Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

General Research Article

Predicted Contributions of Flavin-containing Monooxygenases to the N-oxygenation of Drug Candidates Based on their Estimated Base Dissociation Constants

Author(s): Tomomi Taniguchi-Takizawa*, Harutoshi Kato, Makiko Shimizu and Hiroshi Yamazaki*

Volume 22, Issue 3, 2021

Published on: 07 December, 2020

Page: [208 - 214] Pages: 7

DOI: 10.2174/1389200221666201207195758

Price: $65

Abstract

Aims: Base dissociation constants of 30 model chemicals were investigated to constitute potential determinant factors predicting the contributions of flavin-containing monooxygenases (FMOs).

Background: The contributions of FMOs to the metabolic elimination of new drug candidates could be underestimated under certain experimental conditions during drug development.

Objective: A method for predicting metabolic sites and the contributions of FMOs to N-oxygenations is proposed using a molecular descriptor, the base dissociation constant (pKa base), which can be estimated in silico using commonly available chemoinformatic prediction systems.

Methods: Model drugs and their oxidative pathways were surveyed in the literature to investigate the roles of FMOs in their N-oxygenations. The acid and base dissociation constants of the nitrogen moieties of 30 model substrates were estimated using well-established chemoinformatic software.

Results: The base dissociation constants of 30 model chemicals were classified into two groups based on the reported optimal in vitro pH of 8.4 for FMO enzymes as a key determinant factor. Among 18 substrates (e.g., trimethylamine, benzydamine, and itopride) with pKa (base) values in the range of 8.4-9.8, all N-oxygenated metabolites were reported to be predominantly catalyzed by FMOs. Except for three cases (xanomeline; L-775,606; and tozasertib), the nine substrates with pKa (base) values in the range 2.7-7.9 were only moderately or minorly N-oxygenated by FMOs in addition to their major metabolic pathway of oxidation mediated by cytochrome P450s. N-Oxygenation of T-1032 (with a pKa of 4.8) is mediated predominantly by P450 3A5, but not by FMO1/3.

Conclusion: The predicted contributions of FMOs to the N-oxygenation of drug candidates can be simply estimated using classic base dissociation constants.

Keywords: FMO, N-oxide formation, pKa base, optimal pH, P450, drug development.

Graphical Abstract
[1]
Krueger, S.K.; Williams, D.E. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol. Ther., 2005, 106(3), 357-387.
[http://dx.doi.org/10.1016/j.pharmthera.2005.01.001] [PMID: 15922018]
[2]
Cashman, J.R.; Zhang, J. Human flavin-containing monooxygenases. Annu. Rev. Pharmacol. Toxicol., 2006, 46, 65-100.
[http://dx.doi.org/10.1146/annurev.pharmtox.46.120604.141043] [PMID: 16402899]
[3]
Phillips, I.R.; Shephard, E.A. Flavin-containing monooxygenase 3 (FMO3): genetic variants and their consequences for drug metabolism and disease. Xenobiotica, 2020, 50(1), 19-33.
[http://dx.doi.org/10.1080/00498254.2019.1643515] [PMID: 31317802]
[4]
Jones, K.C.; Ballou, D.P. Reactions of the 4a-hydroperoxide of liver microsomal flavin-containing monooxygenase with nucleophilic and electrophilic substrates. J. Biol. Chem., 1986, 261(6), 2553-2559.
[PMID: 3949735]
[5]
Koukouritaki, S.B.; Hines, R.N. Flavin-containing monooxygenase genetic polymorphism: impact on chemical metabolism and drug development. Pharmacogenomics, 2005, 6(8), 807-822.
[http://dx.doi.org/10.2217/14622416.6.8.807] [PMID: 16296944]
[6]
Shimizu, M.; Denton, T.; Kozono, M.; Cashman, J.R.; Leeder, J.S.; Yamazaki, H. Developmental variations in metabolic capacity of flavin-containing mono-oxygenase 3 in childhood. Br. J. Clin. Pharmacol., 2011, 71(4), 585-591.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03876.x] [PMID: 21395651]
[7]
Hernandez, D.; Janmohamed, A.; Chandan, P.; Phillips, I.R.; Shephard, E.A. Organization and evolution of the flavin-containing monooxygenase genes of human and mouse: identification of novel gene and pseudogene clusters. Pharmacogenetics, 2004, 14(2), 117-130.
[http://dx.doi.org/10.1097/00008571-200402000-00006] [PMID: 15077013]
[8]
Koukouritaki, S.B.; Simpson, P.; Yeung, C.K.; Rettie, A.E.; Hines, R.N. Human hepatic flavin-containing monooxygenases 1 (FMO1) and 3 (FMO3) developmental expression. Pediatr. Res., 2002, 51(2), 236-243.
[http://dx.doi.org/10.1203/00006450-200202000-00018] [PMID: 11809920]
[9]
Yeung, C.K.; Lang, D.H.; Thummel, K.E.; Rettie, A.E. Immunoquantitation of FMO1 in human liver, kidney, and intestine. Drug Metab. Dispos., 2000, 28(9), 1107-1111.
[PMID: 10950857]
[10]
Cashman, J.R. Role of flavin-containing monooxygenase in drug development. Expert Opin. Drug Metab. Toxicol., 2008, 4(12), 1507-1521.
[http://dx.doi.org/10.1517/17425250802522188] [PMID: 19040327]
[11]
Taniguchi-Takizawa, T.; Shimizu, M.; Kume, T.; Yamazaki, H. Benzydamine N-oxygenation as an index for flavin-containing monooxygenase activity and benzydamine N-demethylation by cytochrome P450 enzymes in liver microsomes from rats, dogs, monkeys, and humans. Drug Metab. Pharmacokinet., 2015, 30(1), 64-69.
[http://dx.doi.org/10.1016/j.dmpk.2014.09.006] [PMID: 25760531]
[12]
Fu, C.W.; Lin, T.H. Predicting the metabolic sites by flavin-containing monooxygenase on drug molecules using SVM classification on computed quantum mechanics and circular fingerprints molecular descriptors. PLoS One, 2017, 12(1)
[http://dx.doi.org/10.1371/journal.pone.0169910] [PMID: 28072829]
[13]
Poulsen, L.L.; Ziegler, D.M. Multisubstrate flavin-containing monooxygenases: applications of mechanism to specificity. Chem. Biol. Interact., 1995, 96(1), 57-73.
[http://dx.doi.org/10.1016/0009-2797(94)03583-T] [PMID: 7720105]
[14]
Kim, Y.M.; Ziegler, D.M. Size limits of thiocarbamides accepted as substrates by human flavin-containing monooxygenase 1. Drug Metab. Dispos., 2000, 28(8), 1003-1006.
[PMID: 10901713]
[15]
Shimizu, M.; Yano, H.; Nagashima, S.; Murayama, N.; Zhang, J.; Cashman, J.R.; Yamazaki, H. Effect of genetic variants of the human flavin-containing monooxygenase 3 on N- and S-oxygenation activities. Drug Metab. Dispos., 2007, 35(3), 328-330.
[http://dx.doi.org/10.1124/dmd.106.013094] [PMID: 17142560]
[16]
Zhou, D.; Zhang, M.; Ye, X.; Gu, C.; Piser, T.M.; Lanoue, B.A.; Schock, S.A.; Cheng, Y.F.; Grimm, S.W. In vitro metabolism of α7 neuronal nicotinic receptor agonist AZD0328 and enzyme identification for its N-oxide metabolite. Xenobiotica, 2011, 41(3), 232-242.
[http://dx.doi.org/10.3109/00498254.2010.536855] [PMID: 21226652]
[17]
Störmer, E.; Roots, I.; Brockmöller, J. Benzydamine N-oxidation as an index reaction reflecting FMO activity in human liver microsomes and impact of FMO3 polymorphisms on enzyme activity. Br. J. Clin. Pharmacol., 2000, 50(6), 553-561.
[http://dx.doi.org/10.1046/j.1365-2125.2000.00296.x] [PMID: 11136294]
[18]
Fedejko-Kap, B.; Niemira, M.; Radominska-Pandya, A.; Mazerska, Z. Flavin monooxygenases, FMO1 and FMO3, not cytochrome P450 isoenzymes, contribute to metabolism of anti-tumour triazoloacridinone, C-1305, in liver microsomes and HepG2 cells. Xenobiotica, 2011, 41(12), 1044-1055.
[http://dx.doi.org/10.3109/00498254.2011.604743] [PMID: 21859392]
[19]
Washio, T.; Arisawa, H.; Kohsaka, K.; Yasuda, H. Identification of human drug-metabolizing enzymes involved in the metabolism of SNI-2011. Biol. Pharm. Bull., 2001, 24(11), 1263-1266.
[http://dx.doi.org/10.1248/bpb.24.1263] [PMID: 11725960]
[20]
Nielsen, K.K.; Brøsen, K.; Hansen, M.G.; Gram, L.F. Single-dose kinetics of clomipramine: relationship to the sparteine and S-mephenytoin oxidation polymorphisms. Clin. Pharmacol. Ther., 1994, 55(5), 518-527.
[http://dx.doi.org/10.1038/clpt.1994.65] [PMID: 8181196]
[21]
Rouer, E.; Lemoine, A.; Cresteil, T.; Rouet, P.; Leroux, J.P. Effects of genetic or chemically induced diabetes on imipramine metabolism. Respective involvement of flavin monooxygenase and cytochrome P-450-dependent monooxygenases. Drug Metab. Dispos., 1987, 15(4), 524-528.
[PMID: 2888626]
[22]
Stevens, J.C.; Shipley, L.A.; Cashman, J.R.; Vandenbranden, M.; Wrighton, S.A. Comparison of human and rhesus monkey In vitro phase I and phase II hepatic drug metabolism activities. Drug Metab. Dispos., 1993, 21(5), 753-760.
[PMID: 7902232]
[23]
Reid, J.M.; Walker, D.L.; Miller, J.K.; Benson, L.M.; Tomlinson, A.J.; Naylor, S.; Blajeski, A.L.; LoRusso, P.M.; Ames, M.M. The metabolism of pyrazoloacridine (NSC 366140) by cytochromes p450 and flavin monooxygenase in human liver microsomes. Clin. Cancer Res., 2004, 10(4), 1471-1480.
[http://dx.doi.org/10.1158/1078-0432.CCR-0557-03] [PMID: 14977851]
[24]
Lee, S.K.; Kang, M.J.; Jin, C.; In, M.K.; Kim, D.H.; Yoo, H.H. Flavin-containing monooxygenase 1-catalysed N,N-dimethylamphetamine N-oxidation. Xenobiotica, 2009, 39(9), 680-686.
[http://dx.doi.org/10.1080/00498250902998699] [PMID: 19552509]
[25]
Kajita, J.; Inano, K.; Fuse, E.; Kuwabara, T.; Kobayashi, H. Effects of olopatadine, a new antiallergic agent, on human liver microsomal cytochrome P450 activities. Drug Metab. Dispos., 2002, 30(12), 1504-1511.
[http://dx.doi.org/10.1124/dmd.30.12.1504] [PMID: 12433826]
[26]
Shiraga, T.; Yajima, K.; Teragaki, T.; Suzuki, K.; Hashimoto, T.; Iwatsubo, T.; Miyashita, A.; Usui, T. Identification of enzymes responsible for the N-oxidation of darexaban glucuronide, the pharmacologically active metabolite of darexaban, and the glucuronidation of darexaban N-oxides in human liver microsomes. Biol. Pharm. Bull., 2012, 35(3), 413-421.
[http://dx.doi.org/10.1248/bpb.35.413] [PMID: 22382330]
[27]
Rodriguez, R.J.; Miranda, C.L. Isoform specificity of N-deacetyl ketoconazole by human and rabbit flavin-containing monooxygenases. Drug Metab. Dispos., 2000, 28(9), 1083-1086.
[PMID: 10950853]
[28]
Indra, R.; Pompach, P.; Vavrová, K.; Jáklová, K.; Heger, Z.; Adam, V.; Eckschlager, T.; Kopečková, K.; Arlt, V.M.; Stiborová, M. Cytochrome P450 and flavin-containing monooxygenase enzymes are responsible for differential oxidation of the anti-thyroid-cancer drug vandetanib by human and rat hepatic microsomal systems. Environ. Toxicol. Pharmacol., 2020, 74, 103310.
[http://dx.doi.org/10.1016/j.etap.2019.103310] [PMID: 31837525]
[29]
Sharma, A.; Hamelin, B.A. Classic histamine H1 receptor antagonists: a critical review of their metabolic and pharmacokinetic fate from a bird’s eye view. Curr. Drug Metab., 2003, 4(2), 105-129.
[http://dx.doi.org/10.2174/1389200033489523] [PMID: 12678691]
[30]
Mushiroda, T.; Douya, R.; Takahara, E.; Nagata, O. The involvement of flavin-containing monooxygenase but not CYP3A4 in metabolism of itopride hydrochloride, a gastroprokinetic agent: comparison with cisapride and mosapride citrate. Drug Metab. Dispos., 2000, 28(10), 1231-1237.
[PMID: 10997945]
[31]
Hodgson, E.; Rose, R.L.; Cao, Y.; Dehal, S.S.; Kupfer, D. Flavin-containing monooxygenase isoform specificity for the N-oxidation of tamoxifen determined by product measurement and NADPH oxidation. J. Biochem. Mol. Toxicol., 2000, 14(2), 118-120.
[http://dx.doi.org/10.1002/(SICI)1099-0461(2000)14:2<118::AID-JBT8>3.0.CO;2-T] [PMID: 10630426]
[32]
Chung, W.G.; Park, C.S.; Roh, H.K.; Lee, W.K.; Cha, Y.N. Oxidation of ranitidine by isozymes of flavin-containing monooxygenase and cytochrome P450. Jpn. J. Pharmacol., 2000, 84(2), 213-220.
[http://dx.doi.org/10.1254/jjp.84.213] [PMID: 11128045]
[33]
Yu, J.; Brown, D.G.; Burdette, D. In vitro metabolism studies of nomifensine monooxygenation pathways: metabolite identification, reaction phenotyping, and bioactivation mechanism. Drug Metab. Dispos., 2010, 38(10), 1767-1778.
[http://dx.doi.org/10.1124/dmd.110.033910] [PMID: 20595377]
[34]
Luo, J.P.; Vashishtha, S.C.; Hawes, E.M.; McKay, G.; Midha, K.K.; Fang, J. In vitro identification of the human cytochrome P450 enzymes involved in the oxidative metabolism of loxapine. Biopharm. Drug Dispos., 2011, 32(7), 398-407.
[http://dx.doi.org/10.1002/bdd.768] [PMID: 21826677]
[35]
Ring, B.J.; Wrighton, S.A.; Aldridge, S.L.; Hansen, K.; Haehner, B.; Shipley, L.A. Flavin-containing monooxygenase-mediated N-oxidation of the M(1)-muscarinic agonist xanomeline. Drug Metab. Dispos., 1999, 27(10), 1099-1103.
[PMID: 10497134]
[36]
Prueksaritanont, T.; Lu, P.; Gorham, L.; Sternfeld, F.; Vyas, K.P. Interspecies comparison and role of human cytochrome P450 and flavin-containing monooxygenase in hepatic metabolism of L-775,606, a potent 5-HT(1D) receptor agonist. Xenobiotica, 2000, 30(1), 47-59.
[http://dx.doi.org/10.1080/004982500237811] [PMID: 10659950]
[37]
Yamazaki, M.; Shimizu, M.; Uno, Y.; Yamazaki, H. Drug oxygenation activities mediated by liver microsomal flavin-containing monooxygenases 1 and 3 in humans, monkeys, rats, and minipigs. Biochem. Pharmacol., 2014, 90(2), 159-165.
[http://dx.doi.org/10.1016/j.bcp.2014.04.019] [PMID: 24821112]
[38]
Jacobsen, W.; Christians, U.; Benet, L.Z. In vitro evaluation of the disposition of A novel cysteine protease inhibitor. Drug Metab. Dispos., 2000, 28(11), 1343-1351.
[PMID: 11038163]
[39]
Christopher, L.J.; Cui, D.; Li, W.; Barros, A., Jr; Arora, V.K.; Zhang, H.; Wang, L.; Zhang, D.; Manning, J.A.; He, K.; Fletcher, A.M.; Ogan, M.; Lago, M.; Bonacorsi, S.J.; Humphreys, W.G.; Iyer, R.A. Biotransformation of [14C]dasatinib: in vitro studies in rat, monkey, and human and disposition after administration to rats and monkeys. Drug Metab. Dispos., 2008, 36(7), 1341-1356.
[http://dx.doi.org/10.1124/dmd.107.018234] [PMID: 18420785]
[40]
Polasek, T.M.; Elliot, D.J.; Somogyi, A.A.; Gillam, E.M.; Lewis, B.C.; Miners, J.O. An evaluation of potential mechanism-based inactivation of human drug metabolizing cytochromes P450 by monoamine oxidase inhibitors, including isoniazid. Br. J. Clin. Pharmacol., 2006, 61(5), 570-584.
[http://dx.doi.org/10.1111/j.1365-2125.2006.02627.x] [PMID: 16669850]
[41]
Ring, B.J.; Catlow, J.; Lindsay, T.J.; Gillespie, T.; Roskos, L.K.; Cerimele, B.J.; Swanson, S.P.; Hamman, M.A.; Wrighton, S.A. Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine. J. Pharmacol. Exp. Ther., 1996, 276(2), 658-666.
[PMID: 8632334]
[42]
Fang, J.; Coutts, R.T.; McKenna, K.F.; Baker, G.B. Elucidation of individual cytochrome P450 enzymes involved in the metabolism of clozapine. Naunyn Schmiedebergs Arch. Pharmacol., 1998, 358(5), 592-599.
[http://dx.doi.org/10.1007/PL00005298] [PMID: 9840430]
[43]
Pirmohamed, M.; Williams, D.; Madden, S.; Templeton, E.; Park, B.K. Metabolism and bioactivation of clozapine by human liver in vitro. J Pharmacol Exp Ther., 1995, 272(3), 984-990.
[PMID: 7891353]
[44]
Yanni, S.B.; Annaert, P.P.; Augustijns, P.; Bridges, A.; Gao, Y.; Benjamin, D.K., Jr; Thakker, D.R. Role of flavin-containing monooxygenase in oxidative metabolism of voriconazole by human liver microsomes. Drug Metab. Dispos., 2008, 36(6), 1119-1125.
[http://dx.doi.org/10.1124/dmd.107.019646] [PMID: 18362161]
[45]
Murayama, N.; Imai, N.; Nakane, T.; Shimizu, M.; Yamazaki, H. Roles of CYP3A4 and CYP2C19 in methyl hydroxylated and N-oxidized metabolite formation from voriconazole, a new anti-fungal agent, in human liver microsomes. Biochem. Pharmacol., 2007, 73(12), 2020-2026.
[http://dx.doi.org/10.1016/j.bcp.2007.03.012] [PMID: 17433262]
[46]
Li, X.; Jeso, V.; Heyward, S.; Walker, G.S.; Sharma, R.; Micalizio, G.C.; Cameron, M.D. Characterization of T-5 N-oxide formation as the first highly selective measure of CYP3A5 activity. Drug Metab. Dispos., 2014, 42(3), 334-342.
[http://dx.doi.org/10.1124/dmd.113.054726] [PMID: 24335391]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy