Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Impact of Immune Cell-derived Exosomes on Immune Response Initiation and Immune System Function

Author(s): Fataneh Tavasolian, Ahmad Z. Hosseini*, Mohsen Rashidi, Sara Soudi, Elham Abdollahi, Amir A. Momtazi-Borojeni, Thozhukat Sathyapalan and Amirhossein Sahebkar*

Volume 27 , Issue 2 , 2021

Published on: 07 December, 2020

Page: [197 - 205] Pages: 9

DOI: 10.2174/1381612826666201207221819

Price: $65

Abstract

Exosomes are small extracellular vesicles that pass genetic material between various cells to modulate or alter their biological function. The role of exosomes is to communicate with the target cell for cell-to-cell communication. Their inherent characteristics of exosomes, such as adhesion molecules, allow targeting specifically to the receiving cell. Exosomes are involved in cell to cell communication in the immune system including antigen presentation, natural killer cells (NK cells) and T cell activation/polarisation, immune suppression and various anti-inflammatory processes. In this review, we have described various functions of exosomes secreted by the immune cells in initiating, activating and modulating immune responses; and highlight the distinct roles of exosomal surface proteins and exosomal cargo. Potential applications of exosomes such as distribution vehicles for immunotherapy are also discussed.

Keywords: Exosome, microRNA, immune system, inflammation, immune response, immunotherapy.

[1]
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018; 75(2): 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[2]
Schorey JS, Bhatnagar S. Exosome function: from tumor immunology to pathogen biology. Traffic 2008; 9(6): 871-81.
[http://dx.doi.org/10.1111/j.1600-0854.2008.00734.x] [PMID: 18331451]
[3]
Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 2019; 21(1): 9-17.
[http://dx.doi.org/10.1038/s41556-018-0250-9] [PMID: 30602770]
[4]
Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 2015; 13(1): 17-24.
[http://dx.doi.org/10.1016/j.gpb.2015.02.001] [PMID: 25724326]
[5]
Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014; 29: 116-25.
[http://dx.doi.org/10.1016/j.ceb.2014.05.004] [PMID: 24959705]
[6]
Colombo M, Moita C, van Niel G, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 2013; 126(Pt. 24): 5553-65.
[http://dx.doi.org/10.1242/jcs.128868] [PMID: 24105262]
[7]
Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesiclesSeminars in cell & developmental biology. Elsevier 2018; pp. 66-77.
[http://dx.doi.org/10.1016/j.semcdb.2017.08.022]
[8]
Andreu Z, Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and function. Front Immunol 2014; 5: 442.
[http://dx.doi.org/10.3389/fimmu.2014.00442] [PMID: 25278937]
[9]
Beit-Yannai E, Tabak S, Stamer WD. Physical exosome:exosome interactions. J Cell Mol Med 2018; 22(3): 2001-6.
[http://dx.doi.org/10.1111/jcmm.13479] [PMID: 29377463]
[10]
Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol 2016; 428(4): 688-92.
[http://dx.doi.org/10.1016/j.jmb.2015.09.019] [PMID: 26434508]
[11]
van der Vlist EJ, Arkesteijn GJ, van de Lest CH, Stoorvogel W, Nolte-’t Hoen EN, Wauben MH. CD4(+) T cell activation promotes the differential release of distinct populations of nanosized vesicles. J Extracell Vesicles 2012; 1: 18364.
[http://dx.doi.org/10.3402/jev.v1i0.18364] [PMID: 24009884]
[12]
Blanchard N, Lankar D, Faure F, et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/ζ complex. J Immunol 2002; 168(7): 3235-41.
[http://dx.doi.org/10.4049/jimmunol.168.7.3235] [PMID: 11907077]
[13]
Hwang I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013; 36(2): 105-11.
[http://dx.doi.org/10.1007/s10059-013-0154-2] [PMID: 23807045]
[14]
Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 2007; 110(9): 3234-44.
[http://dx.doi.org/10.1182/blood-2007-03-079152] [PMID: 17666571]
[15]
Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9(8): 581-93.
[http://dx.doi.org/10.1038/nri2567] [PMID: 19498381]
[16]
Simhadri VR, Reiners KS, Hansen HP, et al. Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function. PLoS One 2008; 3(10)e3377
[http://dx.doi.org/10.1371/journal.pone.0003377] [PMID: 18852879]
[17]
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7(1)1535750
[http://dx.doi.org/10.1080/20013078.2018.1535750] [PMID: 30637094]
[18]
Kulkarni B, Kirave P, Gondaliya P, et al. Exosomal miRNA in chemoresistance, immune evasion, metastasis and progression of cancer. Drug Discov Today 2019; 24(10): 2058-67.
[http://dx.doi.org/10.1016/j.drudis.2019.06.010] [PMID: 31228614]
[19]
Bhatnagar S, Schorey JS. Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory. J Biol Chem 2007; 282(35): 25779-89.
[http://dx.doi.org/10.1074/jbc.M702277200] [PMID: 17591775]
[20]
Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Madrid F, Mittelbrunn M. Analysis of microRNA and protein transfer by exosomes during an immune synapseCirculating MicroRNAs. Springer 2013; pp. 41-51.
[http://dx.doi.org/10.1007/978-1-62703-453-1_4]
[21]
Barros FM, Carneiro F, Machado JC, Melo SA. Exosomes and immune response in cancer: friends or foes? Front Immunol 2018; 9: 730.
[http://dx.doi.org/10.3389/fimmu.2018.00730] [PMID: 29696022]
[22]
Mittelbrunn M, Vicente Manzanares M, Sánchez-Madrid F. Organizing polarized delivery of exosomes at synapses. Traffic 2015; 16(4): 327-37.
[http://dx.doi.org/10.1111/tra.12258] [PMID: 25614958]
[23]
Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011; 2: 282.
[http://dx.doi.org/10.1038/ncomms1285] [PMID: 21505438]
[24]
van der Grein SG, Nolte-’t Hoen EN. “Small talk” in the innate immune system via RNA-containing extracellular vesicles. Front Immunol 2014; 5: 542.
[http://dx.doi.org/10.3389/fimmu.2014.00542] [PMID: 25400635]
[25]
Pérez-Boza J, Pegtel DM. Exosomes take (germinal) center stage. EMBO Rep 2020; 21(4)e50190
[http://dx.doi.org/10.15252/embr.202050190] [PMID: 32147923]
[26]
Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 2014; 14(3): 195-208.
[http://dx.doi.org/10.1038/nri3622] [PMID: 24566916]
[27]
Ventimiglia LN, Alonso MA. Biogenesis and function of T cell-derived exosomes. Front Cell Dev Biol 2016; 4: 84.
[http://dx.doi.org/10.3389/fcell.2016.00084] [PMID: 27583248]
[28]
Brown M, Johnson LA, Leone DA, et al. Lymphatic exosomes promote dendritic cell migration along guidance cues. J Cell Biol 2018; 217(6): 2205-21.
[http://dx.doi.org/10.1083/jcb.201612051] [PMID: 29650776]
[29]
Zhang H, Xie Y, Li W, Chibbar R, Xiong S, Xiang J. CD4(+) T cell-released exosomes inhibit CD8(+) cytotoxic T-lymphocyte responses and antitumor immunity. Cell Mol Immunol 2011; 8(1): 23-30.
[http://dx.doi.org/10.1038/cmi.2010.59] [PMID: 21200381]
[30]
Clark GJ, Angel N, Kato M, et al. The role of dendritic cells in the innate immune system. Microbes Infect 2000; 2(3): 257-72.
[http://dx.doi.org/10.1016/S1286-4579(00)00302-6] [PMID: 10758402]
[31]
Montecalvo A, Shufesky WJ, Stolz DB, et al. Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol 2008; 180(5): 3081-90.
[http://dx.doi.org/10.4049/jimmunol.180.5.3081] [PMID: 18292531]
[32]
Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 2012; 119(3): 756-66.
[http://dx.doi.org/10.1182/blood-2011-02-338004] [PMID: 22031862]
[33]
Yin W, Ouyang S, Li Y, Xiao B, Yang H. Immature dendritic cell-derived exosomes: a promise subcellular vaccine for autoimmunity. Inflammation 2013; 36(1): 232-40.
[http://dx.doi.org/10.1007/s10753-012-9539-1] [PMID: 22956173]
[34]
Segura E, Amigorena S, Théry C. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol Dis 2005; 35(2): 89-93.
[http://dx.doi.org/10.1016/j.bcmd.2005.05.003] [PMID: 15990342]
[35]
Morelli AE, Larregina AT, Shufesky WJ, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 2004; 104(10): 3257-66.
[http://dx.doi.org/10.1182/blood-2004-03-0824] [PMID: 15284116]
[36]
Viaud S, Théry C, Ploix S, et al. Dendritic cell-derived exosomes for cancer immunotherapy: what’s next? Cancer Res 2010; 70(4): 1281-5.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3276] [PMID: 20145139]
[37]
Kim SH, Bianco N, Menon R, et al. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Mol Ther 2006; 13(2): 289-300.
[http://dx.doi.org/10.1016/j.ymthe.2005.09.015] [PMID: 16275099]
[38]
Xu J-F, Wang Y-P, Zhang S-J, et al. Exosomes containing differential expression of microRNA and mRNA in osteosarcoma that can predict response to chemotherapy. Oncotarget 2017; 8(44): 75968-78.
[http://dx.doi.org/10.18632/oncotarget.18373] [PMID: 29100284]
[39]
de Candia P, De Rosa V, Casiraghi M, Matarese G. Extracellular RNAs: a secret arm of immune system regulation. J Biol Chem 2016; 291(14): 7221-8.
[http://dx.doi.org/10.1074/jbc.R115.708842] [PMID: 26887954]
[40]
Zhao L, Liu W, Xiao J, Cao B. The role of exosomes and “exosomal shuttle microRNA” in tumorigenesis and drug resistance. Cancer Lett 2015; 356(2 Pt. B): 339-46.
[http://dx.doi.org/10.1016/j.canlet.2014.10.027] [PMID: 25449429]
[41]
Tavasolian F, Hosseini AZ, Soudi S, Naderi M, Sahebkar A. A Systems Biology Approach for miRNA-mRNA Expression Patterns Analysis in Rheumatoid Arthritis. Comb Chem High Throughput Screen 2020. In press
[http://dx.doi.org/10.2174/1386207323666200605150024] [PMID: 32503403]
[42]
Clayton A, Court J, Navabi H, et al. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 2001; 247(1-2): 163-74.
[http://dx.doi.org/10.1016/S0022-1759(00)00321-5] [PMID: 11150547]
[43]
Shenoda BB, Ajit SK. Modulation of immune responses by exosomes derived from antigen-presenting cells. Clinical Medicine Insights Pathol 2016; 9(Suppl. 1): 1-8.
[http://dx.doi.org/10.4137/CPath.S39925]
[44]
Sobo-Vujanovic A, Munich S, Vujanovic NL. Dendritic-cell exosomes cross-present Toll-like receptor-ligands and activate bystander dendritic cells. Cell Immunol 2014; 289(1-2): 119-27.
[http://dx.doi.org/10.1016/j.cellimm.2014.03.016] [PMID: 24759079]
[45]
Lindenbergh MFS, Stoorvogel W. Antigen presentation by extracellular vesicles from professional antigen-presenting cells. Annu Rev Immunol 2018; 36: 435-59.
[http://dx.doi.org/10.1146/annurev-immunol-041015-055700] [PMID: 29400984]
[46]
Alexander M, Hu R, Runtsch MC, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun 2015; 6: 7321.
[http://dx.doi.org/10.1038/ncomms8321] [PMID: 26084661]
[47]
Guasch J, Hoffmann M, Diemer J, et al. Combining adhesive nanostructured surfaces and costimulatory signals to increase T cell activation. Nano Lett 2018; 18(9): 5899-904.
[http://dx.doi.org/10.1021/acs.nanolett.8b02588] [PMID: 30088769]
[48]
Gutiérrez-Vázquez C, Villarroya-Beltri C, Mittelbrunn M, Sánchez-Madrid F. Transfer of extracellular vesicles during immune cell-cell interactions. Immunol Rev 2013; 251(1): 125-42.
[http://dx.doi.org/10.1111/imr.12013] [PMID: 23278745]
[49]
Batista FD, Dustin ML. Cell: cell interactions in the immune system. Immunol Rev 2013; 251(1): 7-12.
[http://dx.doi.org/10.1111/imr.12025] [PMID: 23278736]
[50]
Messina LF, Rodríguez-Galán A, Madrid FS, de Yébenes VG, Ramiro AR. Exosomal transfer of microRNAs during immune synapsis contributes to the fine-tuning of immune responses. J Extracell Vesicles 2018; 7: 9-9.
[51]
Lin ML, Zhan Y, Villadangos JA, Lew AM. The cell biology of cross-presentation and the role of dendritic cell subsets. Immunol Cell Biol 2008; 86(4): 353-62.
[http://dx.doi.org/10.1038/icb.2008.3] [PMID: 18268517]
[52]
Admyre C, Johansson SM, Paulie S, Gabrielsson S. Direct exosome stimulation of peripheral human T cells detected by ELISPOT. Eur J Immunol 2006; 36(7): 1772-81.
[http://dx.doi.org/10.1002/eji.200535615] [PMID: 16761310]
[53]
Théry C, Duban L, Segura E, Véron P, Lantz O, Amigorena S. Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 2002; 3(12): 1156-62.
[http://dx.doi.org/10.1038/ni854] [PMID: 12426563]
[54]
Azoulay-Alfaguter I, Mor A. Proteomic analysis of human T cell-derived exosomes reveals differential RAS/MAPK signaling. Eur J Immunol 2018; 48(11): 1915-7.
[http://dx.doi.org/10.1002/eji.201847655] [PMID: 30207595]
[55]
Gatti E, Pierre P. Understanding the cell biology of antigen presentation: the dendritic cell contribution. Curr Opin Cell Biol 2003; 15(4): 468-73.
[http://dx.doi.org/10.1016/S0955-0674(03)00069-3] [PMID: 12892788]
[56]
Bobrie A, Colombo M, Raposo G, Théry C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 2011; 12(12): 1659-68.
[http://dx.doi.org/10.1111/j.1600-0854.2011.01225.x] [PMID: 21645191]
[57]
Näslund TI, Gehrmann U, Qazi KR, Karlsson MC, Gabrielsson S. Dendritic cell-derived exosomes need to activate both T and B cells to induce antitumor immunity. J Immunol 2013; 190(6): 2712-9.
[http://dx.doi.org/10.4049/jimmunol.1203082] [PMID: 23418627]
[58]
McCoy-Simandle K, Hanna SJ, Cox D. Exosomes and nanotubes: Control of immune cell communication. Int J Biochem Cell Biol 2016; 71: 44-54.
[http://dx.doi.org/10.1016/j.biocel.2015.12.006] [PMID: 26704468]
[59]
Urbanelli L, Magini A, Buratta S, et al. Signaling pathways in exosomes biogenesis, secretion and fate. Genes (Basel) 2013; 4(2): 152-70.
[http://dx.doi.org/10.3390/genes4020152] [PMID: 24705158]
[60]
Fais S. NK cell-released exosomes: Natural nanobullets against tumors. OncoImmunology 2013; 2(1)e22337
[http://dx.doi.org/10.4161/onci.22337] [PMID: 23482694]
[61]
Okoye IS, Coomes SM, Pelly VS, et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 2014; 41(1): 89-103.
[http://dx.doi.org/10.1016/j.immuni.2014.05.019] [PMID: 25035954]
[62]
Chatila TA, Williams CB. Regulatory T cells: exosomes deliver tolerance. Immunity 2014; 41(1): 3-5.
[http://dx.doi.org/10.1016/j.immuni.2014.07.001] [PMID: 25035945]
[63]
Agarwal A, Fanelli G, Letizia M, et al. Regulatory T cell-derived exosomes: possible therapeutic and diagnostic tools in transplantation. Front Immunol 2014; 5: 555.
[http://dx.doi.org/10.3389/fimmu.2014.00555] [PMID: 25414702]
[64]
Li P, Liu C, Yu Z, Wu M. New insights into regulatory T cells: exosome-and non-coding RNA-mediated regulation of homeostasis and resident Treg cells. Front Immunol 2016; 7: 574.
[http://dx.doi.org/10.3389/fimmu.2016.00574] [PMID: 27999575]
[65]
Tung SL, Boardman DA, Sen M, et al. Regulatory T cell-derived extracellular vesicles modify dendritic cell function. Sci Rep 2018; 8(1): 6065.
[http://dx.doi.org/10.1038/s41598-018-24531-8] [PMID: 29666503]
[66]
Domenis R, Cesselli D, Toffoletto B, et al. Systemic T cells immunosuppression of glioma stem cell-derived exosomes is mediated by monocytic myeloid-derived suppressor cells. PLoS One 2017; 12(1)e0169932
[http://dx.doi.org/10.1371/journal.pone.0169932] [PMID: 28107450]
[67]
Viaud S, Terme M, Flament C, et al. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One 2009; 4(3)e4942
[http://dx.doi.org/10.1371/journal.pone.0004942] [PMID: 19319200]
[68]
Lugini L, Cecchetti S, Huber V, et al. Immune surveillance properties of human NK cell-derived exosomes. J Immunol 2012; 189(6): 2833-42.
[http://dx.doi.org/10.4049/jimmunol.1101988] [PMID: 22904309]
[69]
Di Pace AL, Tumino N, Besi F, et al. Characterization of Human NK Cell-Derived Exosomes: Role of DNAM1 Receptor In Exosome-Mediated Cytotoxicity Against Tumor. Cancers (Basel) 2020; 12(3): 661.
[http://dx.doi.org/10.3390/cancers12030661] [PMID: 32178479]
[70]
Wen C, Seeger RC, Fabbri M, Wang L, Wayne AS, Jong AY. Biological roles and potential applications of immune cell-derived extracellular vesicles. J Extracell Vesicles 2017; 6(1)1400370
[http://dx.doi.org/10.1080/20013078.2017.1400370] [PMID: 29209467]
[71]
Zhu L, Gangadaran P, Kalimuthu S, et al. Novel alternatives to extracellular vesicle-based immunotherapy - exosome mimetics derived from natural killer cells. Artif Cells Nanomed Biotechnol 2018; 46(Suppl. 3): S166-79.
[http://dx.doi.org/10.1080/21691401.2018.1489824] [PMID: 30092165]
[72]
Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Portland Press Ltd. 2013.
[73]
Zhao J. Tumor-derived exosomes inhibit natural killer cell function in the pre-metastatic niche of pancreatic cancer. Cancers (Basel) 2019; 11(6): 874.
[http://dx.doi.org/10.1016/j.pan.2019.05.006]
[74]
Skokos D, Botros HG, Demeure C, et al. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol 2003; 170(6): 3037-45.
[http://dx.doi.org/10.4049/jimmunol.170.6.3037] [PMID: 12626558]
[75]
Li F, Wang Y, Lin L, et al. Mast cell-derived exosomes promote Th2 cell differentiation via OX40L-OX40 ligation. J Immunol Res 2016; 20163623898
[76]
Skokos D, Le Panse S, Villa I, et al. Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J Immunol 2001; 166(2): 868-76.
[http://dx.doi.org/10.4049/jimmunol.166.2.868] [PMID: 11145662]
[77]
Nazimek K, Bryniarski K, Askenase PW. Functions of exosomes and microbial extracellular vesicles in allergy and contact and delayed-type hypersensitivity. Int Arch Allergy Immunol 2016; 171(1): 1-26.
[http://dx.doi.org/10.1159/000449249] [PMID: 27820941]
[78]
Rabelo Melo F, Santosh Martin S, Sommerhoff CP, Pejler G. Exosome-mediated uptake of mast cell tryptase into the nucleus of melanoma cells: a novel axis for regulating tumor cell proliferation and gene expression. Cell Death Dis 2019; 10(9): 659.
[http://dx.doi.org/10.1038/s41419-019-1879-4] [PMID: 31506436]
[79]
Fan X-L, Zhang Y, Li X, Fu Q-L. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci 2020; 77(14): 2771-94.
[http://dx.doi.org/10.1007/s00018-020-03454-6] [PMID: 31965214]
[80]
Harrell CR, Jovicic N, Djonov V, Volarevic V. Therapeutic Use of Mesenchymal Stem Cell-Derived Exosomes: From Basic Science to Clinics. Pharmaceutics 2020; 12(5): 474.
[http://dx.doi.org/10.3390/pharmaceutics12050474] [PMID: 32456070]
[81]
Cosenza S, Toupet K, Maumus M, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics 2018; 8(5): 1399-410.
[http://dx.doi.org/10.7150/thno.21072] [PMID: 29507629]
[82]
Dameshghi S, Zavaran-Hosseini A, Soudi S, Shirazi FJ, Nojehdehi S, Hashemi SM. Mesenchymal stem cells alter macrophage immune responses to Leishmania major infection in both susceptible and resistance mice. Immunol Lett 2016; 170: 15-26.
[http://dx.doi.org/10.1016/j.imlet.2015.12.002] [PMID: 26703818]
[83]
Tavasolian F, Hosseini AZ, Mirzaei A, et al. Unfolded protein response-mediated modulation of mesenchymal stem cells. IUBMB Life 2020; 72(2): 187-97.
[PMID: 31444957]
[84]
Long Q, Upadhya D, Hattiangady B, et al. Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proc Natl Acad Sci USA 2017; 114(17): E3536-45.
[http://dx.doi.org/10.1073/pnas.1703920114] [PMID: 28396435]
[85]
Baharlooi H, Azimi M, Salehi Z, Izad M. Mesenchymal Stem Cell-Derived Exosomes: A Promising Therapeutic Ace Card to Address Autoimmune Diseases. Int J Stem Cells 2020; 13(1): 13-23.
[http://dx.doi.org/10.15283/ijsc19108] [PMID: 31887849]
[86]
Chen W, Huang Y, Han J, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunol Res 2016; 64(4): 831-40.
[http://dx.doi.org/10.1007/s12026-016-8798-6] [PMID: 27115513]
[87]
Upadhya D, Shetty AK. Extracellular vesicles as therapeutics for brain injury and disease. Curr Pharm Des 2019; 25(33): 3500-5.
[http://dx.doi.org/10.2174/1381612825666191014164950] [PMID: 31612823]
[88]
Upadhya D, Shetty AK. Promise of extracellular vesicles for diagnosis and treatment of epilepsy. Epilepsy Behav 2019. In press
[http://dx.doi.org/10.1016/j.yebeh.2019.106499] [PMID: 31636006]
[89]
Clayton A, Harris CL, Court J, Mason MD, Morgan BP. Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. Eur J Immunol 2003; 33(2): 522-31.
[http://dx.doi.org/10.1002/immu.200310028] [PMID: 12645951]
[90]
Whiteside TL. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment . Seminars in immunology. Elsevier 2018; 35: 69-79. http://dx.doi.org/10.1016/j.smim.2017.12.003
[91]
van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19(4): 213-28.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[92]
Benites BD, Alvarez MC, Saad STO. Small particles, big effects: the interplay between exosomes and dendritic cells in antitumor immunity and immunotherapy. Cells 2019; 8(12): 1648.
[http://dx.doi.org/10.3390/cells8121648] [PMID: 31888159]
[93]
Piao YJ, Kim HS, Moon WK. Noninvasive Photoacoustic Imaging of Dendritic Cell Stimulated with Tumor Cell-Derived Exosome. Mol Imaging Biol 2020; 22(3): 612-22.
[http://dx.doi.org/10.1007/s11307-019-01410-w] [PMID: 31385127]
[94]
Pitt JM, Charrier M, Viaud S, et al. Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. J Immunol 2014; 193(3): 1006-11.
[http://dx.doi.org/10.4049/jimmunol.1400703] [PMID: 25049431]
[95]
Pitt JM, André F, Amigorena S, et al. Dendritic cell-derived exosomes for cancer therapy. J Clin Invest 2016; 126(4): 1224-32.
[http://dx.doi.org/10.1172/JCI81137] [PMID: 27035813]
[96]
Olejarz W, Dominiak A, Żołnierzak A, Kubiak-Tomaszewska G, Lorenc T. Tumor-Derived Exosomes in Immunosuppression and Immunotherapy. J Immunol Res 2020; 2020.
[97]
June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018; 359(6382): 1361-5.
[http://dx.doi.org/10.1126/science.aar6711] [PMID: 29567707]
[98]
Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ. Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics 2016; 3: 16011.
[http://dx.doi.org/10.1038/mto.2016.11] [PMID: 27626062]
[99]
Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev 2016; 4: 92-101.
[http://dx.doi.org/10.1016/j.omtm.2016.12.006] [PMID: 28344995]
[100]
Tang X-J, Sun X-Y, Huang K-M, et al. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy. Oncotarget 2015; 6(42): 44179-90.
[http://dx.doi.org/10.18632/oncotarget.6175] [PMID: 26496034]
[101]
Tavasolian F, Moghaddam AS, Rohani F, et al. Exosomes: Effectual players in rheumatoid arthritis. Autoimmun Rev 2020; 19(6)102511
[http://dx.doi.org/10.1016/j.autrev.2020.102511] [PMID: 32171920]
[102]
Deeg JA. Modulation of T cell Activation with Nano-and Micronanopatterned Antigen Arrays 2014.
[103]
Finetti F, Cassioli C, Baldari CT. Transcellular communication at the immunological synapse: a vesicular traffic-mediated mutual exchange. F1000 Res 2017; 6: 1880.
[http://dx.doi.org/10.12688/f1000research.11944.1] [PMID: 29123650]
[104]
Srinivasan S, Vannberg FO, Dixon JB. Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci Rep 2016; 6: 24436.
[http://dx.doi.org/10.1038/srep24436] [PMID: 27087234]
[105]
Laulagnier K, Motta C, Hamdi S, et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 2004; 380(Pt. 1): 161-71.
[http://dx.doi.org/10.1042/bj20031594] [PMID: 14965343]
[106]
McDonald MK, Tian Y, Qureshi RA, et al. Functional significance of macrophage-derived exosomes in inflammation and pain. Pain 2014; 155(8): 1527-39.
[http://dx.doi.org/10.1016/j.pain.2014.04.029] [PMID: 24792623]
[107]
Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 2015; 13: 308.
[http://dx.doi.org/10.1186/s12967-015-0642-6] [PMID: 26386558]
[108]
Lai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med 2011; 6(4): 481-92.
[http://dx.doi.org/10.2217/rme.11.35] [PMID: 21749206]
[109]
Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 2014; 23(11): 1233-44.
[http://dx.doi.org/10.1089/scd.2013.0479] [PMID: 24367916]
[110]
Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci 2014; 15(3): 4142-57.
[http://dx.doi.org/10.3390/ijms15034142] [PMID: 24608926]
[111]
Seo N, Shirakura Y, Tahara Y, et al. Activated CD8+ T cell extracellular vesicles prevent tumour progression by targeting of lesional mesenchymal cells. Nat Commun 2018; 9(1): 435.
[http://dx.doi.org/10.1038/s41467-018-02865-1] [PMID: 29382847]
[112]
Hao S, Bai O, Yuan J, Qureshi M, Xiang J. Dendritic cell-derived exosomes stimulate stronger CD8+ CTL responses and antitumor immunity than tumor cell-derived exosomes. Cell Mol Immunol 2006; 3(3): 205-11.
[PMID: 16893501]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy