Generic placeholder image

Current Chinese Science


ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Review Article Section: Aerospace Sciences

Review on Relative Navigation Methods of Space Vehicles

Author(s): T.Y. Erkec* and C. Hajiyev

Volume 1, Issue 2, 2021

Published on: 10 December, 2020

Page: [184 - 195] Pages: 12

DOI: 10.2174/2666001601999201210205418


This paper is devoted to understanding relative navigation models that are used for space vehicles. The relative navigations models and approaches which are based on different systems (Inertial Navigation Systems (INS)&Global Navigation Satellite System (GNSS) , Laser&INS, Vision- Based, etc.) are compared. These models and approaches can be used individually or combined for solving relative navigation problems. Advantages and disadvantages of the models vary according to the usage area, platform type, and environment. Different methods and approaches exist in addition to different estimation and optimization algorithms for adaptation, control, and sensor fusion. Most of the models assume perfect attitude conditions. This study considers satellites' position estimates according to each other within formation on the Low Earth Orbit (LEO). Also, the aim of this article is to understand correlation between the relative navigation systems and the effectiveness of the algorithms which are used for estimating states during constellation or formation flight.

Keywords: Relative navigation, space vehicles, micro satellite, kalman filters, vision-based relative navigation, beacon.

Graphical Abstract
Ma, O.; Abad, A.F.; Boge, T. Use of industrial robots for hardware-in-the-loop simulation of satellite rendezvous and docking. Acta Astronaut., 2012, 81, 335-347.
Murtazin, R.F.; Budylov, S.G. Short rendezvous missions for advanced Russian human spacecraft. Acta Astronaut., 2010, 67, 900-909.
Schilling, K. Mission Analyses for Low Earth Observation Mission with Spacecraft Formation; NATO: Würzburg, Germany, 2019.
Guelman, M.; Ortenberg, F. Small satellite’s role in future hyper- spectral Earth observation missions. Acta Astronaut., 2009, 64, 1252-1263.
Burges, J.D.; Hall, M.J.; Lightsey, E.G. Evaluation of a dual-fluid cold-gas thruster concept. Int. J. Mech. Aerosp. Eng.,, 2012,, 6,, 232-237.
Bevilacqua, R.; Lovell, T.A. Analytical guidance for spacecraft relative motion under constant thrust using relative orbit elements. Acta Astronaut., 2014, 102, 47-61.
Nebylov, A.V.; Medina, A.; Knyazhskiy, A.Y. 4th IEEE International Workshop on Metrology for Aerospace, Padua, Italy2017.
Schilling, K.; Busch, S.; Bangert, P. Attitude Control Demonstration For Pico-Satellite Formation. Fly (Austin), 2014, UWE-3.
Nebylov, A.V.; Medina, A. In: Relative Motion Control of Nano-Satellites Constellation, 2015 IFAC Workshop on Advanced Control and Navigation for Autonomous Aerospace Vehicles, Seville, Spain,2015, pp. 245-250.
Nebylov, A.V.; Sukrit, S.; Medina, A. In: Relative Motion Control of Picosatellites Constellation in Independent Orbits, 20th IFAC Symposium on Automatic Control in Aerospace – ACA, Sherbrooke, Quebec, Canada, August 2016, pp. 21-25.
Nebylov, A.V.; Medina, A. Measurement of the Relative Distance between Pico-satellites, at the Constellation 20th IFAC Symposium on Automatic Control in Aerospace – ACA, Sherbrooke, Quebec, Canada, August, 2016.
Nebylov, A.V.; Medina, A.; Knyazhsky, A. Verification of the relative distance measurement method for pico-satellites in constellation. IFAC Papers On Line, 2018, 51(12), 100-105.
Buist, J.P.; Teunissen, P.J.G.; Verhagen, S.; Giorgi, G. A vectorial bootstrapping approach for integrated GNSS-based relative positioning and attitude determination of spacecraft. Acta Astronaut., 2011, 68, 1113-1125.
Brent, E.; Steve, U.; Timothy, S.; Alvar, S.; David, W.; John, J. In: The Spheres Vertigo Goggles: An Overview of Vision-Based Navigation Research Results from the International Space Station, International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), 2014.
Thakker, P.; Shiroma, W. Emergence of pico- and nanosatellites for atmospheric research and technology testing. Prog. Acta Astronaut., 2010, 234, 391.
Gill, E. Control Approaches for Formation of Small Satellites; NATO: Delft, Netherlands, 2019.
Scharf, D.P.; Hadaegh, F.Y.; Ploen, S.R. In: A survey of Spacecraft Formation Flying Guidance and Control (Part II) Proceedings of 2004 American Control Conference, Boston, USA2004.
Murph, R.; Pardalos, P.M. Cooperative Control and Optimization; Kluwer Academic Publishers, 2000.
Duffards, R.; Kumar, K.; Pirotta, S. A multiple-rendezvous, sample-return mission to two near-Earth asteroids. Adv. Space Res., 2011, 48, 120-132.
Sabatini, M.; Giovanni, B.; Palmerini, P.; Gasbarri, P.A. tested for visual based navigation and control during space rendezvous operations. Acta Astronaut., 2015, 117, 184-196.
Ning, X.; Fang, J. Spacecraft autonomous navigation using unscented particle filter-based celestial/Doppler information fusion. Meas. Sci. Technol., 2008, 19, 1-8.
Betto, M.; Jorgensen, J.L.; Jorgensen, P.S.; Denver, T. Advanced stellar compass deep space navigation, ground testing results. Acta Astronaut., 2006, 59, 1020-1028.
Chatterji, G.B.; Menon, P.K.; Sridhar, B. Vision-based position and attitude determination for air craft night landing. J. Guid. Contr Dyn., 1998, 21, 84-92.
Rogata, P.; Sotto, E.D.; Camaraetal, F. Design and performance assessment of hazard avoidance techniques for vision-based landing. Acta Astronaut., 2007, 61, 63-77.
Goncalves, T.F.; Azinheira, J.R.; Rives, P. In: Vision-based autonomous approach and landing for an aircraft using a direct visual tracking method 2009, Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics, Volume Robotics and Automation, Milan, Italy July 2-5,2009, pp. 94-101.
Kelsey, J.M.; Byrne, J.; Cosgrove, M.; Seereeram, S.; Mehra, R.K. In: Vision- Based Relative Pose Estimation for Autonomous Rendezvous and Docking, Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, Montana, USA2006, pp. 1-20.
Petit, A.; Marchand, E.; Kanani, K. In: Vision-Based Space Autonomous Rendezvous: A Case Study 2011, Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco CA, USA,2011, pp. 619-624.
Abderrahim, M.; Diaz, J.C.; Rossi, C.; Salichs, M.A. In: Experimental Simulation of Satellite Relative Navigation using Computer Vision, Proceedings of 2nd International Conference on Recent Advances in Space Technologies, Istanbul, Turkey2005, pp. 379-384.
Zhang, G.; Liu, H.; Wang, J.; Jiang, Z. In: Vision-based System for Satellite on-Orbit Self-Servicing 2008 Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Xian, China2008, pp. 296-301.
Alonso, R.; Crassidis, J.L.; Junkins, J.L. In Vision-based relative navigation for formation flying of spacecraft; American Institute of Aeronautics and Astronautics, 2010, pp. 2000-4439.
Erkec, T.Y.; Hajiyev, C. In: Traditional Methods on Relative Navigation of Small Satellites, 9th International Recent Advances in Review on Relative Navigation Methods of Space Vehicles Current Chinese Science, 2021, Vol. 1, No. 2 195 Space Technologies Conference (RAST), Istanbul, Turkey, 2019, pp. 869-874.,
Moafipoor, S.; Bock, L.; Fayman, J.A.; Honcik, D. Fundamentals of autonomous relative navigation and its application to aerial refueling. Geodetics Inc. San Diego, CA 92117, USA; , 2014.
Pranajaya, F.M.; Zee, R.E. Miniaturization techniques to realize very small and cost-efficient satellites; NATO: Toronto, Canada, 2019.
Ristic, B.; Arulampalam, S.; Gordon, N. Beyond the kalman filter particle filters for tracking applications; Artech House Radar Library, 2004.
Sazdovski, V.; Kitanov, A.; Petrovic, I. Implicit observation model for vision aided inertial navigation of aerial vehicles using single camera vector observations. Aerosp. Sci. Technol., 2015, 40, 33-46.
Driessen, S.P.H.; Janssen, N.H.J.; Wang, L.; Palmer, J.L.; Nijmeijer, H. Experimentally validated extended kalman filter for UAV state estimation using low-cost sensors. IFAC PapersOnLine, 2018, 51, 43-48.
Scharnagl, J.; Srinivasan, L.; Ravandoor, K.; Schilling, K. Autonomous collision avoidance for rendezvaus and docking in space using photonic mixer devices. IFAC-PapersOnLine, 2015, 48-9, 239-244.
Shijie, Z.; Fenghua, L.; Xibin, C.; Liang, H. Monocular vision-based two-stage iterative algorithm for relative position and attitude estimation of docking spacecraft. Chin. J. Aeronauti., 2010, 23, 204-210.
Zhuang, Y.; Hua, L.; Qi, L.; Yang, J.; Cao, P.; Cao, Y.; Wu, Y.; Thompson, J.; Haas, H. A survey of positioning systems using visible led lights. IEEE Comm. Surv. Tutor., 2018, 20, 3.
Shaikh, M.M.; Hwang, W.; Park, J.; Bahn, W.; Lee, C.; Kim, T.; Kim, K.; Cho, D.D. In: Mobile Robot Vision Tracking System Using Dead Reckoning & Active Beacons, Proceedings of the 18th World Congress the International Federation of Automatic Control, Milano, ItalyAugust 28-September 22011.
Bing, H.; Yunhua, W.; Jiang, X.A. In: Spacecraft Visual Navigation Algorithm Based on Mode Constraints: 2016: IEEE/ION Position Location and Navigation Symposium (PLANS), 2016.
Felicetti, L.; Emami, M.R. Image-based attitude maneuvers for space debris tracking. Aerosp. Sci. Technol., 2018, 76, 58-71.
Teslić, L.; Skrjanc, I.; Klancar, G. Using a LRF sensor in the Kalman-filtering-based localization of a mobile robot. ISA Trans., 2010, 49(1), 145-153.
[] [PMID: 19828146]
Vázquez-Martín, R.; Núñez, P.; Bandera, A.; Sandoval, F. Curvature-based environment description for robot navigation using laser range sensors. Sensors (Basel), 2009, 9(8), 5894-5918.
[] [PMID: 22461732]
Chowdhary, G.; Johnson, E.N.; Magree, D.; Wu, A.; Shein, A. GPS-denied indoor and outdoor monocular vision aided navigation and control of unmanned air-craft. J. Field Robot., 2013, 30(3), 415-438.
Engel, J.; Sturm, J.; Cremers, D. In: Camera-based Navigation of a Low-Cost Quadro-Copter, IEEE/RJS International Conference on Intelligent Robot Systems (IROS), 2012, pp. 2815-2821.
Engel, J.; Sturm, J.; Cremers, D. In: Accurate Figure Flying with a Quadrocopter Using Onboard Visual and Inertial Sensing, 2012 IEEE/RJS International Conference on Intelligent Robot Systems (IROS), 2012.
Weiss, S.; Achtelik, M.; Lynen, S.; Chli, M.; Siegwart, R. In: Real- Time Onboard Visual-Inertial State Estimation and Self- Calibration of MAVS in Unknown Environments, 2012 IEEE International Conference on Robotics and Automation (ICRA), 2012, pp. 957-964.
Ramasamy, S.; Sabatini, R.; Gardi, A.; Liu, J. LIDAR obstacle warning and avoidance system for unmanned aerial vehicle sense and avoid. Aerosp. Sci. Technol., 2016, 55, 344-358.
Sabatini, R.; Richardson, M.A.; Gardi, A.; Ramasamy, S. Airborne laser sensors and integrated systems. Prog. Aerosp. Sci., 2015, 79, 15-63.
Strelow, S.; Sanjiv, D. In: Online Motion Estimation from Image and Inertial Measurements 2003 Workshop on Integration of Vision and Inertial Sensors INERVIS, 2003.
Kwok, N.M.; Dissanayake, G. In: An efficient multiple hypothesis filter for bearing only SLAM, Proceedings of IEEE / RSJ International Conference on Intelligent Robots and Systems (IROS04), Sendai, Japan , Sep/Oct 2004, pp. 736-741.,
Kwok, N.M.; Dissanayake, G. In: Bearing-only SLAM in Indoor Environments 2003 Australasian Conference on Robotics and Automation, 2003.
Kwok, N.M.; Dissanayake, G.; Ha, Q.P. In: Bearing only SLAM using a SPRT based Gaussian sum filter. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA05), Barcelona, Spain2005, pp. 1121-1126.
Guerra, E.; Munguia, R.; Bolea, Y.; Grau, A. New validation algorithm for data association in SLAM. ISA Trans., 2013, 52(5), 662-671.
[] [PMID: 23701896]
Auger, F.; Hilairet, M.; Guerrero, J.M.; Monmasson, E.; Orlowska-Kowalska, T.; Katsura, S. Industrial applications of the Kalman filter: a review. IEEE Trans. Ind. Electron., 2013, 60(12), 5458-5471.
Simon, D. Optimal State Estimation: Kalman, H∞ and Nonlinear Approaches; Wiley: New York, 2006.
Li, W.; Sun, S.; Jia, Y.; Du, J. Robust unscented Kalman filter with adaptation of process and measurement noise covariances. Digit. Signal Process., 2016, 48, 93-103.
Melczer, M.; Bauer, P.; Bokor, J. 4D trajectory design for vision only sense and avoid flight test. IFAC Papers On Line, 2017, 50-1, 15203-15208.
Song, J.; Xu, G. An orbit determination method from relative position increment measurement. Aerospace. Eng., 2017.
Zhang, L.; Yang, H.; Lu, H.; Zhang, S.; Cai, H.; Qian, S. Cubature kalman filtering for relative Spacecraft attitude and position estimation. Acta Astronaut., 2014, 105, 254-264.
Xia, Q.; Rao, M.; Ying, Y.; Schen, X. Adaptive fading kalman filter with an application. Automatica, 1998, 34, 1333-1338.
Levent, O.; Fazil, A.A. Coments on “adaptive fading kalman filters with an aplication”. Automatica, 1998, 34, 1663-1664.
Chen, J.; Wang, X.; Shaotand, X.; Duan, D. In: An Integrated Relative Navigation System Using GPS/NISNAV for, Ultra-close Spacecraft Formation Flying, 3rd International Symposium on Systems and Control in Aeronautics and Astronautics, 2010.
Urioste, B.; Naseri, A.; Stochaj, S.; Shah, N.; Krizmanic, J. In: Relative Navigation Schemes for Formation Flying of Satellites. Small Satellite Conference, USA2017.
Bastante, J.C.; Vasconcelos, J.; Hagenfeldt, M.; Peñín, L.F.; Dinis, J.; Rebordão, J. Design and development of PROBA-3 rendezvous experiment. Acta Astronaut., 2014, 102, 311-320.

© 2023 Bentham Science Publishers | Privacy Policy