Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Mini-Review Article Section: Bioinformatics

Fluorescent Pyrazole Derivatives: An Attractive Scaffold for Biological Imaging Applications

Author(s): Alexis Tigreros and Jaime Portilla*

Volume 1, Issue 2, 2021

Published on: 08 December, 2020

Page: [197 - 206] Pages: 10

DOI: 10.2174/2210298101999201208211116

Abstract

Among the huge number of fluorescent compounds described recently, pyrazole derivatives could play a paramount role in the design of probes for bioimaging applications–an important and simple tool for modern biology because of their easy synthetic methodologies, remarkable optical properties and chelating points. In this mini-review, we highlighted some pyrazole derivatives that have shown remarkable performance in this area; from the detection of chromium (III) with limits of detection of 37 × 10-12 M to sensing glutathione in biological samples, as well as small molecule labeling of drugs and identifying unhealthy cells such as HeLa and labeling subcellular organelles. Evidently, this important class of N-heterocyclic compounds is part of interesting applications.

Keywords: Drugs labeling, fluorescent bioimages, fused heterocycles, Glutathione detection, metal ion and biomolecules sensing, pyrazole-complexes, pyrazole derivatives.

Graphical Abstract
[1]
Jiang, P.; Guo, Z. Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord. Chem. Rev., 2004, 248(1), 205-229.
[http://dx.doi.org/10.1016/j.cct.2003.10.013]
[2]
Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent chemosensors: the past, present and future. Chem. Soc. Rev., 2017, 46(23), 7105-7123.
[http://dx.doi.org/10.1039/C7CS00240H] [PMID: 29019488]
[3]
Domaille, D.W.; Que, E.L.; Chang, C.J. Synthetic fluorescent sensors for studying the cell biology of metals. Nat. Chem. Biol., 2008, 4(3), 168-175.
[http://dx.doi.org/10.1038/nchembio.69] [PMID: 18277978]
[4]
Tigreros, A.; Portilla, J. Recent progress in chemosensors based on pyrazole derivatives. RSC Adv, 2020, 10(33), 19693-19712.
[http://dx.doi.org/10.1039/D0RA02394A]
[5]
Willy, B.; Müller, T.J.J. Rapid one-pot, four-step synthesis of highly fluorescent 1,3,4,5-tetrasubstituted pyrazoles. Org. Lett., 2011, 13(8), 2082-2085.
[http://dx.doi.org/10.1021/ol2004947] [PMID: 21417307]
[6]
Castillo, J-C.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5- a]pyrimidines as key intermediates for the preparation of functional fluorophores. J. Org. Chem., 2018, 83(18), 10887-10897.
[http://dx.doi.org/10.1021/acs.joc.8b01571] [PMID: 30051714]
[7]
Varghese, B.; Al-Busafi, S.N.; Suliman, F.O.; Al-Kindy, S.M.Z. Unveiling a versatile heterocycle: pyrazoline – a review. RSC Adv, 2017, 7(74), 46999-47016.
[http://dx.doi.org/10.1039/C7RA08939B]
[8]
Castillo, J-C.; Portilla, J. Recent advances in the synthesis of new pyrazole derivatives; Targets Heterocycl. Syst, 2018, pp. 193-223.
[9]
Castillo, J-C.; Rosero, H-A.; Portilla, J. Simple access toward 3-halo- and 3-nitro-pyrazolo[1,5-a]pyrimidines through a one-pot sequence. RSC Adv, 2017, 7(45), 28483-28488.
[http://dx.doi.org/10.1039/C7RA04336H]
[10]
Olguín, J.; Brooker, S. Spin crossover active iron(II) complexes of selected pyrazole-pyridine/pyrazine ligands. Coord. Chem. Rev., 2011, 255(1), 203-240.
[http://dx.doi.org/10.1016/j.ccr.2010.08.002]
[11]
Vincent, J.B. The bioinorganic chemistry of chromium(III). Polyhedron, 2001, 20(1), 1-26. . file://localhost/%2509%2509https/::doi.org:10.1016:S0277-5387(00)00624-0
[http://dx.doi.org/10.1016/S0277-5387(00)00624-0]
[12]
Sumida, T.; Ikenoue, T.; Hamada, K.; Sabarudin, A.; Oshima, M.; Motomizu, S. On-line preconcentration using dual mini-columns for the speciation of chromium(III) and chromium(VI) and its application to water samples as studied by inductively coupled plasma-atomic emission spectrometry. Talanta, 2005, 68(2), 388-393.
[http://dx.doi.org/10.1016/j.talanta.2005.08.064] [PMID: 18970334]
[13]
Niu, B.; Xiao, K.; Huang, X.; Zhang, Z.; Kong, X-Y.; Wang, Z.; Wen, L.; Jiang, L. High-sensitivity detection of iron(iii) by dopamine-modified funnel-shaped nanochannels. ACS Appl. Mater. Interf, 2018, 10(26), 22632-22639.
[http://dx.doi.org/10.1021/acsami.8b05686] [PMID: 29888900]
[14]
Antunes, G.A.; dos Santos, H.S.; da Silva, Y.P.; Silva, M.M.; Piatnicki, C.M.S.; Samios, D. Determination of iron, copper, zinc, aluminum, and chromium in biodiesel by flame atomic absorption spectrometry using a microemulsion preparation method. Energy Fuels, 2017, 31(3), 2944-2950.
[http://dx.doi.org/10.1021/acs.energyfuels.6b03360]
[15]
Moghimi, A.; Saber-Tehrani, M.; Waqif-Husain, S.; Mohammadhossini, M. Preconcentration and determination of chromium species using octadecyl silica membrane disks and flame atomic absorption spectrometry. Chin. J. Chem., 2007, 25(12), 1859-1865.
[http://dx.doi.org/10.1002/cjoc.200790343]
[16]
Bagherian, G.; Arab Chamjangali, M.; Shariati Evari, H.; Ashrafi, M. Determination of copper(ii) by flame atomic absorption spectrometry after its perconcentration by a highly selective and environmentally friendly dispersive liquid–liquid microextraction technique. J. Anal. Sci. Technol., 2019, 10(1), 3.
[http://dx.doi.org/10.1186/s40543-019-0164-6]
[17]
Ghisi, M.; Chaves, E.S.; Quadros, D.P.C.; Marques, E.P.; Curtius, A.J.; Marques, A.L.B. Simple method for the determination of cu and Fe by electrothermal atomic absorption spectrometry in biodiesel treated with tetramethylammonium hydroxide. Microchem. J., 2011, 98(1), 62-65.
[http://dx.doi.org/10.1016/j.microc.2010.11.003]]
[18]
Mani, S.K.; Rajamanikandan, R.; Ravikumar, G.; Pandiyan, V.B.; Kolandaivel, P.; Ilanchelian, M.; Rajendran, S.P. Highly sensitive coumarin–pyrazolone probe for the detection of Cr3+ and the application in living cells. ACS Omega, 2018, 3(12), 17212-17219.
[http://dx.doi.org/10.1021/acsomega.8b01907]
[19]
Ganesan, J.S.; Sepperumal, M.; Balasubramaniem, A.; Ayyanar, S. A novel pyrazole bearing imidazole frame as ratiometric fluorescent chemosensor for Al3+/Fe3+ ions and its application in HeLa cell imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2020, 230117993
[20]
Wang, Y.; Song, Y-F.; Zhang, L.; Dai, G-G.; Kang, R-F.; Wu, W-N.; Xu, Z-H.; Fan, Y-C.; Bian, L-Y. A pyrazole-containing hydrazone for fluorescent imaging of Al3+ in lysosomes and its resultant Al3+ complex as a sensor for F. Talanta, 2019, 203, 178-185.
[http://dx.doi.org/10.1016/j.talanta.2019.05.051] [PMID: 31202324]
[21]
Gu, Y-Q.; Shen, W-Y.; Mi, Y.; Jing, Y-F.; Yuan, J-M.; Yu, P.; Zhu, X-M.; Hu, F-L. Dual-response detection of Ni2+ and Cu2+ ions by a pyrazolopyrimidine-based fluorescent sensor and the application of this sensor in bioimaging. RSC Adv, 2019, 9(61), 35671-35676.
[http://dx.doi.org/10.1039/C9RA06227K]
[22]
Tigreros, A.; Rosero, H-A.; Castillo, J-C.; Portilla, J. Integrated pyrazolo[1,5-a]pyrimidine-hemicyanine system as a colorimetric and fluorometric chemosensor for cyanide recognition in water. Talanta, 2019, 196, 395-401.
[http://dx.doi.org/10.1016/j.talanta.2018.12.100] [PMID: 30683383]
[23]
Han, J.; Zhang, J.; Gao, M.; Hao, H.; Xu, X. Recent advances in chromo-fluorogenic probes for fluoride detection. Dyes Pigments, 2019, 162, 412-439.
[24]
Santos-Figueroa, L.E.; Moragues, M.E.; Climent, E.; Agostini, A.; Martínez-Máñez, R.; Sancenón, F. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011. Chem. Soc. Rev., 2013, 42(8), 3489-3613.
[http://dx.doi.org/10.1039/c3cs35429f] [PMID: 23400370]
[25]
Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med., 2009, 30(1-2), 1-12.
[http://dx.doi.org/10.1016/j.mam.2008.08.006] [PMID: 18796312]
[26]
Lee, S.; Li, J.; Zhou, X.; Yin, J.; Yoon, J. Recent progress on the development of glutathione (GSH) selective fluorescent and colorimetric probes. Coord. Chem. Rev., 2018, 366, 29-68.
[http://dx.doi.org/10.1016/j.ccr.2018.03.021]
[27]
Subramaniyan, S.B.; Annes, S.B.; Yuvasri, M.; Nivedha, K.; Ramesh, S.; Anbazhagan, V. 1,3,5-triphenylpyrazoline based fluorescent probe for selective sensing and imaging of glutathione in live cell under oxidative stress. Chem. Select., 2020, 5(2), 515-521.
[http://dx.doi.org/10.1002/slct.201904169]
[28]
Zhang, R-R.; Zhang, J-F.; Wang, S-Q.; Cheng, Y-L.; Miao, J-Y.; Zhao, B-X. Novel pyrazoline-based fluorescent probe for detecting thiols and its application in cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2015, 137, 450-455.
[29]
Wang, S-Q.; Wu, Q-H.; Wang, H-Y.; Zheng, X-X.; Shen, S-L.; Zhang, Y-R.; Miao, J-Y.; Zhao, B-X. A novel pyrazoline-based selective fluorescent probe for detecting reduced glutathione and its application in living cells and serum. Analyst (Lond.), 2013, 138(23), 7169-7174.
[http://dx.doi.org/10.1039/c3an01440a] [PMID: 24106736]
[30]
Wang, S-Q.; Wu, Q-H.; Wang, H-Y.; Zheng, X-X.; Shen, S-L.; Zhang, Y-R.; Miao, J-Y.; Zhao, B-X. Novel pyrazoline-based fluorescent probe for detecting glutathione and its application in cells. Biosens. Bioelectron., 2014, 55, 386-390.
[http://dx.doi.org/10.1016/j.bios.2013.12.047] [PMID: 24434493]
[31]
Dai, X.; Zhang, T.; Li, Y.; Yan, T.; Wang, P-C.; Miao, J-Y.; Zhao, B-X. An effective fluorescent probe to detect glutathione from other sulfhydryl compounds in aqueous solution and its living cell imaging. RSC Adv, 2014, 4(97), 54650-54654.
[http://dx.doi.org/10.1039/C4RA09712B]
[32]
Tigreros, A.; Aranzazu, S-L.; Bravo, N-F.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5-a]pyrimidines based fluorophores: a comprehensive theoretical-experimental study. RSC Adv, 2020, 10, 39542-39552.
[http://dx.doi.org/10.1039/D0RA07716J]
[33]
Orrego-Hernández, J.; Portilla, J. Synthesis of dicyanovinyl-substituted 1-(2-pyridyl)pyrazoles: design of a fluorescent chemosensor for selective recognition of cyanide. J. Org. Chem., 2017, 82(24), 13376-13385.
[http://dx.doi.org/10.1021/acs.joc.7b02460] [PMID: 29171269]
[34]
Chin, J.; Kim, H-J. Near-infrared fluorescent probes for peptidases. Coord. Chem. Rev., 2018, 354, 169-181.
[http://dx.doi.org/10.1016/j.ccr.2017.07.009]]
[35]
Specht, E.A.; Braselmann, E.; Palmer, A.E. A critical and comparative review of fluorescent tools for live-cell imaging. Annu. Rev. Physiol., 2017, 79(1), 93-117.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034055] [PMID: 27860833]
[36]
Nakayama, A.; Otani, A.; Inokuma, T.; Tsuji, D.; Mukaiyama, H.; Nakayama, A.; Itoh, K.; Otaka, A.; Tanino, K.; Namba, K. Development of a 1,3a,6a-triazapentalene derivative as a compact and thiol-specific fluorescent labeling reagent. Commun. Chem., 2020, 3(1), 1-9.
[http://dx.doi.org/10.1038/s42004-019-0250-0]
[37]
Tian, M.; Sun, J.; Dong, B.; Lin, W. Construction of mitochondria-nucleolus shuttling fluorescent probe for the reversible detection of mitochondrial membrane potential. Sens. Actuators B Chem., 2019, 292, 16-23.
[http://dx.doi.org/10.1016/j.snb.2019.04.118]]
[38]
Mayank; Rani, R.; Singh, A.; Garg, N.; Kaur, N.; Singh, N. Mitochondria- and nucleolus-targeted copper(i) complexes with pyrazole-linked triphenylphosphine moieties for live cell imaging. Analyst (Lond.), 2020, 145(1), 83-90.
[http://dx.doi.org/10.1039/C9AN01513B]
[39]
Ismail, N.S.M.; Ali, G.M.E.; Ibrahim, D.A.; Elmetwali, A.M. Medicinal attributes of pyrazolo[1,5-a]pyrimidine based scaffold derivatives targeting kinases as anticancer agents. Futur. J. Pharm. Sci., 2016, 2(2), 60-70.
[40]
Yang, X-Z.; Sun, R.; Guo, X.; Wei, X-R.; Gao, J.; Xu, Y-J.; Ge, J-F. The application of bioactive pyrazolopyrimidine unit for the construction of fluorescent biomarkers. Dyes Pigments, 2020, 173107878
[41]
Chowdhury, R.; Amin, M.A.; Bhattacharyya, K. Intermittent fluorescence oscillations in lipid droplets in a live normal and lung cancer cell: time-resolved confocal microscopy. J. Phys. Chem. B, 2015, 119(34), 10868-10875.
[http://dx.doi.org/10.1021/jp5120042] [PMID: 25674799]
[42]
Cherukupalli, S.; Karpoormath, R.; Chandrasekaran, B.; Hampannavar, G.A.; Thapliyal, N.; Palakollu, V.N. An insight on synthetic and medicinal aspects of pyrazolo[1,5-a]pyrimidine scaffold. Eur. J. Med. Chem., 2017, 126, 298-352.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.019] [PMID: 27894044]
[43]
Tigreros, A.; Castillo, J-C.; Portilla, J. Cyanide chemosensors based on 3-dicyanovinylpyrazolo[1,5-a]pyrimidines: Effects of peripheral 4-anisyl group substitution on the photophysical properties. Talanta, 2020, 215120905
[http://dx.doi.org/10.1016/j.talanta.2020.120905] [PMID: 32312450]
[44]
Tigreros, A.; Ortiz, A.; Insuasty, B. Effect of π-conjugated linkage on photophysical properties: acetylene linker as the better connection group for highly solvatochromic probes. Dyes Pigments, 2014, 111, 45-51.
[http://dx.doi.org/10.1016/j.dyepig.2014.05.035]
[45]
Tigreros, A.; Macías, M.; Portilla, J. Photophysical and crystallographic study of three integrated pyrazolo[1,5-a]pyrimidine– triphenylamine systems. Dye Pigment., 2021, 184..
[46]
Onal, G.; Kutlu, O.; Gozuacik, D.; Dokmeci Emre, S. Lipid droplets in health and disease. Lipids Health Dis., 2017, 16(1), 128.
[http://dx.doi.org/10.1186/s12944-017-0521-7] [PMID: 28662670]

© 2024 Bentham Science Publishers | Privacy Policy