328]
[76]
Roberts C. The cornea is not a piece of plastic. J Refract Surg 2000; 16(4): 407-13.
[PMID: 10939720]
[77]
Deol M, Taylor DA, Radcliffe NM. Corneal hysteresis and its relevance to glaucoma. Curr Opin Ophthalmol 2015; 26: 96-102.
[http://dx.doi.org/10.1097/ICU.0000000000000130]
[78]
Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 2005; 31(1): 156-62.
[http://dx.doi.org/10.1016/j.jcrs.2004.10.044] [PMID: 15721708]
[79]
Hollman KW, Emelianov SY, Neiss JH, et al. Strain imaging of corneal tissue with an ultrasound elasticity microscope. Cornea 2002; 21(1): 68-73.
[http://dx.doi.org/10.1097/00003226-200201000-00015] [PMID: 11805511]
[80]
Tanter M, Touboul D, Gennisson JL, Bercoff J, Fink M. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging. IEEE Trans Med Imaging 2009; 28(12): 1881-93.
[http://dx.doi.org/10.1109/TMI.2009.2021471] [PMID: 19423431]
[81]
Mikula E, Hollman K, Chai D, Jester JV, Juhasz T. Measurement of corneal elasticity with an acoustic radiation force elasticity microscope. Ultrasound Med Biol 2014; 40(7): 1671-9.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2013.11.009] [PMID: 24726798]
[82]
Erpelding TN, Hollman KW, O’Donnell M. Bubble-based acoustic radiation force elasticity imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2005; 52(6): 971-9.
[http://dx.doi.org/10.1109/TUFFC.2005.1504019] [PMID: 16118978]
[83]
Chen PY, Shih CC, Lin WC, Ma T, Zhou Q, Shung KK. High-resolution shear wave imaging of the human cornea using a dual-element transducer. Sensors 2018; 18(12): 4244.
[http://dx.doi.org/10.3390/s18124244]
[84]
Osapoetra LO, Watson DM, McAleavey SA. Intraocular pressure-dependent corneal elasticity measurement using high-frequency ultrasound. Ultrason Imaging 2019; 41(5): 251-70.
[http://dx.doi.org/10.1177/0161734619858386] [PMID: 31271117]
[85]
Barr RG. Real-time ultrasound elasticity of the breast: initial clinical results. Ultrasound Q 2010; 26(2): 61-6.
[http://dx.doi.org/10.1097/RUQ.0b013e3181dc7ce4] [PMID: 20498561]
[86]
Zhou H, Zhou XL, Xu HX, et al. Initial experience with ultrasound elastography for diagnosis of major salivary gland lesions. J Ultrasound Med 2016; 35(12): 2597-606.
[http://dx.doi.org/10.7863/ultra.15.11093] [PMID: 27872416]
[87]
Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab 2007; 92(8): 2917-22.
[http://dx.doi.org/10.1210/jc.2007-0641] [PMID: 17535993]
[88]
Kapoor A, Kapoor A, Mahajan G, Sidhu BS. Real-time elastography in the detection of prostate cancer in patients with raised PSA level. Ultrasound Med Biol 2011; 37(9): 1374-81.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2011.05.014] [PMID: 21816287]
[89]
Yu H, Wilson SR. Differentiation of benign from malignant liver masses with Acoustic Radiation Force Impulse technique. Ultrasound Q 2011; 27(4): 217-23.
[http://dx.doi.org/10.1097/RUQ.0b013e318239422e] [PMID: 22124386]
[90]
Ferraioli G, Tinelli C, Dal Bello B, Zicchetti M, Filice G, Filice C. Liver Fibrosis Study Group. Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study. Hepatology 2012; 56(6): 2125-33.
[http://dx.doi.org/10.1002/hep.25936] [PMID: 22767302]
[91]
Berg WA, Cosgrove DO, Doré CJ, et al. BE1 Investigators. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology 2012; 262(2): 435-49.
[http://dx.doi.org/10.1148/radiol.11110640] [PMID: 22282182]
[92]
Barr RG, Nakashima K, Amy D, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2: breast. Ultrasound Med Biol 2015; 41(5): 1148-60.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2015.03.008] [PMID: 25795620]
[93]
Nanji AA, Mercado C, Galor A, Dubovy S, Karp CL. Updates in ocular surface tumor diagnostics. Int Ophthalmol Clin 2017; 57(3): 47-62.
[http://dx.doi.org/10.1097/IIO.0000000000000174] [PMID: 28590280]
[94]
Anastassiou G, Heiligenhaus A, Bechrakis N, Bader E, Bornfeld N, Steuhl KP. Prognostic value of clinical and histopathological parameters in conjunctival melanomas: a retrospective study. Br J Ophthalmol 2002; 86(2): 163-7.
[http://dx.doi.org/10.1136/bjo.86.2.163] [PMID: 11815341]
[95]
Messmer EM, Mackert MJ, Zapp DM, Kampik A. In vivo confocal microscopy of pigmented conjunctival tumors. Graefes Arch Clin Exp Ophthalmol 2006; 244(11): 1437-45.
[http://dx.doi.org/10.1007/s00417-006-0284-8] [PMID: 16598465]
[96]
Shousha MA, Karp CL, Canto AP, et al. Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography. Ophthalmology 2013; 120(5): 883-91.
[http://dx.doi.org/10.1016/j.ophtha.2012.10.025] [PMID: 23347984]
[97]
Melia BM, Diener-West M, Bennett SR, et al. The Collaborative Ocular Melanoma Study Group. Factors predictive of growth and treatment of small choroidal melanoma: COMS Report No. 5. Arch Ophthalmol 1997; 115(12): 1537-44.
[http://dx.doi.org/10.1001/archopht.1997.01100160707007] [PMID: 9400787]
[98]
Konstantinidis L, Damato B. Intraocular metastases - A review. Asia-Pac J Ophthalmol 2017; 6: 208-14.
[99]
No authors listed. Accuracy of diagnosis of choroidal melanomas in the Collaborative Ocular Melanoma Study. COMS report no. 1. Arch Ophthalmol 1990; 108(9): 1268-73.
[http://dx.doi.org/10.1001/archopht.1990.01070110084030] [PMID: 2205183]
[100]
Bedi DG, Gombos DS, Ng CS, Singh S. Sonography of the eye. AJR Am J Roentgenol 2006; 187(4): 1061-72.
[http://dx.doi.org/10.2214/AJR.04.1842] [PMID: 16985158]
[101]
Wu C, Han Z, Wang S, et al. Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system. Invest Ophthalmol Vis Sci 2015; 56(2): 1292-300.
[http://dx.doi.org/10.1167/iovs.14-15654] [PMID: 25613945]
[102]
Zhang X, Wang Q, Lyu Z, et al. Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography. Biomed Eng Online 2018; 17(1): 75.
[http://dx.doi.org/10.1186/s12938-018-0509-1] [PMID: 29898725]
[103]
Wang Q, Lv Z, Gao X, et al. In-vivo assessing the age-related stiffness of crystalline lens in rabbits by acoustic radiation force based ultrasound elastography. IEEE International Ultrasonics Symposium, IUS. Washington, DC, USA. 2017.
[104]
Heys KR, Cram SL, Truscott RJW. Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? Mol Vis 2004; 10: 956-63.
[PMID: 15616482]
[105]
Weeber HA, van der Heijde RGL. On the relationship between lens stiffness and accommodative amplitude. Exp Eye Res 2007; 85(5): 602-7.
[http://dx.doi.org/10.1016/j.exer.2007.07.012] [PMID: 17720158]
[106]
Purslow PP, Karwatowski WSS. Ocular elasticity. Is engineering stiffness a more useful characterization parameter than ocular rigidity? Ophthalmology 1996; 103(10): 1686-92.
[http://dx.doi.org/10.1016/S0161-6420(96)30446-6] [PMID: 8874443]
[107]
Dastiridou AI, Ginis HS, De Brouwere D, Tsilimbaris MK, Pallikaris IG. Ocular rigidity, ocular pulse amplitude, and pulsatile ocular blood flow: the effect of intraocular pressure. Invest Ophthalmol Vis Sci 2009; 50(12): 5718-22.
[http://dx.doi.org/10.1167/iovs.09-3760] [PMID: 19608534]
[108]
Pallikaris IG, Dastiridou AI, Tsilimbaris MK, Karyotakis NG, Ginis HS. Ocular rigidity. Expert Rev Ophthalmol 2010; 5: 343-51.
[http://dx.doi.org/10.1586/eop.10.30]
[109]
Friedman E, Ivry M, Ebert E, Glynn R, Gragoudas E, Seddon J. Increased scleral rigidity and age-related macular degeneration. Ophthalmology 1989; 96(1): 104-8.
[http://dx.doi.org/10.1016/S0161-6420(89)32936-8] [PMID: 2919041]
[110]
Tezel G, Luo C, Yang X. Accelerated aging in glaucoma: immunohistochemical assessment of advanced glycation end products in the human retina and optic nerve head. Invest Ophthalmol Vis Sci 2007; 48(3): 1201-11.
[http://dx.doi.org/10.1167/iovs.06-0737] [PMID: 17325164]
[111]
Nguyen CTO, Bui BV, Sinclair AJ, Vingrys AJ. Dietary omega 3 fatty acids decrease intraocular pressure with age by increasing aqueous outflow. Invest Ophthalmol Vis Sci 2007; 48(2): 756-62.
[http://dx.doi.org/10.1167/iovs.06-0585] [PMID: 17251475]
[112]
Friedman E, Krupsky S, Lane AM, et al. Ocular blood flow velocity in age-related macular degeneration. Ophthalmology 1995; 102(4): 640-6.
[http://dx.doi.org/10.1016/S0161-6420(95)30974-8] [PMID: 7724181]
[113]
Pallikaris IG, Kymionis GD, Ginis HS, Kounis GA, Tsilimbaris MK. Ocular rigidity in living human eyes. Invest Ophthalmol Vis Sci 2005; 46(2): 409-14.
[http://dx.doi.org/10.1167/iovs.04-0162] [PMID: 15671262]
[114]
Detorakis ET, Pallikaris IG. Ocular rigidity: biomechanical role, in vivo measurements and clinical significance. Clin Exp Ophthalmol 2013; 41(1): 73-81.
[http://dx.doi.org/10.1111/j.1442-9071.2012.02809.x] [PMID: 22594543]
[115]
Bhan A, Browning AC, Shah S, Hamilton R, Dave D, Dua HS. Effect of corneal thickness on intraocular pressure measurements with the pneumotonometer, Goldmann applanation tonometer, and Tono-Pen. Invest Ophthalmol Vis Sci 2002; 43(5): 1389-92.
[PMID: 11980851]
[116]
Herndon LW, Weizer JS, Stinnett SS. Central corneal thickness as a risk factor for advanced glaucoma damage. Arch Ophthalmol 2004; 122(1): 17-21.
[http://dx.doi.org/10.1001/archopht.122.1.17] [PMID: 14718289]
[117]
Abbasoglu ÖE, Bowman RW, Cavanagh HD, McCulley JP. Reliability of intraocular pressure measurements after myopic excimer photorefractive keratectomy. Ophthalmology 1998; 105(12): 2193-6.
[http://dx.doi.org/10.1016/S0161-6420(98)91215-5] [PMID: 9855146]
[118]
Ytteborg J. The role of intraocular blood volume in rigidity measurements on human eyes. Acta Ophthalmol (Copenh) 1960; 38(4): 410-36.
[http://dx.doi.org/10.1111/j.1755-3768.1960.tb00206.x] [PMID: 13787538]
[119]
Hommer A, Fuchsjäger-Mayrl G, Resch H, Vass C, Garhofer G, Schmetterer L. Estimation of ocular rigidity based on measurement of pulse amplitude using pneumotonometry and fundus pulse using laser interferometry in glaucoma. Invest Ophthalmol Vis Sci 2008; 49(9): 4046-50.
[http://dx.doi.org/10.1167/iovs.07-1342] [PMID: 18487379]
[120]
Friedenwald JS. Contribution to the theory and practice of tonometry. Am J Ophthalmol 1937; 20(10): 985-1024.
[http://dx.doi.org/10.1016/S0002-9394(37)90425-2]
[121]
Cronemberger S, Guimarães CS, Calixto N, Calixto JMF. Pressão intraocular e rigidez ocular após LASIK. Arq Bras Oftalmol 2009; 72(4): 439-43.
[http://dx.doi.org/10.1590/S0004-27492009000400003] [PMID: 19820780]
[122]
Edmund C. Corneal elasticity and ocular rigidity in normal and keratoconic eyes. Acta Ophthalmol (Copenh) 1988; 66(2): 134-40.
[http://dx.doi.org/10.1111/j.1755-3768.1988.tb04000.x] [PMID: 3389085]
[123]
Friberg TR, Fourman SB. Scleral buckling and ocular rigidity. Clinical ramifications. Arch Ophthalmol 1990; 108(11): 1622-7.
[http://dx.doi.org/10.1001/archopht.1990.01070130124042] [PMID: 2244847]
[124]
Kaiser-Kupfer MI, McCain L, Shapiro JR, Podgor MJ, Kupfer C, Rowe D. Low ocular rigidity in patients with osteogenesis imperfecta. Invest Ophthalmol Vis Sci 1981; 20(6): 807-9.
[PMID: 7239850]
[125]
Weekers R, Lavergne G. Changes in ocular rigidity in endocrine exophthalmos. Br J Ophthalmol 1958; 42(11): 680-5.
[http://dx.doi.org/10.1136/bjo.42.11.680] [PMID: 13596559]
[126]
Perkins ES. Ocular volume and ocular rigidity. Exp Eye Res 1981; 33(2): 141-5.
[http://dx.doi.org/10.1016/S0014-4835(81)80062-0] [PMID: 7274348]
[127]
Kiel JW. Choroidal myogenic autoregulation and intraocular pressure. Exp Eye Res 1994; 58(5): 529-43.
[http://dx.doi.org/10.1006/exer.1994.1047] [PMID: 7925690]
[128]
Girard MJA, Dupps WJ, Baskaran M, et al. Translating ocular biomechanics into clinical practice: current state and future prospects. Curr Eye Res 2015; 40(1): 1-18.
[http://dx.doi.org/10.3109/02713683.2014.914543] [PMID: 24832392]
[129]
Kling S, Hafezi F. Corneal biomechanics - a review. Ophthalmic Physiol Opt 2017; 37(3): 240-52.
[http://dx.doi.org/10.1111/opo.12345] [PMID: 28125860]
[130]
Kirby MA, Pelivanov I, Song S, et al. Optical coherence elastography in ophthalmology. J Biomed Opt 2017; 22(12): 1-28.
[http://dx.doi.org/10.1117/1.JBO.22.12.121720] [PMID: 29275544]
[131]
Kennedy BF, McLaughlin RA, Kennedy KM, et al. Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure. Biomed Opt Express 2014; 5(7): 2113-24.
[http://dx.doi.org/10.1364/BOE.5.002113] [PMID: 25071952]
[132]
Kennedy KM, Es’haghian S, Chin L, McLaughlin RA, Sampson DD, Kennedy BF. Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor. Opt Lett 2014; 39(10): 3014-7.
[http://dx.doi.org/10.1364/OL.39.003014] [PMID: 24978261]
[133]
Wang S, Li J, Manapuram RK, et al. Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system. Opt Lett 2012; 37(24): 5184-6.
[http://dx.doi.org/10.1364/OL.37.005184] [PMID: 23258046]
[134]
Li C, Guan G, Huang Z, Johnstone M, Wang RK. Noncontact all-optical measurement of corneal elasticity. Opt Lett 2012; 37(10): 1625-7.
[http://dx.doi.org/10.1364/OL.37.001625] [PMID: 22627517]
[135]
Ambroziński Ł, Song S, Yoon SJ, et al. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity. Sci Rep 2016; 6: 38967.
[http://dx.doi.org/10.1038/srep38967] [PMID: 28008920]
[136]
Sun C, Standish B, Yang VXD. Optical coherence elastography: current status and future applications. J Biomed Opt 2011; 16(4): 043001.
[http://dx.doi.org/10.1117/1.3560294] [PMID: 21529067]
[137]
Rogowska J, Patel N, Plummer S, Brezinski ME. Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties. Br J Radiol 2006; 79(945): 707-11.
[http://dx.doi.org/10.1259/bjr/22522280] [PMID: 16793852]
[138]
Nahas A, Tanter M, Nguyen T-M, Chassot J-M, Fink M, Claude Boccara A. From supersonic shear wave imaging to full-field optical coherence shear wave elastography. J Biomed Opt 2013; 18(12): 121514.
[http://dx.doi.org/10.1117/1.JBO.18.12.121514] [PMID: 24357549]
[139]
Larin KV, Sampson DD. Optical coherence elastography - OCT at work in tissue biomechanics [Invited]. Biomed Opt Express 2017; 8(2): 1172-202.
[http://dx.doi.org/10.1364/BOE.8.001172] [PMID: 28271011]
[140]
Chan R, Chau A, Karl W, et al. OCT-based arterial elastography: robust estimation exploiting tissue biomechanics. Opt Express 2004; 12(19): 4558-72.
[http://dx.doi.org/10.1364/OPEX.12.004558] [PMID: 19484007]
[141]
Singh M, Wu C, Liu C-H, et al. Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second. Opt Lett 2015; 40(11): 2588-91.
[http://dx.doi.org/10.1364/OL.40.002588] [PMID: 26030564]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy