Review Article

Evolutionary Timeline of Genetic Delivery and Gene Therapy

Author(s): Natalie J. Holl, Han-Jung Lee and Yue-Wern Huang*

Volume 21 , Issue 2 , 2021

Published on: 08 December, 2020

Page: [89 - 111] Pages: 23

DOI: 10.2174/1566523220666201208092517

Price: $65

Abstract

There are more than 3,500 genes that are being linked to hereditary diseases or correlated with an elevated risk of certain illnesses. As an alternative to conventional treatments with small molecule drugs, gene therapy has arisen as an effective treatment with the potential to not just alleviate disease conditions but also cure them completely. In order for these treatment regimens to work, genes or editing tools intended to correct diseased genetic material must be efficiently delivered to target sites. There have been many techniques developed to achieve such a goal. In this article, we systematically review a variety of gene delivery and therapy methods that include physical methods, chemical and biochemical methods, viral methods, and genome editing. We discuss their historical discovery, mechanisms, advantages, limitations, safety, and perspectives.

Keywords: Nonviral, CPPs, viral, ZFNs, TALENs, CRISPR, gene therapy, genetic delivery, genome editing.

Graphical Abstract
[1]
Yin H, Kauffman KJ, Anderson DG. Delivery technologies for genome editing. Nat Rev Drug Discov 2017; 16(6): 387-99.
[http://dx.doi.org/10.1038/nrd.2016.280] [PMID: 28337020]
[2]
Burney TJ, Davies JC. Gene therapy for the treatment of cystic fibrosis. Appl Clin Genet 2012; 5: 29-36.
[PMID: 23776378]
[3]
Hoban MD, Orkin SH, Bauer DE. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. Blood 2016; 127(7): 839-48.
[http://dx.doi.org/10.1182/blood-2015-09-618587] [PMID: 26758916]
[4]
Dickey AS, La Spada AR. Therapy development in Huntington disease: From current strategies to emerging opportunities. Am J Med Genet A 2018; 176(4): 842-61.
[http://dx.doi.org/10.1002/ajmg.a.38494] [PMID: 29218782]
[5]
van Gaal EV, Hennink WE, Crommelin DJ, Mastrobattista E. Plasmid engineering for controlled and sustained gene expression for nonviral gene therapy. Pharm Res 2006; 23(6): 1053-74.
[http://dx.doi.org/10.1007/s11095-006-0164-2] [PMID: 16715361]
[6]
Giacca M, Zacchigna S. Virus-mediated gene delivery for human gene therapy. J Control Release 2012; 161(2): 377-88.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.008] [PMID: 22516095]
[7]
Laham-Karam N, Pinto GP, Poso A, Kokkonen P. Transcription and translation inhibitors in cancer treatment. Front Chem 2020; 8: 276.
[http://dx.doi.org/10.3389/fchem.2020.00276] [PMID: 32373584]
[8]
Bennett CF, Krainer AR, Cleveland DW. Antisense oligonucleotide therapies for neurodegenerative diseases. Annu Rev Neurosci 2019; 42: 385-406.
[http://dx.doi.org/10.1146/annurev-neuro-070918-050501] [PMID: 31283897]
[9]
Laina A, Gatsiou A, Georgiopoulos G, Stamatelopoulos K, Stellos K. RNA therapeutics in cardiovascular precision medicine. Front Physiol 2018; 9: 953.
[http://dx.doi.org/10.3389/fphys.2018.00953] [PMID: 30090066]
[10]
Aiuti A, Biasco L, Scaramuzza S, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 2013; 341(6148): 1233151.
[http://dx.doi.org/10.1126/science.1233151] [PMID: 23845947]
[11]
Aiuti A, Cassani B, Andolfi G, et al. Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy. J Clin Invest 2007; 117(8): 2233-40.
[http://dx.doi.org/10.1172/JCI31666] [PMID: 17671653]
[12]
Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009; 326(5954): 818-23.
[http://dx.doi.org/10.1126/science.1171242] [PMID: 19892975]
[13]
Cavazzana-Calvo M, Payen E, Negre O, et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 2010; 467(7313): 318-22.
[http://dx.doi.org/10.1038/nature09328] [PMID: 20844535]
[14]
Stolberg SG. The biotech death of Jesse Gelsinger.The Best of the Best American Science Writing. New York, NY: HarperCollins Publishers 2010; pp. 30-44.
[15]
Gene-therapy trials must proceed with caution. Nature 2016; 534(7609): 590.
[http://dx.doi.org/10.1038/534590a] [PMID: 27357758]
[16]
Lodish H, Berk A, Matsudaira P, et al. Transport of ions and small molecules across cell membranes.Molecular cell biology. 5th ed. New York, NY: W. H. Freeman and Company 2003; pp. 245-300.
[17]
Lehto T, Ezzat K, Wood MJA, El Andaloussi S. Peptides for nucleic acid delivery. Adv Drug Deliv Rev 2016; 106(A): 172-82.
[http://dx.doi.org/10.1016/j.addr.2016.06.008]
[18]
Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J 2009; 11(4): 671-81.
[http://dx.doi.org/10.1208/s12248-009-9143-y] [PMID: 19834816]
[19]
Kulkarni JA, Myhre JL, Chen S, et al. Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. Nanomedicine (Lond) 2017; 13(4): 1377-87.
[http://dx.doi.org/10.1016/j.nano.2016.12.014] [PMID: 28038954]
[20]
Genetics Home Reference. What are genome editing and CRISPR-Cas9? 2020. Available from: https://ghr.nlm.nih.gov/primer/genomicresearch/genomeediting
[21]
Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: An update. J Gene Med 2018; 20(5): e3015.
[http://dx.doi.org/10.1002/jgm.3015] [PMID: 29575374]
[22]
Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat Biotechnol 2000; 18(1): 33-7.
[http://dx.doi.org/10.1038/71889] [PMID: 10625387]
[23]
Jinturkar KA, Rathi MN, Misra A. Gene delivery using physical methods.Challenges in delivery of therapeutic genomics and proteomics. 1st ed. Elsevier Inc. 2011; pp. 83-126.
[http://dx.doi.org/10.1016/B978-0-12-384964-9.00003-7]
[24]
Kaestner L, Scholz A, Lipp P. Conceptual and technical aspects of transfection and gene delivery. Bioorg Med Chem Lett 2015; 25(6): 1171-6.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.018] [PMID: 25677659]
[25]
Korzh V, Strähle U. Marshall Barber and the century of microinjection: from cloning of bacteria to cloning of everything. Differentiation 2002; 70(6): 221-6.
[http://dx.doi.org/10.1046/j.1432-0436.2002.700601.x] [PMID: 12190984]
[26]
Di Berardino MA, McKinnell RG, Wolf DP. The golden anniversary of cloning: a celebratory essay. Differentiation 2003; 71(7): 398-401.
[http://dx.doi.org/10.1046/j.1432-0436.2003.7107002.x] [PMID: 12969332]
[27]
Tonelli FMP, Lacerda SMSN, Tonelli FCP, Costa GMJ, de França LR, Resende RR. Progress and biotechnological prospects in fish transgenesis. Biotechnol Adv 2017; 35(6): 832-44.
[http://dx.doi.org/10.1016/j.biotechadv.2017.06.002] [PMID: 28602961]
[28]
Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 385(6619): 810-3.
[http://dx.doi.org/10.1038/385810a0] [PMID: 9039911]
[29]
Chow YT, Chen S, Wang R, et al. Single cell transfection through precise microinjection with quantitatively controlled injection volumes. Sci Rep 2016; 6: 24127.
[http://dx.doi.org/10.1038/srep24127] [PMID: 27067121]
[30]
Capecchi MR. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 1980; 22(2 Pt 2): 479-88.
[http://dx.doi.org/10.1016/0092-8674(80)90358-X] [PMID: 6256082]
[31]
Dean DA. Microinjection. In: Maloy S, Hughes K, Eds. Brenner’s encyclopedia of genetics. 2nd ed. Cambridge, MA: Academic Press 2013; pp. 409-10.
[http://dx.doi.org/10.1016/B978-0-12-374984-0.00945-1]
[32]
Donnelly RF, Raj Singh TR, Woolfson AD. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv 2010; 17(4): 187-207.
[http://dx.doi.org/10.3109/10717541003667798] [PMID: 20297904]
[33]
Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagn Res 2015; 9(1): GE01-6.
[http://dx.doi.org/10.7860/JCDR/2015/10443.5394] [PMID: 25738007]
[34]
Klein TM, Wolf ED, Wu R, Sanford JC. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 1987; 327: 70-3.
[http://dx.doi.org/10.1038/327070a0]
[35]
Davidson JM, Krieg T, Eming SA. Particle-mediated gene therapy of wounds. Wound Repair Regen 2000; 8(6): 452-9.
[http://dx.doi.org/10.1046/j.1524-475x.2000.00452.x] [PMID: 11208172]
[36]
Finer JJ, Finer KR, Ponappa T. Particle bombardment mediated transformation. Curr Top Microbiol Immunol 1999; 240: 59-80.
[http://dx.doi.org/10.1007/978-3-642-60234-4_3] [PMID: 10394715]
[37]
Wagner DE, Bhaduri SB. Progress and outlook of inorganic nanoparticles for delivery of nucleic acid sequences related to orthopedic pathologies: a review. Tissue Eng Part B Rev 2012; 18(1): 1-14.
[http://dx.doi.org/10.1089/ten.teb.2011.0081] [PMID: 21707439]
[38]
Xia J, Martinez A, Daniell H, Ebert SN. Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques. BMC Biotechnol 2011; 11: 62.
[http://dx.doi.org/10.1186/1472-6750-11-62] [PMID: 21635760]
[39]
Suda T, Liu D. Hydrodynamic gene delivery: its principles and applications. Mol Ther 2007; 15(12): 2063-9.
[http://dx.doi.org/10.1038/sj.mt.6300314] [PMID: 17912237]
[40]
Budker V, Zhang G, Danko I, Williams P, Wolff J. The efficient expression of intravascularly delivered DNA in rat muscle. Gene Ther 1998; 5(2): 272-6.
[http://dx.doi.org/10.1038/sj.gt.3300572] [PMID: 9578848]
[41]
Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 1999; 6(7): 1258-66.
[http://dx.doi.org/10.1038/sj.gt.3300947] [PMID: 10455434]
[42]
Bonamassa B, Hai L, Liu D. Hydrodynamic gene delivery and its applications in pharmaceutical research. Pharm Res 2011; 28(4): 694-701.
[http://dx.doi.org/10.1007/s11095-010-0338-9] [PMID: 21191634]
[43]
Yang PL, Althage A, Chung J, Chisari FV. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc Natl Acad Sci USA 2002; 99(21): 13825-30.
[http://dx.doi.org/10.1073/pnas.202398599] [PMID: 12374864]
[44]
Kamimura K, Yokoo T, Abe H, et al. Image-guided hydrodynamic gene delivery: current status and future directions. Pharmaceutics 2015; 7(3): 213-23.
[http://dx.doi.org/10.3390/pharmaceutics7030213] [PMID: 26308044]
[45]
Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Sueishi M. Sonoporation: Gene transfer using ultrasound. World J Methodol 2013; 3(4): 39-44.
[http://dx.doi.org/10.5662/wjm.v3.i4.39] [PMID: 25237622]
[46]
Fechheimer M, Boylan JF, Parker S, Sisken JE, Patel GL, Zimmer SG. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci USA 1987; 84(23): 8463-7.
[http://dx.doi.org/10.1073/pnas.84.23.8463] [PMID: 2446324]
[47]
Nelson TR, Fowlkes JB, Abramowicz JS, Church CC. Ultrasound biosafety considerations for the practicing sonographer and sonologist. J Ultrasound Med 2009; 28(2): 139-50.
[http://dx.doi.org/10.7863/jum.2009.28.2.139] [PMID: 19168764]
[48]
Miller DL, Pislaru SV, Greenleaf JE. Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet 2002; 27(1-6): 115-34.
[http://dx.doi.org/10.1023/A:1022983907223] [PMID: 12774945]
[49]
Shapiro G, Wong AW, Bez M, et al. Multiparameter evaluation of in vivo gene delivery using ultrasound-guided, microbubble-enhanced sonoporation. J Control Release 2016; 223: 157-64.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.001] [PMID: 26682505]
[50]
Kim HJ, Greenleaf JF, Kinnick RR, Bronk JT, Bolander ME. Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther 1996; 7(11): 1339-46.
[http://dx.doi.org/10.1089/hum.1996.7.11-1339] [PMID: 8818721]
[51]
Luft C, Ketteler R. Electroporation knows no boundaries: the use of electrostimulation for siRNA delivery in cells and tissues. J Biomol Screen 2015; 20(8): 932-42.
[http://dx.doi.org/10.1177/1087057115579638] [PMID: 25851034]
[52]
Dean DA, Gasiorowski JZ. Nonviral gene delivery. Cold Spring Harb Protoc 2011; 2011(3): top101.
[http://dx.doi.org/10.1101/pdb.top101] [PMID: 21363958]
[53]
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1982; 1(7): 841-5.
[http://dx.doi.org/10.1002/j.1460-2075.1982.tb01257.x] [PMID: 6329708]
[54]
Titomirov AV, Sukharev S, Kistanova E. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1991; 1088(1): 131-4.
[http://dx.doi.org/10.1016/0167-4781(91)90162-F] [PMID: 1703441]
[55]
Heller R, Jaroszeski M, Atkin A, et al. In vivo gene electroinjection and expression in rat liver. FEBS Lett 1996; 389(3): 225-8.
[http://dx.doi.org/10.1016/0014-5793(96)00590-X] [PMID: 8766704]
[56]
Heller LC, Jaroszeski MJ, Coppola D, McCray AN, Hickey J, Heller R. Optimization of cutaneous electrically mediated plasmid DNA delivery using novel electrode. Gene Ther 2007; 14(3): 275-80.
[http://dx.doi.org/10.1038/sj.gt.3302867] [PMID: 16988718]
[57]
Graham FL, van der Eb AJ. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 1973; 52(2): 456-67.
[http://dx.doi.org/10.1016/0042-6822(73)90341-3] [PMID: 4705382]
[58]
Roy I, Mitra S, Maitra A, Mozumdar S. Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int J Pharm 2003; 250(1): 25-33.
[http://dx.doi.org/10.1016/S0378-5173(02)00452-0] [PMID: 12480270]
[59]
Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed Engl 2008; 47(8): 1382-95.
[http://dx.doi.org/10.1002/anie.200703039] [PMID: 18098258]
[60]
Kuo IY, Ehrlich BE. Signaling in muscle contraction. Cold Spring Harb Perspect Biol 2015; 7(2): a006023.
[http://dx.doi.org/10.1101/cshperspect.a006023] [PMID: 25646377]
[61]
Xie Y, Chen Y, Sun M, Ping Q. A mini review of biodegradable calcium phosphate nanoparticles for gene delivery. Curr Pharm Biotechnol 2013; 14(10): 918-25.
[http://dx.doi.org/10.2174/1389201014666131226145441] [PMID: 24372244]
[62]
Chowdhury EH, Sasagawa T, Nagaoka M, Kundu AK, Akaike T. Transfecting mammalian cells by DNA/calcium phosphate precipitates: effect of temperature and pH on precipitation. Anal Biochem 2003; 314(2): 316-8.
[http://dx.doi.org/10.1016/S0003-2697(02)00648-6] [PMID: 12654319]
[63]
Jordan M, Schallhorn A, Wurm FM. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res 1996; 24(4): 596-601.
[http://dx.doi.org/10.1093/nar/24.4.596] [PMID: 8604299]
[64]
Jiang M, Deng L, Chen G. High Ca(2+)-phosphate transfection efficiency enables single neuron gene analysis. Gene Ther 2004; 11(17): 1303-11.
[http://dx.doi.org/10.1038/sj.gt.3302305] [PMID: 15229630]
[65]
Manjila SB, Baby JN, Bijin EN, Constantine I, Pramod K, Valsalakumari J. Novel gene delivery systems. Int J Pharm Investig 2013; 3(1): 1-7.
[http://dx.doi.org/10.4103/2230-973X.108958] [PMID: 23799200]
[66]
Sandoval-Yañez C, Castro Rodriguez C. Dendrimers: amazing platforms for bioactive molecule delivery systems. Materials (Basel) 2020; 13(3): E570.
[http://dx.doi.org/10.3390/ma13030570] [PMID: 31991703]
[67]
Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 2014; 9(1): 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[68]
Abedi-Gaballu F, Dehghan G, Ghaffari M, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today 2018; 12: 177-90.
[http://dx.doi.org/10.1016/j.apmt.2018.05.002] [PMID: 30511014]
[69]
Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev 2005; 57(15): 2177-202.
[http://dx.doi.org/10.1016/j.addr.2005.09.017] [PMID: 16310284]
[70]
Haensler J, Szoka FC Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 1993; 4(5): 372-9.
[http://dx.doi.org/10.1021/bc00023a012] [PMID: 8274523]
[71]
Shakhbazau A, Isayenka I, Kartel N, et al. Transfection efficiencies of PAMAM dendrimers correlate inversely with their hydrophobicity. Int J Pharm 2010; 383(1-2): 228-35.
[http://dx.doi.org/10.1016/j.ijpharm.2009.09.020] [PMID: 19770028]
[72]
Kukowska-Latallo JF, Bielinska AU, Johnson J, Spindler R, Tomalia DA, Baker JR Jr. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc Natl Acad Sci USA 1996; 93(10): 4897-902.
[http://dx.doi.org/10.1073/pnas.93.10.4897] [PMID: 8643500]
[73]
Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 2014; 6(3): 139-50.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[74]
Pei D, Buyanova M. Overcoming Endosomal Entrapment in Drug Delivery. Bioconjug Chem 2019; 30(2): 273-83.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00778] [PMID: 30525488]
[75]
Kukowska-Latallo JF, Raczka E, Quintana A, Chen C, Rymaszewski M, Baker JR Jr. Intravascular and endobronchial DNA delivery to murine lung tissue using a novel, nonviral vector. Hum Gene Ther 2000; 11(10): 1385-95.
[http://dx.doi.org/10.1089/10430340050057468] [PMID: 10910136]
[76]
Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 2005; 57(15): 2215-37.
[http://dx.doi.org/10.1016/j.addr.2005.09.019] [PMID: 16297497]
[77]
Felgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84(21): 7413-7.
[http://dx.doi.org/10.1073/pnas.84.21.7413] [PMID: 2823261]
[78]
Wasungu L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 2006; 116(2): 255-64.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.024] [PMID: 16914222]
[79]
Carter M, Shieh J. Gene delivery strategies. In: Farra N, Ed. Guide to research techniques in neuroscience. 2nd ed. Cambridge, MA: Academic Press 2015; pp. 239-52.
[http://dx.doi.org/10.1016/B978-0-12-800511-8.00011-3]
[80]
Zhao Y, Huang L. Lipid nanoparticles for gene delivery. Adv Genet 2014; 88: 13-36.
[http://dx.doi.org/10.1016/B978-0-12-800148-6.00002-X] [PMID: 25409602]
[81]
Ross PC, Hui SW. Lipoplex size is a major determinant of in vitro lipofection efficiency. Gene Ther 1999; 6(4): 651-9.
[http://dx.doi.org/10.1038/sj.gt.3300863] [PMID: 10476225]
[82]
Dalby B, Cates S, Harris A, et al. Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 2004; 33(2): 95-103.
[http://dx.doi.org/10.1016/j.ymeth.2003.11.023] [PMID: 15121163]
[83]
Khatri N, Baradia D, Vhora I, Rathi M, Misra A. Development and characterization of siRNA lipoplexes: Effect of different lipids, in vitro evaluation in cancerous cell lines and in vivo toxicity study. AAPS PharmSciTech 2014; 15(6): 1630-43.
[http://dx.doi.org/10.1208/s12249-014-0193-9] [PMID: 25145330]
[84]
McClorey G, Banerjee S. Cell-penetrating peptides to enhance delivery of oligonucleotide-based therapeutics. Biomedicines 2018; 6(2): E51.
[http://dx.doi.org/10.3390/biomedicines6020051] [PMID: 29734750]
[85]
Gagat M, Zielińska W, Grzanka A. Cell-penetrating peptides and their utility in genome function modifications (Review). Int J Mol Med 2017; 40(6): 1615-23.
[http://dx.doi.org/10.3892/ijmm.2017.3172] [PMID: 29039455]
[86]
Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 2017; 24(1): 21.
[http://dx.doi.org/10.1186/s12929-017-0328-x] [PMID: 28320393]
[87]
Liu BR, Huang YW, Aronstam RS, Lee HJ. Identification of a short cell-penetrating peptide from bovine lactoferricin for intracellular delivery of DNA in human A549 Cells. PLoS One 2016; 11(3): e0150439.
[http://dx.doi.org/10.1371/journal.pone.0150439] [PMID: 26942714]
[88]
Chang M, Huang YW, Aronstam RS, Lee HJ. Cellular delivery of noncovalently-associated macromolecules by cell-penetrating peptides. Curr Pharm Biotechnol 2014; 15(3): 267-75.
[http://dx.doi.org/10.2174/1389201015666140617095415] [PMID: 24938892]
[89]
Huang YW, Lee HJ, Tolliver LM, Aronstam RS. Delivery of nucleic acids and nanomaterials by cell-penetrating peptides: opportunities and challenges. BioMed Res Int 2015; 2015: 834079.
[http://dx.doi.org/10.1155/2015/834079] [PMID: 25883975]
[90]
Schwarze SR, Dowdy SF. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci 2000; 21(2): 45-8.
[http://dx.doi.org/10.1016/S0165-6147(99)01429-7] [PMID: 10664605]
[91]
Heitz F, Morris MC, Divita G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 2009; 157(2): 195-206.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00057.x] [PMID: 19309362]
[92]
Agrawal P, Bhalla S, Usmani SS, et al. CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides. Nucleic Acids Res 2016; 44(D1): D1098-103.
[http://dx.doi.org/10.1093/nar/gkv1266] [PMID: 26586798]
[93]
Holton TA, Pollastri G, Shields DC, Mooney C. CPPpred: prediction of cell penetrating peptides. Bioinformatics 2013; 29(23): 3094-6.
[http://dx.doi.org/10.1093/bioinformatics/btt518] [PMID: 24064418]
[94]
Pandey P, Patel V, George NV, Mallajosyula SS. KELM-CPPpred: kernel extreme learning machine based prediction model for cell-penetrating peptides. J Proteome Res 2018; 17(9): 3214-22.
[http://dx.doi.org/10.1021/acs.jproteome.8b00322] [PMID: 30032609]
[95]
Gautam A, Chaudhary K, Kumar R, et al. Open source drug discovery consortium. In silico approaches for designing highly effective cell penetrating peptides. J Transl Med 2013; 11: 74.
[http://dx.doi.org/10.1186/1479-5876-11-74] [PMID: 23517638]
[96]
Tang H, Su ZD, Wei HH, Chen W, Lin H. Prediction of cell-penetrating peptides with feature selection techniques. Biochem Biophys Res Commun 2016; 477(1): 150-4.
[http://dx.doi.org/10.1016/j.bbrc.2016.06.035] [PMID: 27291150]
[97]
Wei L, Xing P, Su R, Shi G, Ma ZS, Zou Q. CPPred-RF: a sequence-based predictor for identifying cell-penetrating peptides and their uptake efficiency. J Proteome Res 2017; 16(5): 2044-53.
[http://dx.doi.org/10.1021/acs.jproteome.7b00019] [PMID: 28436664]
[98]
Wei L, Tang J, Zou Q. SkipCPP-Pred: an improved and promising sequence-based predictor for predicting cell-penetrating peptides. BMC Genomics 2017; 18(Suppl. 7): 742.
[http://dx.doi.org/10.1186/s12864-017-4128-1] [PMID: 29513192]
[99]
Manavalan B, Subramaniyam S, Shin TH, Kim MO, Lee G. Machine-learning-based prediction of cell-penetrating peptides and their uptake efficiency with improved accuracy. J Proteome Res 2018; 17(8): 2715-26.
[http://dx.doi.org/10.1021/acs.jproteome.8b00148] [PMID: 29893128]
[100]
Qiang X, Zhou C, Ye X, Du PF, Su R, Wei L. CPPred-FL: a sequence-based predictor for large-scale identification of cell-penetrating peptides by feature representation learning. Brief Bioinform 2018.
[http://dx.doi.org/10.1093/bib/bby091] [PMID: 30239616]
[101]
Wang S, Cao Z, Li M, Yue Y. G-DipC: an improved feature representation method for short sequences to predict the type of cargo in cell-penetrating peptides. IEEE/ACM Trans Comput Biol Bioinform 2020; 17(3): 739-47.
[102]
Fu X, Cai L, Zeng X, Zou Q. StackCPPred: a stacking and pairwise energy content-based prediction of cell-penetrating peptides and their uptake efficiency. Bioinformatics 2020; 36(10): 3028-34.
[http://dx.doi.org/10.1093/bioinformatics/btaa131] [PMID: 32105326]
[103]
Arif M, Ahmad S, Ali F, Fang G, Li M, Yu DJ. TargetCPP: accurate prediction of cell-penetrating peptides from optimized multi-scale features using gradient boost decision tree. J Comput Aided Mol Des 2020; 34(8): 841-56.
[http://dx.doi.org/10.1007/s10822-020-00307-z] [PMID: 32180124]
[104]
Zhu P, Jin L. Cell penetrating peptides: a promising tool for the cellular uptake of macromolecular drugs. Curr Protein Pept Sci 2018; 19(2): 211-20.
[PMID: 28699510]
[105]
Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003; 422(6927): 37-44.
[http://dx.doi.org/10.1038/nature01451] [PMID: 12621426]
[106]
Allinquant B, Hantraye P, Mailleux P, Moya K, Bouillot C, Prochiantz A. Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro. J Cell Biol 1995; 128(5): 919-27.
[http://dx.doi.org/10.1083/jcb.128.5.919] [PMID: 7876315]
[107]
Morris MC, Vidal P, Chaloin L, Heitz F, Divita G. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 1997; 25(14): 2730-6.
[http://dx.doi.org/10.1093/nar/25.14.2730] [PMID: 9207018]
[108]
Kardani K, Hashemi A, Bolhassani A. Comparison of HIV-1 Vif and Vpu accessory proteins for delivery of polyepitope constructs harboring Nef, Gp160 and P24 using various cell penetrating peptides. PLoS One 2019; 14(10): e0223844.
[http://dx.doi.org/10.1371/journal.pone.0223844] [PMID: 31671105]
[109]
Borrelli A, Tornesello AL, Tornesello ML, Buonaguro FM. Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules 2018; 23(2): E295.
[http://dx.doi.org/10.3390/molecules23020295] [PMID: 29385037]
[110]
Rádis-Baptista G, Campelo IS, Morlighem JRL, Melo LM, Freitas VJF. Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis. J Biotechnol 2017; 252: 15-26.
[http://dx.doi.org/10.1016/j.jbiotec.2017.05.002] [PMID: 28479163]
[111]
Park K. in vivo DNA delivery with NickFect peptide vectors. J Control Release 2016; 241: 242.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.005] [PMID: 27751254]
[112]
Bender E. Gene therapy: Industrial strength. Nature 2016; 537(7619): S57-9.
[http://dx.doi.org/10.1038/537S57a] [PMID: 27602741]
[113]
Glogau R, Blitzer A, Brandt F, Kane M, Monheit GD, Waugh JM. Results of a randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of a botulinum toxin type A topical gel for the treatment of moderate-to-severe lateral canthal lines. J Drugs Dermatol 2012; 11(1): 38-45.
[PMID: 22206075]
[114]
Lönn P, Dowdy SF. Cationic PTD/CPP-mediated macromolecular delivery: charging into the cell. Expert Opin Drug Deliv 2015; 12(10): 1627-36.
[http://dx.doi.org/10.1517/17425247.2015.1046431] [PMID: 25994800]
[115]
Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci 2017; 38(4): 406-24.
[http://dx.doi.org/10.1016/j.tips.2017.01.003] [PMID: 28209404]
[116]
Lostalé-Seijo I, Louzao I, Juanes M, Montenegro J. Peptide/Cas9 nanostructures for ribonucleoprotein cell membrane transport and gene edition. Chem Sci (Camb) 2017; 8(12): 7923-31.
[http://dx.doi.org/10.1039/C7SC03918B] [PMID: 29619166]
[117]
Huang YW, Lee HJ. Cell-penetrating peptides for medical theranostics and targeted gene delivery. In: Koutsopoulos S, Ed. Peptide applications in biomedicine, biotechnology and bioengineering. Oxford, UK: Woodhead Publishing 2018; pp. 359-70.
[http://dx.doi.org/10.1016/B978-0-08-100736-5.00013-2]
[118]
Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 2014; 24(6): 1020-7.
[http://dx.doi.org/10.1101/gr.171264.113] [PMID: 24696462]
[119]
Oude Blenke E, Evers MJ, Mastrobattista E, van der Oost J. CRISPR-Cas9 gene editing: delivery aspects and therapeutic potential. J Control Release 2016; 244(B): 139-48.
[120]
He Y, Li F, Huang Y. Smart cell-penetrating peptide-based techniques for intracellular delivery of therapeutic macromolecules. Adv Protein Chem Struct Biol 2018; 112: 183-220.
[http://dx.doi.org/10.1016/bs.apcsb.2018.01.004] [PMID: 29680237]
[121]
Khrustalev VV, Khrustaleva TA, Stojarov AN, Sharma N, Bhaskar B, Giri R. The history of mutational pressure changes during the evolution of adeno-associated viruses: A message to gene therapy and DNA-vaccine vectors designers. Infect Genet Evol 2020; 77: 104100.
[http://dx.doi.org/10.1016/j.meegid.2019.104100] [PMID: 31678645]
[122]
Goswami R, Subramanian G, Silayeva L, et al. Gene therapy leaves a vicious cycle. Front Oncol 2019; 9: 297.
[http://dx.doi.org/10.3389/fonc.2019.00297] [PMID: 31069169]
[123]
Crystal RG. Adenovirus: the first effective in vivo gene delivery vector. Hum Gene Ther 2014; 25(1): 3-11.
[http://dx.doi.org/10.1089/hum.2013.2527] [PMID: 24444179]
[124]
Zabner J, Couture LA, Gregory RJ, Graham SM, Smith AE, Welsh MJ. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 1993; 75(2): 207-16.
[http://dx.doi.org/10.1016/0092-8674(93)80063-K] [PMID: 7691415]
[125]
Gonçalves MA, de Vries AA. Adenovirus: from foe to friend. Rev Med Virol 2006; 16(3): 167-86.
[http://dx.doi.org/10.1002/rmv.494] [PMID: 16710837]
[126]
Chirmule N, Propert K, Magosin S, Qian Y, Qian R, Wilson J. Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther 1999; 6(9): 1574-83.
[http://dx.doi.org/10.1038/sj.gt.3300994] [PMID: 10490767]
[127]
Liu Q, Muruve DA. Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther 2003; 10(11): 935-40.
[http://dx.doi.org/10.1038/sj.gt.3302036] [PMID: 12756413]
[128]
Alba R, Bosch A, Chillon M. Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther 2005; 12(Suppl. 1): S18-27.
[http://dx.doi.org/10.1038/sj.gt.3302612] [PMID: 16231052]
[129]
Yoon SO, Lois C, Alvirez M, Alvarez-Buylla A, Falck-Pedersen E, Chao MV. Adenovirus-mediated gene delivery into neuronal precursors of the adult mouse brain. Proc Natl Acad Sci USA 1996; 93(21): 11974-9.
[http://dx.doi.org/10.1073/pnas.93.21.11974] [PMID: 8876247]
[130]
Lv Y, Xiao FJ, Wang Y, et al. Efficient gene transfer into T lymphocytes by fiber-modified human adenovirus 5. BMC Biotechnol 2019; 19(1): 23.
[http://dx.doi.org/10.1186/s12896-019-0514-x] [PMID: 31014302]
[131]
Ramos-Kuri M, Rapti K, Mehel H, et al. Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy. Biochim Biophys Acta 2015; 1853(11 Pt A): 2870-84.
[http://dx.doi.org/10.1016/j.bbamcr.2015.08.006] [PMID: 26260012]
[132]
Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Science 1965; 149(3685): 754-6.
[http://dx.doi.org/10.1126/science.149.3685.754] [PMID: 14325163]
[133]
Blacklow NR, Hoggan MD, Rowe WP. Isolation of adenovirus-associated viruses from man. Proc Natl Acad Sci USA 1967; 58(4): 1410-5.
[http://dx.doi.org/10.1073/pnas.58.4.1410] [PMID: 4295829]
[134]
Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 2019; 18(5): 358-78.
[http://dx.doi.org/10.1038/s41573-019-0012-9] [PMID: 30710128]
[135]
Berns KI, Linden RM. The cryptic life style of adeno-associated virus. BioEssays 1995; 17(3): 237-45.
[http://dx.doi.org/10.1002/bies.950170310] [PMID: 7748178]
[136]
Merten OW, Gaillet B. Viral vectors for gene therapy and gene modification approaches. Biochem Eng J 2016; 108: 98-115.
[http://dx.doi.org/10.1016/j.bej.2015.09.005]
[137]
Tse LV, Moller-Tank S, Asokan A. Strategies to circumvent humoral immunity to adeno-associated viral vectors. Expert Opin Biol Ther 2015; 15(6): 845-55.
[http://dx.doi.org/10.1517/14712598.2015.1035645] [PMID: 25985812]
[138]
Liu Y, Kim YJ, Ji M, et al. Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides. Mol Ther Methods Clin Dev 2014; 1: 12.
[http://dx.doi.org/10.1038/mtm.2013.12] [PMID: 26015948]
[139]
Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006; 14(3): 316-27.
[http://dx.doi.org/10.1016/j.ymthe.2006.05.009] [PMID: 16824801]
[140]
Briggs JA, Simon MN, Gross I, et al. The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol 2004; 11(7): 672-5.
[http://dx.doi.org/10.1038/nsmb785] [PMID: 15208690]
[141]
Fuller SD, Wilk T, Gowen BE, Kräusslich HG, Vogt VM. Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle. Curr Biol 1997; 7(10): 729-38.
[http://dx.doi.org/10.1016/S0960-9822(06)00331-9] [PMID: 9368755]
[142]
Kingston RL, Olson NH, Vogt VM. The organization of mature Rous sarcoma virus as studied by cryoelectron microscopy. J Struct Biol 2001; 136(1): 67-80.
[http://dx.doi.org/10.1006/jsbi.2001.4423] [PMID: 11858708]
[143]
Yeager M, Wilson-Kubalek EM, Weiner SG, Brown PO, Rein A. Supramolecular organization of immature and mature murine leukemia virus revealed by electron cryo-microscopy: implications for retroviral assembly mechanisms. Proc Natl Acad Sci USA 1998; 95(13): 7299-304.
[http://dx.doi.org/10.1073/pnas.95.13.7299] [PMID: 9636143]
[144]
Milone MC, O’Doherty U. Clinical use of lentiviral vectors. Leukemia 2018; 32(7): 1529-41.
[http://dx.doi.org/10.1038/s41375-018-0106-0] [PMID: 29654266]
[145]
Maetzig T, Galla M, Baum C, Schambach A. Gammaretroviral vectors: biology, technology and application. Viruses 2011; 3(6): 677-713.
[http://dx.doi.org/10.3390/v3060677] [PMID: 21994751]
[146]
Zhang W, Cao S, Martin JL, Mueller JD, Mansky LM. Morphology and ultrastructure of retrovirus particles. AIMS Biophys 2015; 2(3): 343-69.
[http://dx.doi.org/10.3934/biophy.2015.3.343] [PMID: 26448965]
[147]
Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene 2013; 525(2): 162-9.
[http://dx.doi.org/10.1016/j.gene.2013.03.137] [PMID: 23618815]
[148]
Vargas JE, Chicaybam L, Stein RT, Tanuri A, Delgado-Cañedo A, Bonamino MH. Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives. J Transl Med 2016; 14(1): 288.
[http://dx.doi.org/10.1186/s12967-016-1047-x] [PMID: 27729044]
[149]
Howe SJ, Mansour MR, Schwarzwaelder K, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008; 118(9): 3143-50.
[http://dx.doi.org/10.1172/JCI35798] [PMID: 18688286]
[150]
Hacein-Bey-Abina S, Le Deist F, Carlier F, et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002; 346(16): 1185-93.
[http://dx.doi.org/10.1056/NEJMoa012616] [PMID: 11961146]
[151]
Gaspar HB, Bjorkegren E, Parsley K, et al. Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol Ther 2006; 14(4): 505-13.
[http://dx.doi.org/10.1016/j.ymthe.2006.06.007] [PMID: 16905365]
[152]
Hacein-Bey-Abina S, Garrigue A, Wang GP, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118(9): 3132-42.
[http://dx.doi.org/10.1172/JCI35700] [PMID: 18688285]
[153]
Gaspar HB, Parsley KL, Howe S, et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364(9452): 2181-7.
[http://dx.doi.org/10.1016/S0140-6736(04)17590-9] [PMID: 15610804]
[154]
Mavilio F, Pellegrini G, Ferrari S, et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med 2006; 12(12): 1397-402.
[http://dx.doi.org/10.1038/nm1504] [PMID: 17115047]
[155]
Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298(5594): 850-4.
[http://dx.doi.org/10.1126/science.1076514] [PMID: 12242449]
[156]
Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314(5796): 126-9.
[http://dx.doi.org/10.1126/science.1129003] [PMID: 16946036]
[157]
McGarrity GJ, Hoyah G, Winemiller A, et al. Patient monitoring and follow-up in lentiviral clinical trials. J Gene Med 2013; 15(2): 78-82.
[http://dx.doi.org/10.1002/jgm.2691] [PMID: 23322669]
[158]
Dull T, Zufferey R, Kelly M, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72(11): 8463-71.
[http://dx.doi.org/10.1128/JVI.72.11.8463-8471.1998] [PMID: 9765382]
[159]
Escors D, Breckpot K. Lentiviral vectors in gene therapy: their current status and future potential. Arch Immunol Ther Exp (Warsz) 2010; 58(2): 107-19.
[http://dx.doi.org/10.1007/s00005-010-0063-4] [PMID: 20143172]
[160]
Buchschacher GL Jr, Wong-Staal F. Development of lentiviral vectors for gene therapy for human diseases. Blood 2000; 95(8): 2499-504.
[http://dx.doi.org/10.1182/blood.V95.8.2499] [PMID: 10753827]
[161]
Dishart KL, Denby L, George SJ, et al. Third-generation lentivirus vectors efficiently transduce and phenotypically modify vascular cells: implications for gene therapy. J Mol Cell Cardiol 2003; 35(7): 739-48.
[http://dx.doi.org/10.1016/S0022-2828(03)00136-6] [PMID: 12818564]
[162]
Barde I, Laurenti E, Verp S, et al. Lineage- and stage-restricted lentiviral vectors for the gene therapy of chronic granulomatous disease. Gene Ther 2011; 18(11): 1087-97.
[http://dx.doi.org/10.1038/gt.2011.65] [PMID: 21544095]
[163]
Zhang KX, Moussavi M, Kim C, et al. Lentiviruses with trastuzumab bound to their envelopes can target and kill prostate cancer cells. Cancer Gene Ther 2009; 16(11): 820-31.
[http://dx.doi.org/10.1038/cgt.2009.28] [PMID: 19373278]
[164]
Shi Q, Wilcox DA, Fahs SA, et al. Lentivirus-mediated platelet-derived factor VIII gene therapy in murine haemophilia A. J Thromb Haemost 2007; 5(2): 352-61.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02346.x] [PMID: 17269937]
[165]
Biffi A, Montini E, Lorioli L, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013; 341(6148): 1233158.
[http://dx.doi.org/10.1126/science.1233158] [PMID: 23845948]
[166]
Sessa M, Lorioli L, Fumagalli F, et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet 2016; 388(10043): 476-87.
[http://dx.doi.org/10.1016/S0140-6736(16)30374-9] [PMID: 27289174]
[167]
Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010; 11(9): 636-46.
[http://dx.doi.org/10.1038/nrg2842] [PMID: 20717154]
[168]
Carroll D. Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther 2008; 15(22): 1463-8.
[http://dx.doi.org/10.1038/gt.2008.145] [PMID: 18784746]
[169]
Lampreht Tratar U, Horvat S, Cemazar M. Transgenic mouse models in cancer research. Front Oncol 2018; 8: 268.
[http://dx.doi.org/10.3389/fonc.2018.00268] [PMID: 30079312]
[170]
Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346(6213): 1258096.
[http://dx.doi.org/10.1126/science.1258096] [PMID: 25430774]
[171]
Sander JD, Dahlborg EJ, Goodwin MJ, et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 2011; 8(1): 67-9.
[http://dx.doi.org/10.1038/nmeth.1542] [PMID: 21151135]
[172]
Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 2012; 30(5): 460-5.
[http://dx.doi.org/10.1038/nbt.2170] [PMID: 22484455]
[173]
Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014; 15(5): 321-34.
[http://dx.doi.org/10.1038/nrg3686] [PMID: 24690881]
[174]
Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 1996; 93(3): 1156-60.
[http://dx.doi.org/10.1073/pnas.93.3.1156] [PMID: 8577732]
[175]
Wolfe SA, Nekludova L, Pabo CO. DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 2000; 29: 183-212.
[http://dx.doi.org/10.1146/annurev.biophys.29.1.183] [PMID: 10940247]
[176]
Laity JH, Lee BM, Wright PE. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 2001; 11(1): 39-46.
[http://dx.doi.org/10.1016/S0959-440X(00)00167-6] [PMID: 11179890]
[177]
Gaj T, Gersbach CA, Barbas CF III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013; 31(7): 397-405.
[http://dx.doi.org/10.1016/j.tibtech.2013.04.004] [PMID: 23664777]
[178]
Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 2018; 25(1): 1234-57.
[http://dx.doi.org/10.1080/10717544.2018.1474964] [PMID: 29801422]
[179]
Cornu TI, Thibodeau-Beganny S, Guhl E, et al. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther 2008; 16(2): 352-8.
[http://dx.doi.org/10.1038/sj.mt.6300357]
[180]
Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 2014; 124(10): 4154-61.
[http://dx.doi.org/10.1172/JCI72992] [PMID: 25271723]
[181]
Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013; 14(1): 49-55.
[http://dx.doi.org/10.1038/nrm3486] [PMID: 23169466]
[182]
Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science 2018; 359(6372): eaan4672.
[http://dx.doi.org/10.1126/science.aan4672] [PMID: 29326244]
[183]
Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010; 186(2): 757-61.
[http://dx.doi.org/10.1534/genetics.110.120717] [PMID: 20660643]
[184]
Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM. TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Naturae 2014; 6(3): 19-40.
[http://dx.doi.org/10.32607/20758251-2014-6-3-19-40] [PMID: 25349712]
[185]
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987; 169(12): 5429-33.
[http://dx.doi.org/10.1128/JB.169.12.5429-5433.1987] [PMID: 3316184]
[186]
Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002; 43(6): 1565-75.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x] [PMID: 11952905]
[187]
Perez Rojo F, Nyman RKM, Johnson AAT, et al. CRISPR-Cas systems: ushering in the new genome editing era. Bioengineered 2018; 9(1): 214-21.
[http://dx.doi.org/10.1080/21655979.2018.1470720] [PMID: 29968520]
[188]
Razzouk S. CRISPR-Cas9: A cornerstone for the evolution of precision medicine. Ann Hum Genet 2018; 82(6): 331-57.
[http://dx.doi.org/10.1111/ahg.12271] [PMID: 30014471]
[189]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[190]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[191]
Tang Prize Foundation. Biopharmaceutical Science. 2016. Available from: https://www.tang-prize.org/en/owner.php?cat=11&y=3
[192]
Yang H, Jaeger M, Walker A, Wei D, Leiker K, Weitao T. Break breast cancer addiction by CRISPR/Cas9 genome editing. J Cancer 2018; 9(2): 219-31.
[http://dx.doi.org/10.7150/jca.22554] [PMID: 29344267]
[193]
Barman A, Deb B, Chakraborty S. A glance at genome editing with CRISPR-Cas9 technology. Curr Genet 2020; 66(3): 447-62.
[http://dx.doi.org/10.1007/s00294-019-01040-3] [PMID: 31691023]
[194]
Li K, Wang G, Andersen T, Zhou P, Pu WT. Optimization of genome engineering approaches with the CRISPR/Cas9 system. PLoS One 2014; 9(8): e105779.
[http://dx.doi.org/10.1371/journal.pone.0105779] [PMID: 25166277]
[195]
Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013; 152(5): 1173-83.
[http://dx.doi.org/10.1016/j.cell.2013.02.022] [PMID: 23452860]
[196]
Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 2020; 18(2): 67-83.
[http://dx.doi.org/10.1038/s41579-019-0299-x] [PMID: 31857715]
[197]
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019; 576(7785): 149-57.
[http://dx.doi.org/10.1038/s41586-019-1711-4] [PMID: 31634902]
[198]
Watters KE, Shivram H, Fellmann C, Lew RJ, McMahon B, Doudna JA. Potent CRISPR-Cas9 inhibitors from Staphylococcus genomes. Proc Natl Acad Sci USA 2020; 117(12): 6531-9.
[http://dx.doi.org/10.1073/pnas.1917668117] [PMID: 32156733]
[199]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533(7603): 420-4.
[http://dx.doi.org/10.1038/nature17946] [PMID: 27096365]
[200]
Konermann S, Lotfy P, Brideau NJ, et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 2018; 173(3): 666-76.
[201]
Cornu TI, Mussolino C, Cathomen T. Refining strategies to translate genome editing to the clinic. Nat Med 2017; 23(4): 415-23.
[http://dx.doi.org/10.1038/nm.4313] [PMID: 28388605]
[202]
Carroll D. Genome editing: past, present, and future. Yale J Biol Med 2017; 90(4): 653-9.
[PMID: 29259529]
[203]
Cyranoski D. Chinese scientists to pioneer first human CRISPR trial. Nature 2016; 535(7613): 476-7.
[http://dx.doi.org/10.1038/nature.2016.20302] [PMID: 27466105]
[204]
Hudacsek V, Gyõrffy B. Genome engineering using the CRISPR-Cas9 system and applications in cancer research. Magy Onkol 2018; 62(2): 119-27.
[PMID: 30027940]
[205]
Montaño A, Forero-Castro M, Hernández-Rivas JM, García-Tuñón I, Benito R. Targeted genome editing in acute lymphoblastic leukemia: a review. BMC Biotechnol 2018; 18(1): 45.
[http://dx.doi.org/10.1186/s12896-018-0455-9] [PMID: 30016959]
[206]
206. GP-write. 2019. Available from: https://engineeringbiologycenter.org/
[207]
Doudna JA. The promise and challenge of therapeutic genome editing. Nature 2020; 578(7794): 229-36.
[http://dx.doi.org/10.1038/s41586-020-1978-5] [PMID: 32051598]
[208]
Clinical Trails. Available from: https://clinicaltrials.gov/
[209]
Wang D, Zhang F, Gao G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 2020; 181(1): 136-50.
[http://dx.doi.org/10.1016/j.cell.2020.03.023] [PMID: 32243786]
[210]
Haridy R. FDA hits pause on one of the first US human clinical trials to use CRISPR. 2018. Available from: https://newatlas.com/us-crispr-human-trial-hold-fda/54862/
[211]
Censorship hinders development? Should we be more cautious about human trials of gene editing, or should we give it a go? 2018. Available from: https://theinitium.com/roundtable/20180124-roundtable-global-Crispr-Cas9/
[212]
China uses gene editing to treat chronic human diseases. 2018. Available from: http://big5.sputniknews.cn/china/201802051024637731/
[213]
Normile D. Shock greets claim of CRISPR-edited babies. Science 2018; 362(6418): 978-9.
[http://dx.doi.org/10.1126/science.362.6418.978] [PMID: 30498103]
[214]
Abduljalil JM. Laboratory diagnosis of SARS-CoV-2: available approaches and limitations. New Microbes New Infect 2020; 36: 100713.
[http://dx.doi.org/10.1016/j.nmni.2020.100713] [PMID: 32607246]
[215]
Broughton JP, Deng X, Yu G, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol 2020; 38(7): 870-4.
[http://dx.doi.org/10.1038/s41587-020-0513-4] [PMID: 32300245]
[216]
Abbott TR, Dhamdhere G, Liu Y, et al. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell 2020; 181(4): 865-76.
[217]
The Lancet. Genome editing: proceed with caution. Lancet 2018; 392(10144): 253.
[http://dx.doi.org/10.1016/S0140-6736(18)31653-2] [PMID: 30064637]
[218]
Roy B, Zhao J, Yang C, et al. CRISPR/Cascade 9-mediated genome editing-challenges and opportunities. Front Genet 2018; 9: 240.
[http://dx.doi.org/10.3389/fgene.2018.00240] [PMID: 30026755]
[219]
Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE. Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat Rev Drug Discov 2017; 16(2): 89-100.
[http://dx.doi.org/10.1038/nrd.2016.238] [PMID: 28008168]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy