Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Metallic Nanopopcorns: A New Multimodal Approach for Theranostics

Author(s): Pravin Shende* and Gauraja Deshpande

Volume 17, Issue 5, 2021

Published on: 09 December, 2020

Page: [670 - 678] Pages: 9

DOI: 10.2174/1573413716999201209105519

Price: $65

Abstract

Background: Nanopopcorns are a novel class of metallic nanoparticles that demonstrate structural similarity to the grains of popcorns with theranostic activities for diseases like cancer and bacterial infection using Surface Enhanced Raman Spectroscopy-based detection.

Objective: The objective of the present article is to highlight the importance of popcorn-shaped nanoparticles for the treatment of various disease conditions like cancer, diabetes, ulcerative colitis, rheumatoid arthritis, etc.

Methods: Nanopopcorns enter the target cells via conjugation with various proteins, aptamers, etc. to kill the diseased cell. Moreover, external magnetic radiations are provided to heat these metallic nanopopcorns for creating hotspots. All such activities can be tracked via SERS mechanism.

Results: Nanopopcorns create alternative and minimally-invasive treatment strategies for inflammatory conditions and life-threatening diseases.

Conclusion: In the near future, nanopopcorn-based drug delivery system can be an interesting field for research in medicinal nanotechnology.

Keywords: Theranostics, metallic nanoparticles, Surface Enhanced Raman Spectroscopy, hyperthermia, hotspots, cell imaging, apoptosis.

Graphical Abstract
[1]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[2]
Salata, O. Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2, 2004, 2(1), 3.
[3]
Mishra, S. Nanotechnology in medicine. Indian Heart J., 2016, 68(3), 437-439.
[http://dx.doi.org/10.1016/j.ihj.2016.05.003] [PMID: 27316514]
[4]
Boisseau, P.; Loubaton, B. Nanomedicine, Nanotechnology in medicine. C. R. Phys., 2011, 12, 620-636.
[http://dx.doi.org/10.1016/j.crhy.2011.06.001]
[5]
Lim, E.K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y.M.; Lee, K. Nanomaterials for theranostics: recent advances and future challenges. Chem. Rev., 2015, 115(1), 327-394.
[http://dx.doi.org/10.1021/cr300213b] [PMID: 25423180]
[6]
Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[7]
Liu, Y.; Yuan, H.; Fales, A.M.; Register, J.K.; Vo-Dinh, T. Multifunctional gold nanostars for molecular imaging and cancer therapy. Front Chem., 2015, 3(51), 1-11.
[8]
Liu, Y.; Ashton, J.R.; Moding, E.J.; Yuan, H.; Register, J.K.; Fales, A.M.; Choi, J.; Whitley, M.J.; Zhao, X.; Qi, Y.; Ma, Y.; Vaidyanathan, G.; Zalutsky, M.R.; Kirsch, D.G.; Badea, C.T.; Vo-Dinh, T. A gold plasmonic nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics, 2015, 5(9), 946-960.
[http://dx.doi.org/10.7150/thno.11974] [PMID: 26155311]
[9]
An, L.; Wang, Y.; Tian, Q.; Yang, S. Small gold nanorods: recent advances in synthesis, biological imaging, and cancer therapy. Materials (Basel), 2017, 10(12), 1372.
[http://dx.doi.org/10.3390/ma10121372] [PMID: 29189739]
[10]
Zhang, Z.; Wang, J.; Chen, C. Gold nanorods based platforms for light-mediated theranostics. Theranostics, 2013, 3(3), 223-238.
[http://dx.doi.org/10.7150/thno.5409] [PMID: 23471510]
[11]
Shende, P.; Jain, S. Polymeric nanodroplets: an emerging trend in gaseous delivery system. J. Drug Target., 2019, 27(10), 1035-1045.
[http://dx.doi.org/10.1080/1061186X.2019.1588281] [PMID: 30808239]
[12]
Yang, C.; Zhang, Y.; Luo, Y.; Qiao, B.; Wang, X.; Zhang, L.; Chen, Q.; Cao, Y.; Wang, Z.; Ran, H. Dual ultrasound-activatable nanodroplets for highly-penetrative and efficient ovarian cancer theranostics. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(3), 380-390.
[http://dx.doi.org/10.1039/C9TB02198A] [PMID: 31868193]
[13]
Liu, M.; Tang, F.; Yang, Z.; Xu, J.; Yang, X. Recent progress on gold-nanocluster-based fluorescent probe for environmental analysis and biological sensing. J. Anal. Methods Chem., 2019, 2019, 1095148.
[http://dx.doi.org/10.1155/2019/1095148] [PMID: 30719370]
[14]
Lai, W.F.; Wong, W.T.; Rogach, A.L. Development of copper nanoclusters for in vitro and in vivo theranostic applications. Adv. Mater., 2020, 32(9), 1906872.
[http://dx.doi.org/10.1002/adma.201906872] [PMID: 31975469]
[15]
Khan, M.S.; Hwang, J.; Lee, K.; Choi, Y.; Kim, K.; Koo, H.J.; Hong, J.W.; Choi, J. Oxygen-carrying micro/nanobubbles: Composition, synthesis techniques and potential prospects in photo-triggered theranostics. Molecules, 2018, 23(9), 2210.
[http://dx.doi.org/10.3390/molecules23092210] [PMID: 30200336]
[16]
Lapotko, D. Plasmonic nanobubbles as tunable cellular probes for cancer theranostics. Cancers (Basel), 2011, 3(1), 802-840.
[http://dx.doi.org/10.3390/cancers3010802] [PMID: 21442036]
[17]
Shende, P.; Kasture, P.; Gaud, R.S. Nanoflowers: the future trend of nanotechnology for multi-applications. Artif. Cells Nanomed. Biotechnol, 2018, 46(sup1), 413-422.
[http://dx.doi.org/10.1080/21691401.2018.1428812]
[18]
Jing, X.; Xu, Y.; Liu, D.; Wu, Y.; Zhou, N.; Wang, D.; Yan, K.; Meng, L. Intelligent nanoflowers: a full tumor microenvironment-responsive multimodal cancer theranostic nanoplatform. Nanoscale, 2019, 11(33), 15508-15518.
[http://dx.doi.org/10.1039/C9NR04768A] [PMID: 31393496]
[19]
Deshmukh, K.; Shende, P. Toluene diisocyanate cross-linked β-cyclodextrin nanosponges as a pH-sensitive carrier for naproxen. Mater. Res. Express, 2018, 5(7), 075008.
[http://dx.doi.org/10.1088/2053-1591/aac93d]
[20]
Deshmukh, K.; Tanwar, Y.S.; Sharma, S.; Shende, P.; Cavalli, R. Functionalized nanosponges for controlled antibacterial and antihypocalcemic actions. Biomed. Pharmacother., 2016, 84, 485-494.
[http://dx.doi.org/10.1016/j.biopha.2016.09.017] [PMID: 27685792]
[21]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[22]
Fu, P.P.; Xia, Q.; Hwang, H.M.; Ray, P.C.; Yu, H. Mechanisms of nanotoxicity: generation of reactive oxygen species. Yao Wu Shi Pin Fen Xi, 2014, 22(1), 64-75.
[http://dx.doi.org/10.1016/j.jfda.2014.01.005] [PMID: 24673904]
[23]
Wolfram, J.; Zhu, M.; Yang, Y.; Shen, J.; Gentile, E.; Paolino, D.; Fresta, M.; Nie, G.; Chen, C.; Shen, H.; Ferrari, M.; Zhao, Y. Safety of nanoparticles in medicine. Curr. Drug Targets, 2015, 16(14), 1671-1681.
[http://dx.doi.org/10.2174/1389450115666140804124808] [PMID: 26601723]
[24]
El-Ansary, A.; Al-Daihan, S. On the toxicity of therapeutically used nanoparticles: an overview. J. Toxicol., 2009, 2009, 754810.
[http://dx.doi.org/10.1155/2009/754810] [PMID: 20130771]
[25]
Shende, P.; Wakade, V.S. Biointerface: a nano-modulated way for biological transportation. J. Drug Target., 2020, 28(5), 456-467.
[http://dx.doi.org/10.1080/1061186X.2020.1720218] [PMID: 31961758]
[26]
Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; Choo, J.; Cialla-May, D.; Deckert, V.; Fabris, L.; Faulds, K.; García de Abajo, F.J.; Goodacre, R.; Graham, D.; Haes, A.J.; Haynes, C.L.; Huck, C.; Itoh, T.; Käll, M.; Kneipp, J.; Kotov, N.A.; Kuang, H.; Le Ru, E.C.; Lee, H.K.; Li, J.F.; Ling, X.Y.; Maier, S.A.; Mayerhöfer, T.; Moskovits, M.; Murakoshi, K.; Nam, J.M.; Nie, S.; Ozaki, Y.; Pastoriza-Santos, I.; Perez-Juste, J.; Popp, J.; Pucci, A.; Reich, S.; Ren, B.; Schatz, G.C.; Shegai, T.; Schlücker, S.; Tay, L.L.; Thomas, K.G.; Tian, Z.Q.; Van Duyne, R.P.; Vo-Dinh, T.; Wang, Y.; Willets, K.A.; Xu, C.; Xu, H.; Xu, Y.; Yamamoto, Y.S.; Zhao, B.; Liz-Marzán, L.M. Present and future of surface-enhanced Raman scattering. ACS Nano, 2020, 14(1), 28-117.
[http://dx.doi.org/10.1021/acsnano.9b04224] [PMID: 31478375]
[27]
Bruzas, I.; Lum, W.; Gorunmez, Z.; Sagle, L. Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond. Analyst (Lond.), 2018, 143(17), 3990-4008.
[http://dx.doi.org/10.1039/C8AN00606G] [PMID: 30059080]
[28]
Taylor, J.; Huefner, A.; Li, L.; Wingfield, J.; Mahajan, S. Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy. Analyst (Lond.), 2016, 141(17), 5037-5055.
[http://dx.doi.org/10.1039/C6AN01003B] [PMID: 27479539]
[29]
Alkilany, A.M.; Murphy, C.J. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res., 2010, 12(7), 2313-2333.
[http://dx.doi.org/10.1007/s11051-010-9911-8] [PMID: 21170131]
[30]
Hutter, E.; Boridy, S.; Labrecque, S.; Lalancette-Hébert, M.; Kriz, J.; Winnik, F.M.; Maysinger, D. Microglial response to gold nanoparticles. ACS Nano, 2010, 4(5), 2595-2606.
[http://dx.doi.org/10.1021/nn901869f] [PMID: 20329742]
[31]
Sur, U.K. Surface-enhanced Raman spectroscopy. Reson., 2010, 15, 154-164.
[http://dx.doi.org/10.1007/s12045-010-0016-6]
[32]
Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on surface-enhanced raman scattering. Biosensors (Basel), 2019, 9(2), 57.
[http://dx.doi.org/10.3390/bios9020057] [PMID: 30999661]
[33]
Ding, S.Y.; You, E.M.; Tian, Z.Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev., 2017, 46(13), 4042-4076.
[http://dx.doi.org/10.1039/C7CS00238F] [PMID: 28660954]
[34]
Morton, S.M.; Jensen, L. Understanding the molecule-surface chemical coupling in SERS. J. Am. Chem. Soc., 2009, 131(11), 4090-4098.
[http://dx.doi.org/10.1021/ja809143c] [PMID: 19254020]
[35]
Jensen, L.; Aikens, C.M.; Schatz, G.C. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev., 2008, 37(5), 1061-1073.
[http://dx.doi.org/10.1039/b706023h] [PMID: 18443690]
[36]
Kneipp, K. Chemical contribution to SERS enhancement: An experimental study on a series of polymethine dyes on silver nanoaggregates. J. Phys. Chem. C, 2016, 120(37), 21076-21081.
[http://dx.doi.org/10.1021/acs.jpcc.6b03785]
[37]
Israelsen, N.D.; Hanson, C.; Vargis, E. Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: An introduction. ScientificWorldJournal, 2015, 2015, 124582.
[http://dx.doi.org/10.1155/2015/124582] [PMID: 25884017]
[38]
Paquin, F.; Rivnay, J.; Salleo, A.; Stingelin, N.; Silva, C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3, 10715-10722.
[http://dx.doi.org/10.1039/C5TC02043C]
[39]
Martínez, J.C.; Chequer, N.A.; González, J.L.; Cordova, T. Alternative metodology for gold nanoparticles diameter characterization using PCA technique and UV-VIS spectrophotometry. Nanosci. Nanotechnol., 2012, 2, 184-189.
[http://dx.doi.org/10.5923/j.nn.20120206.06]
[40]
Eustis, S.; el-Sayed, M.A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev., 2006, 35(3), 209-217.
[http://dx.doi.org/10.1039/B514191E] [PMID: 16505915]
[41]
Haiss, W.; Thanh, N.T.; Aveyard, J.; Fernig, D.G. Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal. Chem., 2007, 79(11), 4215-4221.
[http://dx.doi.org/10.1021/ac0702084] [PMID: 17458937]
[42]
Toma, H.E.; Zamarion, V.M.; Toma, S.H.; Araki, K. The coordination chemistry at gold nanoparticles. J. Braz. Chem. Soc., 2010, 21(7), 1158-1176.
[http://dx.doi.org/10.1590/S0103-50532010000700003]
[43]
Zhang, M.; Chen, Z.; Wang, Z.; Zheng, Z.; Wang, D. Graphene oxide coated popcorn-like Ag nanoparticles for reliable sensitive surface-enhanced Raman scattering detection of drug residues. J. Mater. Res., 2019, 34(17), 2935-2943.
[http://dx.doi.org/10.1557/jmr.2019.78]
[44]
Qin, L.; Zeng, G.; Lai, C.; Huang, D.; Xu, P.; Zhang, C.; Cheng, M.; Liu, X.; Liu, S.; Li, B.; Yi, H. “Gold rush” in modern science: fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord. Chem. Rev., 2018, 15(359), 1-31.
[http://dx.doi.org/10.1016/j.ccr.2018.01.006]
[45]
Agunloye, E.; Panariello, L.; Gavriilidis, A.; Mazzei, L. A model for the formation of gold nanoparticles in the citrate synthesis method. Chem. Eng. Sci., 2018, 191, 318-331.
[http://dx.doi.org/10.1016/j.ces.2018.06.046]
[46]
Freitas de Freitas, L.; Varca, G.H.C.; Dos Santos Batista, J.G.; Benévolo Lugão, A. An overview of the synthesis of gold nanoparticles using radiation technologies. Nanomaterials (Basel), 2018, 8(11), 939.
[http://dx.doi.org/10.3390/nano8110939] [PMID: 30445694]
[47]
Ziegler, C.; Eychm, A. Seeded growth synthesis of uniform gold nanoparticles with diameters of 15 - 300 nm. PhysChemComm, 2011, 115(11), 4502-4506.
[48]
Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B, 2006, 110(32), 15700-15707.
[http://dx.doi.org/10.1021/jp061667w] [PMID: 16898714]
[49]
Alaqad, K.; Saleh, T.A. Gold and silver nanoparticles: Synthesis methods, characterization routes and applications towards drugs. J. Environ. Anal. Toxicol., 2016, 6, 384.
[http://dx.doi.org/10.4172/2161-0525.1000384]
[50]
Tyagi, H.; Kushwaha, A.; Kumar, A.; Aslam, M. A facile pH controlled citrate-based reduction method for gold nanoparticle synthesis at room temperature. Nanoscale Res. Lett., 2016, 11(1), 362.
[http://dx.doi.org/10.1186/s11671-016-1576-5] [PMID: 27526178]
[51]
Thakor, A.S.; Jokerst, J.; Zavaleta, C.; Massoud, T.F.; Gambhir, S.S. Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett., 2011, 11(10), 4029-4036.
[http://dx.doi.org/10.1021/nl202559p] [PMID: 21846107]
[52]
Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 2012, 4(6), 1871-1880.
[http://dx.doi.org/10.1039/C1NR11188D] [PMID: 22076024]
[53]
Prabhu, S.; Poulose, E.K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett., 2012, 2(1), 32.
[http://dx.doi.org/10.1186/2228-5326-2-32]
[54]
Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[55]
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci., 2014, 9(6), 385-406.
[PMID: 26339255]
[56]
Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology, 2018, 16(1), 14.
[http://dx.doi.org/10.1186/s12951-018-0334-5] [PMID: 29452593]
[57]
Burdușel, A.C.; Gherasim, O.; Grumezescu, A.M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials (Basel), 2018, 8(9), 681.
[http://dx.doi.org/10.3390/nano8090681] [PMID: 30200373]
[58]
Zhang, Z.; Chen, H.; Xing, C.; Guo, M.; Xu, F.; Wang, X.; Gruber, H.J.; Zhang, B.; Tang, J. Sodium citrate: A universal reducing agent for reduction/decoration of graphene oxide with au nanoparticles. Nano Res., 2011, 14, 599-611.
[http://dx.doi.org/10.1007/s12274-011-0116-y]
[59]
Ojea-jime, I.; Romero, F.M.; Bastu, N.G.; Puntes, V. Small gold nanoparticles synthesized with sodium citrate and heavy water : Insights into the reaction mechanism. J. Phys. Chem. C, 2010, 114(4), 1800-1804.
[http://dx.doi.org/10.1021/jp9091305]
[60]
Saravanan, B.; Manivannan, V. Synthesis of copper nanoparticles using trisodium citrate and evaluation of antibacterial activity. RJLBPCS, 2018, 2018, 841-849.
[61]
Smith, D.K.; Korgel, B.A. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir, 2008, 24(3), 644-649.
[http://dx.doi.org/10.1021/la703625a] [PMID: 18184021]
[62]
Malassis, L.; Dreyfus, R.; Murphy, R.J.; Hough, L.A.; Donnio, B.; Murray, C.B. One-step green synthesis of gold and silver nanoparticles with ascorbic acid and their versatile surface post-functionalization. RSC Advances, 2008, 6, 33092-33100.
[http://dx.doi.org/10.1021/la703625a] [PMID: 18184021]
[63]
Dong, J.; Carpinone, P.L.; Pyrgiotakis, G.; Demokritou, P.; Moudgil, B.M. Synthesis of precision gold nanoparticles using Turkevich method. Kona, 2020, 37, 224-232.
[http://dx.doi.org/10.14356/kona.2020011] [PMID: 32153313]
[64]
Larm, N.E.; Essner, J.B.; Pokpas, K.; Canon, J.A.; Jahed, N.; Iwuoha, E.I.; Baker, G.A. Room-temperature Turkevich method: Formation of gold nanoparticles at the speed of mixing using cyclic oxocarbon reducing agents. J. Phys. Chem. C, 2018, 122(9), 5105-5118.
[http://dx.doi.org/10.1021/acs.jpcc.7b10536]
[65]
Dobrowolska, P.; Krajewska, A.; Gajda-Rączka, M.; Bartosewicz, B.; Nyga, P.; Jankiewicz, B.J. Application of Turkevich method for gold nanoparticles synthesis to fabrication of SiO2@Au and TiO2@Au core-shell nanostructures. Materials (Basel), 2015, 8(6), 2849-2862.
[http://dx.doi.org/10.3390/ma8062849]
[66]
Herizchi, R.; Abbasi, E.; Milani, M.; Akbarzadeh, A. Current methods for synthesis of gold nanoparticles. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 596-602.
[http://dx.doi.org/10.3109/21691401.2014.971807] [PMID: 25365243]
[67]
Isomaa, B.; Reuter, J.; Djupsund, B.M. The subacute and chronic toxicity of cetyltrimethylammonium bromide (CTAB), a cationic surfactant, in the rat. Arch. Toxicol., 1976, 35(2), 91-96.
[http://dx.doi.org/10.1007/BF00372762] [PMID: 947317]
[68]
Microscope Master. Scanning electron microscope. Advantages and disadvantages in imaging components and applications., 2001, Available from: http://www.microscopemaster.com/scanning-electron-microscope.html
[69]
Vladár, A.E.; Hodoroaba, V.D. Characterization of nanoparticles by scanning electron microscopy. Characterization of Nanoparticles; Elsevier, 2020, pp. 7-27.
[http://dx.doi.org/10.1016/B978-0-12-814182-3.00002-X]
[70]
Choudhary, P.; Chiudhari, O.P. Uses of transmission electron microscope in microscopy and its advantages and disadvantages. Int. J. Curr. Microbiol. Appl. Sci., 2018, 7, 743-747.
[http://dx.doi.org/10.20546/ijcmas.2018.705.090]
[71]
Malatesta, M. Transmission electron microscopy for nanomedicine: novel applications for long-established techniques. Eur. J. Histochem., 2016, 60(4), 2751.
[http://dx.doi.org/10.4081/ejh.2016.2751] [PMID: 28076938]
[72]
Anjum, D.H. Characterization of nanomaterials with transmission electron microscopy. Mater. Sci. Eng., 2016, 146, 1-10.
[73]
Asadabad, M.A.; Eskandari, M.J. Transmission electron microscopy as best technique for characterization in nanotechnology. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2015, 45(3), 323-326.
[http://dx.doi.org/10.1080/15533174.2013.831901]
[74]
Akbari, B.; Pirhadi Tavandashti, M.; Zandrahimi, M. Particle size characterization of nanoparticles- a practical approach. Iranian J. Materials Sci. Eng., 2011, 8(2), 48-56.
[75]
Shekunov, B.Y.; Chattopadhyay, P.; Tong, H.H.; Chow, A.H. Particle size analysis in pharmaceutics: principles, methods and applications. Pharm. Res., 2007, 24(2), 203-227.
[http://dx.doi.org/10.1007/s11095-006-9146-7] [PMID: 17191094]
[76]
Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems - A review (Part 1). Trop. J. Pharm. Res., 2013, 12, 255-264.
[77]
Tantra, R.; Schulze, P.; Quincey, P. Particuology effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology, 2010, 8(3), 279-285.
[78]
Ong, S.G.; Ming, L.C.; Lee, K.S.; Yuen, K.H. Influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Pharmaceutics, 2016, 8(3), 25.
[http://dx.doi.org/10.3390/pharmaceutics8030025] [PMID: 27571096]
[79]
Song, X.; Zhao, Y.; Hou, S.; Xu, F.; Zhao, R.; He, J.; Cai, Z.; Li, Y.; Chen, Q. Dual agents loaded PLGA nanoparticles: Systematic study of particle size and drug entrapment efficiency. Eur. J. Pharm. Biopharm., 2008, 69(2), 445-453.
[http://dx.doi.org/10.1016/j.ejpb.2008.01.013] [PMID: 18374554]
[80]
Jones, R.R.; Hooper, D.C.; Zhang, L.; Wolverson, D.; Valev, V.K. Raman techniques: fundamentals and frontiers. Nanoscale Res. Lett., 2019, 14(1), 1-34.
[http://dx.doi.org/10.1186/s11671-019-3039-2]
[81]
Duygu, D.Y.; Baykal, T.; Açikgöz, Đ.; Yildiz, K. Fourier Transform Infrared (FTIR) Spectroscopy for biological studies. G.U. J. Sci., 2009, 22(3), 117-121.
[82]
Lopes, C.D.C.A.; Limirio, P.H.J.O.; Novais, V.R.; Dechichi, P. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl. Spectrosc. Rev., 2018, 53, 747-769.
[http://dx.doi.org/10.1080/05704928.2018.1431923]
[83]
Marion, D. An introduction to biological NMR spectroscopy. Mol. Cell. Proteomics, 2013, 12(11), 3006-3025.
[http://dx.doi.org/10.1074/mcp.O113.030239] [PMID: 23831612]
[84]
Na, Z.; Jing, P.; Gang, L.; You-Wei, Z.; Wanying, L.; Zhibin, Y.; Jiuqiang, L.; Zhai, M. PVP-capped CdS nanopopcorns with Type-II homojunctions for highly efficient visible-light-driven organic pollutant degradation and hydrogen evolution. J. Mater. Chem. A., 2008, 6, 18458-18468.
[http://dx.doi.org/10.1021/la703625a] [PMID: 18184021]
[85]
Olatunji, O.; Akinlabi, S.; Mashinini, P.M.; Fatoba, O.; Ajayi, O. Thermo-gravimetric characterization of biomass properties: A review. IOP Conference Series: Materials Science and Engineering proceedings of the 4th International Conference on Applied Materials and Manufacturing Technology., Nanchang, China, 25-27 May 2018, 423.
[http://dx.doi.org/10.1088/1757-899X/423/1/012175]
[86]
Dongargaonkar, A.A.; Clogston, J.D. Quantitation of surface coating on nanoparticles using thermogravimetric analysis. Methods Mol. Biol., 2018, 1682, 57-63.
[http://dx.doi.org/10.1007/978-1-4939-7352-1_6] [PMID: 29039093]
[87]
Loganathan, S.; Valapa, R.B.; Kumar, R.; Mishra, G.; Thomas, P.S. Thermogravimetric analysis for characterization of nanomaterials. Thermal and Rheological Measurement Techniques for Nanomaterials Characterization; Elsevier science, 2017, pp. 67-108.
[http://dx.doi.org/10.1016/B978-0-323-46139-9.00004-9]
[88]
Kodre, K.; Attarde, S.; Yendhe, P.; Patil, R.; Barge, V. Differential scanning calorimetry: A review. Res. Rev. J. Pharm. Anal., 2014, 3, 11-22.
[89]
Gill, P.; Moghadam, T.T.; Ranjbar, B. Differential scanning calorimetry techniques: Applications in biology and nanoscience. J. Biomol. Tech., 2010, 21(4), 167-193.
[PMID: 21119929]
[90]
Jana, J.; Ganguly, M.; Pal, T. Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic. RSC Advances, 2016, 6, 86174-86211.
[http://dx.doi.org/10.1039/C6RA14173K]
[91]
Tang, Y.; Zeng, X.; Liang, J. Surface plasmon resonance: An Introduction to a Surface Spectroscopy technique. J. Chem. Educ., 2010, 87(7), 742-746.
[http://dx.doi.org/10.1021/ed100186y] [PMID: 21359107]
[92]
Chakraborty, S.; Rahman, T. The difficulties in cancer treatment. Ecancermedicalscience, 2012, 6, ed16.
[PMID: 24883085]
[93]
Shende, P.; Deshpande, G. Disulfide bond-responsive nanotherapeutic systems for effective payload in cancer therapy. Curr. Pharm. Des., 2020, 26(41), 5353-5361.
[http://dx.doi.org/10.2174/1381612826666200707131006] [PMID: 32634075]
[94]
Lu, W.; Singh, A.K.; Khan, S.A.; Senapati, D.; Yu, H.; Ray, P.C. Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J. Am. Chem. Soc., 2010, 132(51), 18103-18114.
[http://dx.doi.org/10.1021/ja104924b] [PMID: 21128627]
[95]
Beqa, L.; Fan, Z.; Singh, A.K.; Senapati, D.; Ray, P.C. Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. ACS Appl. Mater. Interfaces, 2011, 3(9), 3316-3324.
[http://dx.doi.org/10.1021/am2004366] [PMID: 21842867]
[96]
Bhana, S.; Lin, G.; Wang, L.; Starring, H.; Mishra, S.R.; Liu, G.; Huang, X. Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy. ACS Appl. Mater. Interfaces, 2015, 7(21), 11637-11647.
[http://dx.doi.org/10.1021/acsami.5b02741] [PMID: 25965727]
[97]
Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health, 2016, 4, 148.
[http://dx.doi.org/10.3389/fpubh.2016.00148] [PMID: 27486573]
[98]
Liu, J.; Schelar, E. Pesticide exposure and child neurodevelopment: summary and implications. Workplace Health Saf., 2012, 60(5), 235-242.
[http://dx.doi.org/10.1177/216507991206000507] [PMID: 22587699]
[99]
Xu, Q.; Guo, X.S.; Xu, L.; Ying, Y.; Wu, Y.; Wen, Y.; Yang, H. Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues. Sens. Actuators B Chem., 2017, 241, 1008-1013.
[http://dx.doi.org/10.1016/j.snb.2016.11.021]
[100]
Ondera, T.J.; Hamme, A.T. II nanotube hybrid for rapid detection and killing of bacteria. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(43), 7534-7543.
[http://dx.doi.org/10.1039/C4TB01195C] [PMID: 25414794]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy