Review Article

CRISPR/Cas9 Technology as a Modern Genetic Manipulation Tool for Recapitulating of Neurodegenerative Disorders in Large Animal Models

Author(s): Mahdi Barazesh, Shiva Mohammadi*, Yadollah Bahrami*, Pooneh Mokarram, Mohammad Hossein Morowvat, Massoud Saidijam, Morteza Karimipoor, Soudabeh Kavousipour, Amir Reza Vosoughi and Korosh Khanaki

Volume 21 , Issue 2 , 2021

Published on: 14 December, 2020

Page: [130 - 148] Pages: 19

DOI: 10.2174/1566523220666201214115024

Price: $65

Abstract

Background: Neurodegenerative diseases are often the consequence of alterations in structures and functions of the Central Nervous System (CNS) in patients. Despite obtaining massive genomic information concerning the molecular basis of these diseases and since the neurological disorders are multifactorial, causal connections between pathological pathways at the molecular level and CNS disorders development have remained obscure and need to be elucidated to a great extent.

Objective: Animal models serve as accessible and valuable tools for understanding and discovering the roles of causative factors in the development of neurodegenerative disorders and finding appropriate treatments. Contrary to rodents and other small animals, large animals, especially non-human primates (NHPs), are remarkably similar to humans; hence, they establish suitable models for recapitulating the main human’s neuropathological manifestations that may not be seen in rodent models. In addition, they serve as useful models to discover effective therapeutic targets for neurodegenerative disorders due to their similarity to humans in terms of physiology, evolutionary distance, anatomy, and behavior.

Methods: In this review, we recommend different strategies based on the CRISPR-Cas9 system for generating animal models of human neurodegenerative disorders and explaining in vivo CRISPR-Cas9 delivery procedures that are applied to disease models for therapeutic purposes.

Results: With the emergence of CRISPR/Cas9 as a modern specific gene-editing technology in the field of genetic engineering, genetic modification procedures such as gene knock-in and knock-out have become increasingly easier compared to traditional gene targeting techniques. Unlike the old techniques, this versatile technology can efficiently generate transgenic large animal models without the need to complicate lab instruments. Hence, these animals can accurately replicate the signs of neurodegenerative disorders.

Conclusion: Preclinical applications of CRISPR/Cas9 gene-editing technology supply a unique opportunity to establish animal models of neurodegenerative disorders with high accuracy and facilitate perspectives for breakthroughs in the research on the nervous system disease therapy and drug discovery. Furthermore, the useful outcomes of CRISPR applications in various clinical phases are hopeful for their translation to the clinic in a short time.

Keywords: CRISPR/Cas9, large animal models, neurodegenerative disorders, genome editing, clinical application, Parkinson's disease.

Graphical Abstract
[1]
Homberg JR, Kyzar EJ, Nguyen M, et al. Understanding autism and other neurodevelopmental disorders through experimental translational neurobehavioral models. Neurosci Biobehav Rev 2016; 65: 292-312.
[http://dx.doi.org/10.1016/j.neubiorev.2016.03.013] [PMID: 27048961]
[2]
Long JD, Lee J-M, Aylward EH, et al. Genetic modification of Huntington disease acts early in the prediagnosis phase. Am J Hum Genet 2018; 103(3): 349-57.
[http://dx.doi.org/10.1016/j.ajhg.2018.07.017] [PMID: 30122542]
[3]
Nair RR, Corrochano S, Gasco S, et al. Uses for humanised mouse models in precision medicine for neurodegenerative disease. Mamm Genome 2019; 30(7-8): 173-91.
[http://dx.doi.org/10.1007/s00335-019-09807-2] [PMID: 31203387]
[4]
Søndergaard LV, Ladewig J, Dagnæs-Hansen F, Herskin MS, Holm IE. Object recognition as a measure of memory in 1-2 years old transgenic minipigs carrying the APPsw mutation for Alzheimer’s disease. Transgenic Res 2012; 21(6): 1341-8.
[http://dx.doi.org/10.1007/s11248-012-9620-4] [PMID: 22661126]
[5]
Robbins TW. Cross-species studies of cognition relevant to drug discovery: a translational approach. Br J Pharmacol 2017; 174(19): 3191-9.
[http://dx.doi.org/10.1111/bph.13826] [PMID: 28432778]
[6]
Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative diseases: Regenerative mechanisms and novel therapeutic approaches. Brain Sci 2018; 8(9): 177.
[http://dx.doi.org/10.3390/brainsci8090177] [PMID: 30223579]
[7]
Al Dahhan NZ, De Felice FG, Munoz DP. Potentials and pitfalls of cross-translational models of cognitive impairment. Front Behav Neurosci 2019; 13: 48.
[http://dx.doi.org/10.3389/fnbeh.2019.00048] [PMID: 30923497]
[8]
Mardis ER. A decade’s perspective on DNA sequencing technology. Nature 2011; 470(7333): 198-203.
[http://dx.doi.org/10.1038/nature09796] [PMID: 21307932]
[9]
Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron 2010; 66(5): 646-61.
[http://dx.doi.org/10.1016/j.neuron.2010.04.034] [PMID: 20547124]
[10]
Hardiman O, van den Berg LH, Kiernan MC. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 2011; 7(11): 639-49.
[http://dx.doi.org/10.1038/nrneurol.2011.153] [PMID: 21989247]
[11]
Lambert J-C, Ibrahim-Verbaas CA, Harold D, et al. European Alzheimer’s Disease Initiative (EADI); Genetic and Environmental Risk in Alzheimer’s Disease; Alzheimer’s Disease Genetic Consortium; Cohorts for Heart and Aging Research in Genomic Epidemiology. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 2013; 45(12): 1452-8.
[http://dx.doi.org/10.1038/ng.2802] [PMID: 24162737]
[12]
Steinmetz KL, Spack EG. Eds The basics of preclinical drug development for neurodegenerative disease indications. BMC Neurol 2009; 9(Suppl. 1): S2.
[http://dx.doi.org/10.1186/1471-2377-9-S1-S2.]]
[13]
Chin J. Selecting a mouse model of Alzheimer’s diseaseAlzheimer’s Disease and Frontotemporal Dementia. Springer 2010; pp. 169-89.
[http://dx.doi.org/10.1007/978-1-60761-744-0_13]
[14]
Ohno M. Alzheimer’s therapy targeting the β-secretase enzyme BACE1: Benefits and potential limitations from the perspective of animal model studies. Brain Res Bull 2016; 126(Pt 2): 183-98.
[http://dx.doi.org/10.1016/j.brainresbull.2016.04.007] [PMID: 27093940]
[15]
Jack CR Jr, Holtzman DM. Biomarker modeling of Alzheimer’s disease. Neuron 2013; 80(6): 1347-58.
[http://dx.doi.org/10.1016/j.neuron.2013.12.003] [PMID: 24360540]
[16]
Mitchell SJ, Scheibye-Knudsen M, Longo DL, de Cabo R. Animal models of aging research: implications for human aging and age-related diseases. Annu Rev Anim Biosci 2015; 3(1): 283-303.
[http://dx.doi.org/10.1146/annurev-animal-022114-110829] [PMID: 25689319]
[17]
Kishi N, Sato K, Sasaki E, Okano H. Common marmoset as a new model animal for neuroscience research and genome editing technology. Dev Growth Differ 2014; 56(1): 53-62.
[http://dx.doi.org/10.1111/dgd.12109] [PMID: 24387631]
[18]
Cuny GD. Foreword: neurodegenerative diseases: challenges and opportunities. Future Med Chem 2012; 4(13): 1647-9.
[http://dx.doi.org/10.4155/fmc.12.123] [PMID: 22924500]
[19]
Maiti P, Manna J, Dunbar GL. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl Neurodegener 2017; 6(1): 28.
[http://dx.doi.org/10.1186/s40035-017-0099-z] [PMID: 29090092]
[20]
Smith GA, Isacson O, Dunnett SB. The search for genetic mouse models of prodromal Parkinson’s disease. Exp Neurol 2012; 237(2): 267-73.
[http://dx.doi.org/10.1016/j.expneurol.2012.06.035] [PMID: 22819262]
[21]
Gaj T, Ojala DS, Ekman FK, Byrne LC, Limsirichai P, Schaffer DV. In vivo genome editing improves motor function and extends survival in a mouse model of ALS. Sci Adv 2017; 3(12)eaar3952
[http://dx.doi.org/10.1126/sciadv.aar3952] [PMID: 29279867]
[22]
Kreiner G. Compensatory mechanisms in genetic models of neurodegeneration: are the mice better than humans? Front Cell Neurosci 2015; 9: 56.
[http://dx.doi.org/10.3389/fncel.2015.00056] [PMID: 25798086]
[23]
Yang D, Wang C-E, Zhao B, et al. Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum Mol Genet 2010; 19(20): 3983-94.
[http://dx.doi.org/10.1093/hmg/ddq313] [PMID: 20660116]
[24]
Buffalo EA, Movshon JA, Wurtz RH. From basic brain research to treating human brain disorders. Proc Natl Acad Sci USA 2019; 116(52): 26167-72.
[http://dx.doi.org/10.1073/pnas.1919895116] [PMID: 31871205]
[25]
Götz J, Streffer JR, David D, et al. Transgenic animal models of Alzheimer’s disease and related disorders: histopathology, behavior and therapy. Mol Psychiatry 2004; 9(7): 664-83.
[http://dx.doi.org/10.1038/sj.mp.4001508] [PMID: 15052274]
[26]
Rutten BP, Van der Kolk NM, Schafer S, et al. Age-related loss of synaptophysin immunoreactive presynaptic boutons within the hippocampus of APP751SL, PS1M146L, and APP751SL/PS1M146L transgenic mice. Am J Pathol 2005; 167(1): 161-73.
[http://dx.doi.org/10.1016/S0002-9440(10)62963-X] [PMID: 15972962]
[27]
Van Dam D, De Deyn PP. Non human primate models for Alzheimer’s disease-related research and drug discovery. Expert Opin Drug Discov 2017; 12(2): 187-200.
[http://dx.doi.org/10.1080/17460441.2017.1271320] [PMID: 27960560]
[28]
Kjell J, Olson L. Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 2016; 9(10): 1125-37.
[http://dx.doi.org/10.1242/dmm.025833] [PMID: 27736748]
[29]
Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 2015; 18(9): 1213-25.
[http://dx.doi.org/10.1038/nn.4091] [PMID: 26308982]
[30]
Freedman R, Adler LE, Leonard S. Alternative phenotypes for the complex genetics of schizophrenia. Biol Psychiatry 1999; 45(5): 551-8.
[http://dx.doi.org/10.1016/S0006-3223(98)00321-7] [PMID: 10088045]
[31]
Kalin NH, Shelton SE, Davidson RJ. Cerebrospinal fluid corticotropin-releasing hormone levels are elevated in monkeys with patterns of brain activity associated with fearful temperament. Biol Psychiatry 2000; 47(7): 579-85.
[http://dx.doi.org/10.1016/S0006-3223(99)00256-5] [PMID: 10745049]
[32]
Freedman R, Coon H, Myles-Worsley M, et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 1997; 94(2): 587-92.
[http://dx.doi.org/10.1073/pnas.94.2.587] [PMID: 9012828]
[33]
De Jager PL, Bennett DA. An inflection point in gene discovery efforts for neurodegenerative diseases: from syndromic diagnoses toward endophenotypes and the epigenome. JAMA Neurol 2013; 70(6): 719-26.
[http://dx.doi.org/10.1001/jamaneurol.2013.275] [PMID: 23571780]
[34]
Lenzenweger MF. Thinking clearly about the endophenotype-intermediate phenotype-biomarker distinctions in developmental psychopathology research. In: Dev Psychopathol. 2013; 25: pp. (4 Pt 2)1347-57.
[http://dx.doi.org/10.1017/S0954579413000655] [PMID: 24342844]
[35]
Khan SH. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol Ther Nucleic Acids 2019; 16: 326-34.
[http://dx.doi.org/10.1016/j.omtn.2019.02.027] [PMID: 30965277]
[36]
Hensel G, Kumlehn J. Genome Engineering Using TALENs Barley. Springer 2019; pp. 195-215.
[37]
Wang L, Zheng W, Liu S, Li B, Jiang X. Delivery of CRISPR/Cas9 by novel strategies for gene therapy. ChemBioChem 2019; 20(5): 634-43.
[PMID: 30393919]
[38]
Salsman J, Dellaire G. Precision genome editing in the CRISPR era. Biochem Cell Biol 2017; 95(2): 187-201.
[http://dx.doi.org/10.1139/bcb-2016-0137] [PMID: 28177771]
[39]
Kim H, Kim J-S. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014; 15(5): 321-34.
[http://dx.doi.org/10.1038/nrg3686] [PMID: 24690881]
[40]
Shankar S, Sreekumar A, Prasad D, Das AV, Pillai MR. Genome editing of oncogenes with ZFNs and TALENs: caveats in nuclease design. Cancer Cell Int 2018; 18(1): 169.
[http://dx.doi.org/10.1186/s12935-018-0666-0] [PMID: 30386178]
[41]
Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering. J Mol Biol 2016; 428(5 Pt B): 963-89.
[http://dx.doi.org/10.1016/j.jmb.2015.10.014] [PMID: 26506267]
[42]
Leitão AL, Costa MC, Enguita FJ. Applications of genome editing by programmable nucleases to the metabolic engineering of secondary metabolites. J Biotechnol 2017; 241: 50-60.
[PMID: 27845165]
[43]
Pattanayak V, Guilinger JP, Liu DR. Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol 2014; 546: 47-78.
[http://dx.doi.org/10.1016/B978-0-12-801185-0.00003-9] [PMID: 25398335]
[44]
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014; 32(4): 347-55.
[http://dx.doi.org/10.1038/nbt.2842] [PMID: 24584096]
[45]
Porteus MH. Towards a new era in medicine: therapeutic genome editing. Genome Biol 2015; 16(1): 286.
[http://dx.doi.org/10.1186/s13059-015-0859-y] [PMID: 26694713]
[46]
Lee J, Chung JH, Kim HM, Kim DW, Kim H. Designed nucleases for targeted genome editing. Plant Biotechnol J 2016; 14(2): 448-62.
[http://dx.doi.org/10.1111/pbi.12465] [PMID: 26369767]
[47]
Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med 2015; 21(2): 121-31.
[http://dx.doi.org/10.1038/nm.3793] [PMID: 25654603]
[48]
Wang L, Li F, Dang L, et al. In vivo delivery systems for therapeutic genome editing. Int J Mol Sci 2016; 17(5): 626.
[http://dx.doi.org/10.3390/ijms17050626] [PMID: 27128905]
[49]
Wei J, Yan J, Su S, et al. A phase I/II Trial of CRISPR-Cas9-mediated PD-1 knockout Epstein-Barr virus cytotoxic lymphocytes (EBV-CTLs) for advanced stage EBV associated malignancies. Am Soc Clin Oncol 2018; 29(5): V36.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.TPS3118]
[50]
Lu Y, Xue J, Deng T, Zhou X, Yu K, Huang M, et al. A phase I trial of PD-1 deficient engineered T cells with CRISPR/Cas9 in patients with advanced non-small cell lung cancer. Am Soc Clin Oncol 2018; 36(15): 3050.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.3050]
[51]
Liu Z, Chen S, Jin X, et al. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4+ T cells from HIV-1 infection. Cell Biosci 2017; 7(1): 47.
[http://dx.doi.org/10.1186/s13578-017-0174-2] [PMID: 28904745]
[52]
Delhove JMKM, Qasim W. Genome-edited T cell therapies. Curr Stem Cell Rep 2017; 3(2): 124-36.
[http://dx.doi.org/10.1007/s40778-017-0077-5] [PMID: 28596938]
[53]
Kang H, Minder P, Park MA, Mesquitta W-T, Torbett BE, Slukvin II. CCR5 disruption in induced pluripotent stem cells using CRISPR/Cas9 provides selective resistance of immune cells to CCR5-tropic HIV-1 virus. Mol Ther Nucleic Acids 2015; 4e268
[http://dx.doi.org/10.1038/mtna.2015.42] [PMID: 26670276]
[54]
Yoshiba T, Saga Y, Urabe M, et al. CRISPR/Cas9-mediated cervical cancer treatment targeting human papillomavirus E6. Oncol Lett 2019; 17(2): 2197-206.
[PMID: 30675284]
[55]
Im W, Moon J, Kim M. Applications of CRISPR/Cas9 for gene editing in hereditary movement disorders. J Mov Disord 2016; 9(3): 136-43.
[http://dx.doi.org/10.14802/jmd.16029] [PMID: 27667185]
[56]
Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell 2017; 168(4): 724-40.
[http://dx.doi.org/10.1016/j.cell.2017.01.016] [PMID: 28187291]
[57]
Epstein BE, Schaffer DV. Combining engineered nucleases with adeno-associated viral vectors for therapeutic gene editing Precision Medicine, CRISPR, and Genome Engineering. Springer 2017; pp. 29-42.
[58]
Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370(10): 901-10.
[http://dx.doi.org/10.1056/NEJMoa1300662] [PMID: 24597865]
[59]
Ding W, Hu Z, Zhu D, et al. Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells. Clin Cancer Res 2014; 20(24): 6495-503.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0250]] [PMID: 25336692]
[60]
Reik A, Zhou Y, Wagner J, et al. Zinc finger nucleases targeting the glucocorticoid receptor allow IL-13 zetakine transgenic CTLs to kill glioblastoma cells in vivo in the presence of immunosuppressing glucocorticoids. Annual Meeting-. Apr 12-16; San Diego, CA. 2008.
[61]
Siddiq I, Park E, Liu E, et al. Treatment of traumatic brain injury using zinc-finger protein gene therapy targeting VEGF-A. J Neurotrauma 2012; 29(17): 2647-59.
[http://dx.doi.org/10.1089/neu.2012.2444] [PMID: 23016562]
[62]
Cavazzana-Calvo M, Payen E, Negre O, et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 2010; 467(7313): 318-22.
[http://dx.doi.org/10.1038/nature09328] [PMID: 20844535]
[63]
Hu Z, Ding W, Zhu D, et al. TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy. J Clin Invest 2015; 125(1): 425-36.
[http://dx.doi.org/10.1172/JCI78206] [PMID: 25500889]
[64]
Barrangou R, Marraffini LA. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell 2014; 54(2): 234-44.
[http://dx.doi.org/10.1016/j.molcel.2014.03.011] [PMID: 24766887]
[65]
Wiedenheft B, Lander GC, Zhou K, et al. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 2011; 477(7365): 486-9.
[http://dx.doi.org/10.1038/nature10402] [PMID: 21938068]
[66]
Nuñez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol 2014; 21(6): 528-34.
[http://dx.doi.org/10.1038/nsmb.2820] [PMID: 24793649]
[67]
Yosef I, Goren MG, Qimron U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 2012; 40(12): 5569-76.
[http://dx.doi.org/10.1093/nar/gks216] [PMID: 22402487]
[68]
Shmakov S, Smargon A, Scott D, et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 2017; 15(3): 169-82.
[http://dx.doi.org/10.1038/nrmicro.2016.184] [PMID: 28111461]
[69]
Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M, Ghasemi Y. CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci 2019; 9(1): 36.
[http://dx.doi.org/10.1186/s13578-019-0298-7] [PMID: 31086658]
[70]
Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012; 482(7385): 331-8.
[http://dx.doi.org/10.1038/nature10886] [PMID: 22337052]
[71]
Vestergaard G, Garrett RA, Shah SA. CRISPR adaptive immune systems of Archaea. RNA Biol 2014; 11(2): 156-67.
[http://dx.doi.org/10.4161/rna.27990] [PMID: 24531374]
[72]
Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121): 823-6.
[http://dx.doi.org/10.1126/science.1232033] [PMID: 23287722]
[73]
Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 2015; 13(11): 722-36.
[http://dx.doi.org/10.1038/nrmicro3569] [PMID: 26411297]
[74]
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157(6): 1262-78.
[http://dx.doi.org/10.1016/j.cell.2014.05.010] [PMID: 24906146]
[75]
Whitelaw CBA, Sheets TP, Lillico SG, Telugu BP. Engineering large animal models of human disease. J Pathol 2016; 238(2): 247-56.
[http://dx.doi.org/10.1002/path.4648] [PMID: 26414877]
[76]
Peng Y, Clark KJ, Campbell JM, Panetta MR, Guo Y, Ekker SC. Making designer mutants in model organisms. Development 2014; 141(21): 4042-54.
[http://dx.doi.org/10.1242/dev.102186] [PMID: 25336735]
[77]
Wang H-X, Li M, Lee CM, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chem Rev 2017; 117(15): 9874-906.
[http://dx.doi.org/10.1021/acs.chemrev.6b00799] [PMID: 28640612]
[78]
Ruan J, Xu J, Chen-Tsai RY, Li K. Genome editing in livestock: Are we ready for a revolution in animal breeding industry? Transgenic Res 2017; 26(6): 715-26.
[http://dx.doi.org/10.1007/s11248-017-0049-7] [PMID: 29094286]
[79]
Xin L, Min L, Bing S. Application of the genome editing tool CRISPR/Cas9 in non-human primates. Zool Res 2016; 37(4): 241.
[80]
Xu CL, Cho GY, Sengillo JD, Park KS, Mahajan VB, Tsang SH. Translation of CRISPR genome surgery to the bedside for retinal diseases. Front Cell Dev Biol 2018; 6: 46.
[http://dx.doi.org/10.3389/fcell.2018.00046] [PMID: 29876348]
[81]
Ma S, Li X, Wang X, et al. Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci 2019; 15(12): 2548-60.
[http://dx.doi.org/10.7150/ijbs.34213] [PMID: 31754328]
[82]
Chen Y, Zheng Y, Kang Y, et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet 2015; 24(13): 3764-74.
[http://dx.doi.org/10.1093/hmg/ddv120] [PMID: 25859012]
[83]
Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, et al. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell 2018; 173(4): 989-1002.
[http://dx.doi.org/10.1016/j.cell.2018.03.005]
[84]
Zhou X, Xin J, Fan N, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 2015; 72(6): 1175-84.
[http://dx.doi.org/10.1007/s00018-014-1744-7] [PMID: 25274063]
[85]
Bäck S, Necarsulmer J, Whitaker LR, Coke LM, Koivula P, Heathward EJ, et al. Neuron-specific genome modification in the adult rat brain using CRISPR-Cas9 transgenic rats. Neuron 2019; 102(1): 105-9.
[86]
Lv Q, Yuan L, Deng J, et al. Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9. Sci Rep 2016; 6: 25029.
[http://dx.doi.org/10.1038/srep25029] [PMID: 27113799]
[87]
Sui T, Lau YS, Liu D, et al. A novel rabbit model of Duchenne muscular dystrophy generated by CRISPR/Cas9. Dis Model Mech 2018; 11(6)dmm032201
[http://dx.doi.org/10.1242/dmm.032201] [PMID: 29871865]
[88]
Sawamura R, Osafune N, Murakami T, Furukawa F, Kitano T. Generation of biallelic F0 mutants in medaka using the CRISPR/Cas9 system. Genes Cells 2017; 22(8): 756-63.
[http://dx.doi.org/10.1111/gtc.12511] [PMID: 28707405]
[89]
Cornet C, Di Donato V, Terriente J. Combining zebrafish and CRISPR/Cas9: toward a more efficient drug discovery pipeline. Front Pharmacol 2018; 9: 703.
[http://dx.doi.org/10.3389/fphar.2018.00703] [PMID: 30018554]
[90]
Canalis E, Yu J, Schilling L, Yee S-P, Zanotti S. The lateral meningocele syndrome mutation causes marked osteopenia in mice. J Biol Chem 2018; 293(36): 14165-77.
[http://dx.doi.org/10.1074/jbc.RA118.004242] [PMID: 30042232]
[91]
Kim K, Ryu S-M, Kim S-T, et al. Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 2017; 35(5): 435-7.
[http://dx.doi.org/10.1038/nbt.3816] [PMID: 28244995]
[92]
Mochizuki Y, Chiba T, Kataoka K, et al. Combinatorial CRISPR/Cas9 approach to elucidate a far-upstream enhancer complex for tissue-specific Sox9 expression. Develop cell 2018; 46(6): 794-806.
[93]
Zou Q, Wang X, Liu Y, et al. Generation of gene-target dogs using CRISPR/Cas9 system. J Mol Cell Biol 2015; 7(6): 580-3.
[http://dx.doi.org/10.1093/jmcb/mjv061] [PMID: 26459633]
[94]
Guo X, Li X-J. Targeted genome editing in primate embryos. Cell Res 2015; 25(7): 767-8.
[http://dx.doi.org/10.1038/cr.2015.64] [PMID: 26032266]
[95]
Kruminis-Kaszkiel E, Juranek J, Maksymowicz W, Wojtkiewicz J. CRISPR/Cas9 Technology as an Emerging Tool for Targeting Amyotrophic Lateral Sclerosis (ALS). Int J Mol Sci 2018; 19(3): 906.
[http://dx.doi.org/10.3390/ijms19030906] [PMID: 29562705]
[96]
Tu Z, Yang W, Yan S, Guo X, Li X-J. CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Mol Neurodegener 2015; 10(1): 35.
[http://dx.doi.org/10.1186/s13024-015-0031-x] [PMID: 26238861]
[97]
Yao J, Huang J, Zhao J. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Hum Genet 2016; 135(9): 1093-105.
[http://dx.doi.org/10.1007/s00439-016-1710-6] [PMID: 27432159]
[98]
Deng L, Wang Y, Ou-yang ZC. Concentration and temperature dependences of polyglutamine aggregation by multiscale coarse-graining molecular dynamics simulations. J Phys Chem B 2012; 116(34): 10135-44.
[http://dx.doi.org/10.1021/jp210683n] [PMID: 22849385]
[99]
Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 2015; 6: 6244.
[http://dx.doi.org/10.1038/ncomms7244] [PMID: 25692716]
[100]
Kang Y, Chu C, Wang F, Niu Y. CRISPR/Cas9-mediated genome editing in nonhuman primates. Dis Model Mech 2019; 12(10)dmm039982
[http://dx.doi.org/10.1242/dmm.039982] [PMID: 31636095]
[101]
Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet 2011; 377(9769): 942-55.
[http://dx.doi.org/10.1016/S0140-6736(10)61156-7] [PMID: 21296405]
[102]
Zarei S, Carr K, Reiley L, et al. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 2015; 6: 171.
[http://dx.doi.org/10.4103/2152-7806.169561] [PMID: 26629397]
[103]
Armstrong GAB, Liao M, You Z, Lissouba A, Chen BE, Drapeau P. Homology directed knockin of point mutations in the zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system. PLoS One 2016; 11(3)e0150188
[http://dx.doi.org/10.1371/journal.pone.0150188] [PMID: 26930076]
[104]
Lanoiselée H-M, Nicolas G, Wallon D, et al. collaborators of the CNR-MAJ project. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Med 2017; 14(3)e1002270
[http://dx.doi.org/10.1371/journal.pmed.1002270] [PMID: 28350801]
[105]
Singer O, Marr RA, Rockenstein E, et al. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci 2005; 8(10): 1343-9.
[http://dx.doi.org/10.1038/nn1531] [PMID: 16136043]
[106]
Holm IE, Alstrup AKO, Luo Y. Genetically modified pig models for neurodegenerative disorders. J Pathol 2016; 238(2): 267-87.
[http://dx.doi.org/10.1002/path.4654] [PMID: 26446984]
[107]
Giau VV, Lee H, Shim KH, Bagyinszky E, An SSA. Genome-editing applications of CRISPR-Cas9 to promote in vitro studies of Alzheimer’s disease. Clin Interv Aging 2018; 13: 221-33.
[http://dx.doi.org/10.2147/CIA.S155145] [PMID: 29445268]
[108]
Schirinzi T, Madeo G, Martella G, et al. Early synaptic dysfunction in Parkinson’s disease: Insights from animal models. Mov Disord 2016; 31(6): 802-13.
[http://dx.doi.org/10.1002/mds.26620] [PMID: 27193205]
[109]
Bugos O, Bhide M, Zilka N. Beyond the rat models of human neurodegenerative disorders. Cell Mol Neurobiol 2009; 29(6-7): 859-69.
[http://dx.doi.org/10.1007/s10571-009-9367-5] [PMID: 19263215]
[110]
Beal MF. Parkinson’s disease: a model dilemma. Nature 2010; 466(7310): S8-S10.
[http://dx.doi.org/10.1038/466S8a] [PMID: 20739935]
[111]
Niu Y, Guo X, Chen Y, et al. Early Parkinson’s disease symptoms in α-synuclein transgenic monkeys. Hum Mol Genet 2015; 24(8): 2308-17.
[http://dx.doi.org/10.1093/hmg/ddu748] [PMID: 25552648]
[112]
Yang W, Li S, Li X-J. A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Mol Neurodegener 2019; 14(1): 17.
[http://dx.doi.org/10.1186/s13024-019-0321-9] [PMID: 31046796]
[113]
van Rheede T, Smolenaars MM, Madsen O, de Jong WW. Molecular evolution of the mammalian prion protein. Mol Biol Evol 2003; 20(1): 111-21.
[http://dx.doi.org/10.1093/molbev/msg014] [PMID: 12519913]
[114]
Zhang Y, Man VH, Roland C, Sagui C. Amyloid properties of asparagine and glutamine in prion-like proteins. ACS Chem Neurosci 2016; 7(5): 576-87.
[http://dx.doi.org/10.1021/acschemneuro.5b00337] [PMID: 26911543]
[115]
Jackson WS. Selective vulnerability to neurodegenerative disease: the curious case of Prion Protein. Dis Model Mech 2014; 7(1): 21-9.
[http://dx.doi.org/10.1242/dmm.012146] [PMID: 24396151]
[116]
Hoshijima K, Jurynec M, Grunwald D. Precise genome editing by homologous recombination. Methods Cell Biol 2016; 135: Elsevier: 121-47.
[117]
Staff PP. PLOS Pathogens Staff. Correction: transgenic fatal familial insomnia mice indicate prion infectivity-independent mechanisms of pathogenesis and phenotypic expression of disease. PLoS Pathog 2015; 11(7)e1005046
[http://dx.doi.org/10.1371/journal.ppat.1005046] [PMID: 26147885]
[118]
Yang X. Applications of CRISPR-Cas9 mediated genome engineering. Mil Med Res 2015; 2(1): 11.
[PMID: 25984354]
[119]
Fagnani C, Neale MC, Nisticò L, et al. Twin studies in multiple sclerosis: A meta-estimation of heritability and environmentality. Mult Scler 2015; 21(11): 1404-13.
[http://dx.doi.org/10.1177/1352458514564492] [PMID: 25583848]
[120]
Bjelobaba I, Savic D, Lavrnja I. Multiple sclerosis and neuroinflammation: the overview of current and prospective therapies. Curr Pharm Des 2017; 23(5): 693-730.
[http://dx.doi.org/10.2174/1381612822666161214153108] [PMID: 27981909]
[121]
Gasperini C, Haggiag S, Ruggieri S. Drugs in clinical development for multiple sclerosis: focusing on anti-CD20 antibodies. Expert Opin Investig Drugs 2013; 22(10): 1243-53.
[http://dx.doi.org/10.1517/13543784.2013.820275] [PMID: 23855792]
[122]
Wang Z, Sadovnick AD, Traboulsee AL, et al. Nuclear receptor NR1H3 in familial multiple sclerosis. Neuron 2016; 90(5): 948-54.
[http://dx.doi.org/10.1016/j.neuron.2016.04.039] [PMID: 27253448]
[123]
Hochheiser K, Kueh AJ, Gebhardt T, Herold MJ. CRISPR/Cas9: A tool for immunological research. Eur J Immunol 2018; 48(4): 576-83.
[http://dx.doi.org/10.1002/eji.201747131] [PMID: 29415333]
[124]
Couzin-Frankel J. Baby’s leukemia recedes after novel cell therapy. Science 2015; 350(6262): 731.
[125]
June CH, Riddell SR, Schumacher TN. Adoptive cellular therapy: a race to the finish line. Sci Transl Med 2015; 7(280)280ps7
[http://dx.doi.org/10.1126/scitranslmed.aaa3643]
[126]
Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature 2016; 539(7630): 479.
[http://dx.doi.org/10.1038/nature.2016.20988] [PMID: 27882996]
[127]
Kaiser J. A human has been injected with gene-editing tools to cure his disabling disease. Here’s what you need to know. Science 2017.
[http://dx.doi.org/10.1126/science.aar5098]
[128]
Neuhaus CP, Zacharias RL. Eds Compassionate use of gene therapies in pediatrics: an ethical analysis. Semin Perinatol 2018; 42(8): 508-14.
[129]
Biosciences Caribou. CRISPR Therapeutics, Intellia Therapeutics, Caribou Biosciences, and ERS Genomics announce global agreement on the foundational intellectual property for CRISPR/Cas9 gene editing technology. 2016. Available at: https://www.globenewswire.com/news-release/2016/12/16/898373/0/en/CRISPR-Therapeutics-Intellia-Therapeutics-Caribou-Biosciences-and-ERS-Genomics-Announce-Global-Agreement-on-the-Foundational-Intellectual-Property-for-CRISPR-Cas9-Gene-Editing-Tech.html
[130]
Knoppers B, Nguyen M, Noohi F, Kleiderman E. Human Genome Editing 2017. Available at: https://www.genomequebec.com/DATA/PUBLICATION/34_en~v~Human_Genome_Editing_-_Policy_Brief.pdf
[131]
Sternberg SH, Doudna JA. Expanding the biologist’s toolkit with CRISPR-Cas9. Mol Cell 2015; 58(4): 568-74.
[http://dx.doi.org/10.1016/j.molcel.2015.02.032] [PMID: 26000842]
[132]
Dominguez AA, Lim WA, Qi LS. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 2016; 17(1): 5-15.
[http://dx.doi.org/10.1038/nrm.2015.2] [PMID: 26670017]
[133]
Tschaharganeh DF, Lowe SW, Garippa RJ, Livshits G. Using CRISPR/Cas to study gene function and model disease in vivo. FEBS J 2016; 283(17): 3194-203.
[http://dx.doi.org/10.1111/febs.13750] [PMID: 27149548]
[134]
Miyagi A, Lu A, Humphreys BD. Gene editing: powerful new tools for nephrology research and therapy. J Am Soc Nephrol 2016; 27(10): 2940-7.
[http://dx.doi.org/10.1681/ASN.2016020146] [PMID: 27358322]
[135]
Koo T, Lee J, Kim J-S. Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9. Mol Cells 2015; 38(6): 475-81.
[http://dx.doi.org/10.14348/molcells.2015.0103] [PMID: 25985872]
[136]
Maggio I, Zittersteijn HA, Wang Q, et al. Integrating gene delivery and gene-editing technologies by adenoviral vector transfer of optimized CRISPR-Cas9 components. Gene Ther 2020; 27(5): 209-25.
[http://dx.doi.org/10.1038/s41434-019-0119-y] [PMID: 31900423]
[137]
Komor AC, Badran AH, Liu DR. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 2017; 168(1-2): 20-36.
[http://dx.doi.org/10.1016/j.cell.2016.10.044] [PMID: 27866654]
[138]
Mehravar M, Shirazi A, Nazari M, Banan M. Mosaicism in CRISPR/Cas9-mediated genome editing. Dev Biol 2019; 445(2): 156-62.
[http://dx.doi.org/10.1016/j.ydbio.2018.10.008] [PMID: 30359560]
[139]
Hashimoto M, Yamashita Y, Takemoto T. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Dev Biol 2016; 418(1): 1-9.
[http://dx.doi.org/10.1016/j.ydbio.2016.07.017] [PMID: 27474397]
[140]
Okamoto S, Amaishi Y, Maki I, Enoki T, Mineno J. Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs. Sci Rep 2019; 9(1): 4811.
[http://dx.doi.org/10.1038/s41598-019-41121-4] [PMID: 30886178]
[141]
Naeem M, Majeed S, Hoque MZ, Ahmad I. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells 2020; 9(7): 1608.
[http://dx.doi.org/10.3390/cells9071608] [PMID: 32630835]
[142]
Kimberland ML, Hou W, Alfonso-Pecchio A, et al. Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments. J Biotechnol 2018; 284: 91-101.
[http://dx.doi.org/10.1016/j.jbiotec.2018.08.007] [PMID: 30142414]
[143]
Han HA, Pang JKS, Soh B-S. Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. J Mol Med (Berl) 2020; 98(5): 615-32.
[http://dx.doi.org/10.1007/s00109-020-01893-z] [PMID: 32198625]
[144]
Shakirova KM, Ovchinnikova VY, Dashinimaev EB. Cell reprogramming with CRISPR/Cas9 based transcriptional regulation systems. Front Bioeng Biotechnol 2020; 8: 882.
[http://dx.doi.org/10.3389/fbioe.2020.00882] [PMID: 32850737]
[145]
Zhang Y, Long C, Li H, et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv 2017; 3(4)e1602814
[http://dx.doi.org/10.1126/sciadv.1602814] [PMID: 28439558]
[146]
Ribeiro LF, Ribeiro LF, Barreto MQ, Ward RJ. Protein engineering strategies to expand CRISPR-Cas9 applications
[147]
Chen B, Niu Y, Wang H, Wang K, Yang H, Li W. Recent advances in CRISPR research. Protein Cell 2020; 11(11): 786-91.
[http://dx.doi.org/10.1007/s13238-020-00704-y] [PMID: 32200531]
[148]
Vakulskas CA, Dever DP, Rettig GR, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med 2018; 24(8): 1216-24.
[http://dx.doi.org/10.1038/s41591-018-0137-0] [PMID: 30082871]
[149]
Walton RT, Christie KA, Whittaker MN, Kleinstiver BP. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 2020; 368(6488): 290-6.
[http://dx.doi.org/10.1126/science.aba8853] [PMID: 32217751]
[150]
Matson AW, Hosny N, Swanson ZA, Hering BJ, Burlak C. Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR/Cas9 gene editing system. PLoS One 2019; 14(12)e0226107
[http://dx.doi.org/10.1371/journal.pone.0226107] [PMID: 31821359]
[151]
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5(1): 1-23.
[http://dx.doi.org/10.1038/s41392-019-0089-y] [PMID: 32296011]
[152]
Oude Blenke E, Evers MJ, Mastrobattista E, van der Oost J. CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential. J Control Release 2016; 244(Pt B): 139-48.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.002] [PMID: 27498021]
[153]
Jo Y-I, Suresh B, Kim H, Ramakrishna S. CRISPR/Cas9 system as an innovative genetic engineering tool: Enhancements in sequence specificity and delivery methods. Biochim Biophys Acta 2015; 1856(2): 234-43.
[PMID: 26434948]
[154]
Komor AC, Badran AH, Liu DR. Editing the genome without double-stranded DNA breaks. ACS Chem Biol 2018; 13(2): 383-8.
[http://dx.doi.org/10.1021/acschembio.7b00710] [PMID: 28957631]
[155]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533(7603): 420-4.
[http://dx.doi.org/10.1038/nature17946] [PMID: 27096365]
[156]
Eid A, Alshareef S, Mahfouz MM. CRISPR base editors: genome editing without double-stranded breaks. In: Biochem J. 2018; 475: pp. (11)1955-64.
[157]
Matsoukas IG. Commentary: RNA editing with CRISPR-Cas13. Front Genet 2018; 9: 134.
[http://dx.doi.org/10.3389/fgene.2018.00134] [PMID: 29722368]
[158]
Abudayyeh OO, Gootenberg JS, Franklin B, et al. A cytosine deaminase for programmable single-base RNA editing. Science 2019; 365(6451): 382-6.
[http://dx.doi.org/10.1126/science.aax7063] [PMID: 31296651]
[159]
Liu B, Saber A, Haisma HJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discov Today 2019; 24(4): 955-70.
[http://dx.doi.org/10.1016/j.drudis.2019.02.011] [PMID: 30849442]
[160]
Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 2018; 19(12): 770-88.
[http://dx.doi.org/10.1038/s41576-018-0059-1] [PMID: 30323312]
[161]
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019; 576(7785): 149-57.
[http://dx.doi.org/10.1038/s41586-019-1711-4] [PMID: 31634902]
[162]
Shin J, Jiang F, Liu J-J, et al. Disabling Cas9 by an anti-CRISPR DNA mimic. Sci Adv 2017; 3(7)e1701620
[http://dx.doi.org/10.1126/sciadv.1701620] [PMID: 28706995]
[163]
Vartak SV, Raghavan SC. Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing. FEBS J 2015; 282(22): 4289-94.
[http://dx.doi.org/10.1111/febs.13416] [PMID: 26290158]
[164]
Teixeira M, Py BF, Bosc C, et al. Electroporation of mice zygotes with dual guide RNA/Cas9 complexes for simple and efficient cloning-free genome editing. Sci Rep 2018; 8(1): 1-9.
[PMID: 29311619]
[165]
Renaud J-B, Boix C, Charpentier M, et al. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep 2016; 14(9): 2263-72.
[http://dx.doi.org/10.1016/j.celrep.2016.02.018] [PMID: 26923600]
[166]
Hall B, Cho A, Limaye A, Cho K, Khillan J, Kulkarni AB. Genome Editing in Mice Using CRISPR/Cas9 Technology. Curr Protoc Cell Biol 2018; 81(1)e57
[http://dx.doi.org/10.1002/cpcb.57] [PMID: 30178917]
[167]
Eaton SL, Wishart TM. Bridging the gap: large animal models in neurodegenerative research. Mamm Genome 2017; 28(7-8): 324-37.
[http://dx.doi.org/10.1007/s00335-017-9687-6] [PMID: 28378063]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy