Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Forkhead-box A3 (FOXA3) Represses Cancer Stemness and Partially Potentiates Chemosensitivity by Targeting Metastasis-Associated in Colon Cancer 1 (MACC1) Signaling Pathway in Colorectal Cancer Cells

Author(s): Na Li*, Yun Li, Hongbo Gao, Jing Li, Xiaoping Ma, Xiaomei Liu, Ping Gong, Xiaobin Cui and Yong Li*

Volume 21, Issue 3, 2021

Published on: 07 December, 2020

Page: [254 - 267] Pages: 14

DOI: 10.2174/1568009620666201207150632

Price: $65

Abstract

Background: The major challenge to the treatment of advanced colorectal cancer (CRC) is the persistent occurrence of chemoresistance. One of the established etiologies is the existence of cancer stem-like cells (CSCs), due to which, tumors show resistance to external therapeutic challenges.

Objective: The forkhead-box A3 (FOXA3) is a potent transcription factor that potentiates the acquisition and maintenance of stemness fate in many physiological systems. However, its effect on cancer stemness, particularly treatment, has not been explored in CRC, forming the basis of the current study.

Methods: FOXA3 expression in oxaliplatin-resistant CRC tissues and cells was evaluated using RT-qPCR. Effects of FOXA3 manipulation on sensitivity to oxaliplatin were assessed using WST-1, apoptotic ELISA, colony formation and xenograft model. Effects of FOXA3 alteration on CSCs were determined using tumorsphere assay and CD44 staining. Transcriptional regulation of MACC1 by FOXA3 was studied using ChIP, Co-IP and luciferase reporter assay.

Results: FOXA3 expression was significantly reduced in tumor samples from oxaliplatin-non-responsive patients compared with that in tumor samples from oxaliplatin-sensitive patients. This downregulation of FOXA3 expression predicted a poor post-chemotherapy overall- or disease-free survival in our 117-patient cohort. FOXA3 down-regulation significantly enhanced cell survival and stem-like properties, thus rendering the CRC cells unresponsiveness to oxaliplatin-induced cell death. Mechanistically, the anti-neoplastic effect of FOXA3 was mediated mainly through transcriptional repression of metastasis-associated in colon cancer 1 (MACC1) in oxaliplatin-resistant CRC cells.

Conclusion: Our findings establish FOXA3 as a potent tumor suppressor in CRC, which may disrupt the maintenance of stemness and modulate sensitivity to oxaliplatin by inhibiting the transcription of MACC1 within CRC cells.

Keywords: Colorectal cancer (CRC), cancer stem-like cells (CSCs), forkhead-box A3 (FOXA3), metastasis-associated in colon cancer 1 (MACC1), oxaliplatin, apoptosis.

« Previous
Graphical Abstract
[1]
Izumi, D.; Toden, S.; Ureta, E.; Ishimoto, T.; Baba, H.; Goel, A. TIAM1 promotes chemoresistance and tumor invasiveness in colorectal cancer. Cell Death Dis., 2019, 10(4), 267.
[http://dx.doi.org/10.1038/s41419-019-1493-5] [PMID: 30890693]
[2]
Ma, L.; Dong, L.; Chang, P. CD44v6 engages in colorectal cancer progression. Cell Death Dis., 2019, 10(1), 30.
[http://dx.doi.org/10.1038/s41419-018-1265-7] [PMID: 30631039]
[3]
Sutera, P.; Solomina, J.; Wegner, R.E.; Abel, S.; Monga, D.; Finley, G.; McCormick, J.; Kirichenko, A.V. Post-operative morbidity and mortality following total neoadjuvant therapy versus conventional neoadjuvant chemoradiotherapy in locally advanced rectal cancer. J. Gastrointest. Cancer, 2020.
[http://dx.doi.org/10.1007/s12029-020-00401-3] [PMID: 32936391]
[4]
Zhang, Y.; Wang, Y.; Liu, X.; Chen, B.; Zhuang, J.; Li, S.; Yang, Y.; Su, Y.; Guan, G. Worse prognosis in young patients with locally advanced rectal cancer following neoadjuvant chemoradiotherapy: A comparative study. Medicine (Baltimore), 2020, 99(35), e21304.
[http://dx.doi.org/10.1097/MD.0000000000021304] [PMID: 32871861]
[5]
Kong, J.C.; Su, W.K.; Ng, C.W.; Guerra, G.R.; Chakraborty, J.; Lutton, N.; Morris, B.; Gourlas, P. Colorectal cancer in younger adults from a Bi-National Colorectal Cancer Audit registry. ANZ J. Surg., 2020.
[http://dx.doi.org/10.1111/ans.16250] [PMID: 32856368]
[6]
Ogunwobi, O.O.; Mahmood, F.; Akingboye, A. Biomarkers in Colorectal Cancer: Current Research and Future Prospects. Int. J. Mol. Sci., 2020, 21(15), E5311.
[http://dx.doi.org/10.3390/ijms21155311] [PMID: 32726923]
[7]
Brown, K.G.M.; Koh, C.E. Surgical management of recurrent colon cancer. J. Gastrointest. Oncol., 2020, 11(3), 513-525.
[http://dx.doi.org/10.21037/jgo-2019-ccm-09] [PMID: 32655930]
[8]
Tan, G.; Wong, J. Surgical management and hyperthermic intraperitoneal chemotherapy for locally advanced colorectal cancer. J. Gastrointest. Oncol., 2020, 11(3), 508-512.
[http://dx.doi.org/10.21037/jgo.2019.12.10] [PMID: 32655929]
[9]
Bruera, G.; D’Andrilli, A.; Simmaco, M.; Guadagni, S.; Rendina, E.A.; Ricevuto, E. Relevance of pharmacogenomics and multidisciplinary management in a young-elderly patient with KRAS mutant colorectal cancer treated with first-line aflibercept-containing chemotherapy. Front. Oncol., 2020, 10, 1155.
[http://dx.doi.org/10.3389/fonc.2020.01155] [PMID: 32850329]
[10]
Auvray, M; Tougeron, D; Auclin, E; Moulin, V; Artru, P; Hautefeuille, V Efficacy and safety of aflibercept in combination with chemotherapy beyond second-line therapy in metastatic colorectal carcinoma patients: An AGEO multicenter study. Clin Colorectal Cancer, 2020, 19(1), 39-47.
[11]
Ottaiano, A.; Scala, S.; Normanno, N.; Napolitano, M.; Capozzi, M.; Rachiglio, A.M.; Roma, C.; Trotta, A.M.; D’Alterio, C.; Portella, L.; Romano, C.; Cassata, A.; Casaretti, R.; Silvestro, L.; Nappi, A.; Tafuto, S.; Avallone, A.; De Stefano, A.; Tamburini, M.; Picone, C.; Petrillo, A.; Izzo, F.; Palaia, R.; Albino, V.; Amore, A.; Belli, A.; Pace, U.; Di Marzo, M.; Chiodini, P.; Botti, G.; De Feo, G.; Delrio, P.; Nasti, G. Cetuximab, irinotecan and fluorouracile in fiRst-line treatment of immunologically-selected advanced colorectal cancer patients: the CIFRA study protocol. BMC Cancer, 2019, 19(1), 899.
[http://dx.doi.org/10.1186/s12885-019-6109-z] [PMID: 31500586]
[12]
Morse, M.A.; Hochster, H.; Benson, A. Perspectives on Treatment of Metastatic Colorectal Cancer with Immune Checkpoint Inhibitor Therapy. Oncologist, 2020, 25(1), 33-45.
[http://dx.doi.org/10.1634/theoncologist.2019-0176] [PMID: 31383813]
[13]
Yao, Y.; Li, N. MIR600HG suppresses metastasis and enhances oxaliplatin chemosensitivity by targeting ALDH1A3 in colorectal cancer. Biosci. Rep., 2020, 40(4), BSR20200390.
[http://dx.doi.org/10.1042/BSR20200390] [PMID: 32270866]
[14]
Gasiulė, S.; Dreize, N.; Kaupinis, A.; Ražanskas, R.; Čiupas, L.; Stankevičius, V.; Kapustina, Ž.; Laurinavičius, A.; Valius, M.; Vilkaitis, G. Molecular insights into miRNA-driven resistance to 5-fluorouracil and oxaliplatin chemotherapy: miR-23b modulates the epithelial–mesenchymal transition of colorectal cancer cells. J. Clin. Med., 2019, 8(12), E2115.
[http://dx.doi.org/10.3390/jcm8122115] [PMID: 31810268]
[15]
Li, N.; Babaei-Jadidi, R.; Lorenzi, F.; Spencer-Dene, B.; Clarke, P.; Domingo, E.; Tulchinsky, E.; Vries, R.G.J.; Kerr, D.; Pan, Y.; He, Y.; Bates, D.O.; Tomlinson, I.; Clevers, H.; Nateri, A.S. An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance. Oncogenesis, 2019, 8(3), 13.
[http://dx.doi.org/10.1038/s41389-019-0125-3] [PMID: 30783098]
[16]
Dandawate, P.; Subramaniam, D.; Panovich, P.; Standing, D.; Krishnamachary, B.; Kaushik, G.; Thomas, S.M.; Dhar, A.; Weir, S.J.; Jensen, R.A.; Anant, S. Cucurbitacin B and I inhibits colon cancer growth by targeting the Notch signaling pathway. Sci. Rep., 2020, 10(1), 1290.
[http://dx.doi.org/10.1038/s41598-020-57940-9] [PMID: 31992775]
[17]
Altevogt, P.; Ben-Ze’ev, A.; Gavert, N.; Schumacher, U.; Schäfer, H.; Sebens, S. Recent insights into the role of L1CAM in cancer initiation and progression. Int. J. Cancer, 2020.
[http://dx.doi.org/10.1002/ijc.33177] [PMID: 32588424]
[18]
Morral, C; Stanisavljevic, J; Hernando-Momblona, X; Mereu, E; Alvarez-Varela, A; Cortina, C Zonation of ribosomal DNA transcription defines a stem cell hierarchy in colorectal cancer. Cell Stem Cell, 2020, 26(6), 845-861.
[19]
Heslop, J.A.; Duncan, S.A. FoxA factors: the chromatin key and doorstop essential for liver development and function. Genes Dev., 2020, 34(15-16), 1003-1004.
[http://dx.doi.org/10.1101/gad.340570.120] [PMID: 32747476]
[20]
Schill, D.; Nord, J.; Cirillo, L.A. FoxO1 and FoxA1/2 form a complex on DNA and cooperate to open chromatin at insulin-regulated genes. Biochem. Cell Biol., 2019, 97(2), 118-129.
[http://dx.doi.org/10.1139/bcb-2018-0104] [PMID: 30142277]
[21]
Pedersen, K.B.; Chodavarapu, H.; Lazartigues, E. Forkhead box transcription factors of the FOXA class are required for basal transcription of angiotensin-converting enzyme 2. J. Endocr. Soc., 2017, 1(4), 370-384.
[http://dx.doi.org/10.1210/js.2016-1071] [PMID: 29082356]
[22]
Takashima, Y.; Horisawa, K.; Udono, M.; Ohkawa, Y.; Suzuki, A. Prolonged inhibition of hepatocellular carcinoma cell proliferation by combinatorial expression of defined transcription factors. Cancer Sci., 2018, 109(11), 3543-3553.
[http://dx.doi.org/10.1111/cas.13798] [PMID: 30220099]
[23]
Huang, C.; Liu, J.; Xiong, B.; Yonemura, Y.; Yang, X. Expression and prognosis analyses of forkhead box A (FOXA) family in human lung cancer. Gene, 2019, 685, 202-210.
[http://dx.doi.org/10.1016/j.gene.2018.11.022] [PMID: 30415009]
[24]
Chen, B.; Yu, J.; Lu, L.; Dong, F.; Zhou, F.; Tao, X.; Sun, E. Upregulated forkhead-box A3 elevates the expression of forkhead-box A1 and forkhead-box A2 to promote metastasis in esophageal cancer. Oncol. Lett., 2019, 17(5), 4351-4360.
[http://dx.doi.org/10.3892/ol.2019.10078] [PMID: 30944629]
[25]
Yahoo, N.; Pournasr, B.; Rostamzadeh, J.; Hakhamaneshi, M.S.; Ebadifar, A.; Fathi, F.; Baharvand, H. Forced expression of Hnf1b/Foxa3 promotes hepatic fate of embryonic stem cells. Biochem. Biophys. Res. Commun., 2016, 474(1), 199-205.
[http://dx.doi.org/10.1016/j.bbrc.2016.04.102] [PMID: 27107701]
[26]
Xu, L.; Panel, V.; Ma, X.; Du, C.; Hugendubler, L.; Gavrilova, O.; Liu, A.; McLaughlin, T.; Kaestner, K.H.; Mueller, E. The winged helix transcription factor Foxa3 regulates adipocyte differentiation and depot-selective fat tissue expansion. Mol. Cell. Biol., 2013, 33(17), 3392-3399.
[http://dx.doi.org/10.1128/MCB.00244-13] [PMID: 23798556]
[27]
Gao, B.; Xie, W.; Wu, X.; Wang, L.; Guo, J. Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(2), 188365.
[http://dx.doi.org/10.1016/j.bbcan.2020.188365] [PMID: 32325165]
[28]
Mukherjee, A.; Hollern, D.P.; Williams, O.G.; Rayburn, T.S.; Byrd, W.A.; Yates, C.; Jones, J.D. A review of FOXI3 regulation of development and possible roles in cancer progression and metastasis. Front. Cell Dev. Biol., 2018, 6, 69.
[http://dx.doi.org/10.3389/fcell.2018.00069] [PMID: 30018953]
[29]
Li, Y.; Gong, P.; Hou, J.X.; Huang, W.; Ma, X.P.; Wang, Y.L.; Li, J.; Cui, X.B.; Li, N. miR-34a Regulates Multidrug Resistance via Positively Modulating OAZ2 Signaling in Colon Cancer Cells. J. Immunol. Res., 2018, 2018, 7498514.
[http://dx.doi.org/10.1155/2018/7498514] [PMID: 30175154]
[30]
Xu, Y.Y.; Yu, H.R.; Sun, J.Y.; Zhao, Z.; Li, S.; Zhang, X.F.; Liao, Z.X.; Cui, M.K.; Li, J.; Li, C.; Zhang, Q. Upregulation of PITX2 Promotes Letrozole Resistance via Transcriptional Activation of IFITM1 Signaling in Breast Cancer Cells. Cancer Res. Treat., 2019, 51(2), 576-592.
[http://dx.doi.org/10.4143/crt.2018.100] [PMID: 30025446]
[31]
Parekh, U; Wu, Y; Zhao, D; Worlikar, A; Shah, N; Zhang, K Mapping cellular reprogramming via pooled overexpression screens with paired fitness and single-cell RNA-sequencing readout. Cell Syst, 2018, 7(5), 548-555.
[32]
Isella, C.; Mellano, A.; Galimi, F.; Petti, C.; Capussotti, L.; De Simone, M.; Bertotti, A.; Medico, E.; Muratore, A. MACC1 mRNA levels predict cancer recurrence after resection of colorectal cancer liver metastases. Ann. Surg., 2013, 257(6), 1089-1095.
[http://dx.doi.org/10.1097/SLA.0b013e31828f96bc] [PMID: 23665971]
[33]
Tülüce, Y.; Ahmed, B.A.; Koyuncu, İ.; Durgun, M. The cytotoxic, apoptotic and oxidative effects of carbonic anhydrase IX inhibitor on colorectal cancer cells. J. Bioenerg. Biomembr., 2018, 50(2), 107-116.
[http://dx.doi.org/10.1007/s10863-018-9749-9] [PMID: 29520697]
[34]
Victer, T.N.; Dos Santos, C.S.; Báo, S.N.; Sampaio, T.L. Deceased tissue donor serology and molecular testing for HIV, hepatitis B and hepatitis C viruses: a lack of cadaveric validated tests. Cell Tissue Bank., 2016, 17(4), 543-553.
[http://dx.doi.org/10.1007/s10561-016-9564-7] [PMID: 27329292]
[35]
Esposito, D.; Crescenzi, E.; Sagar, V.; Loreni, F.; Russo, A.; Russo, G. Human rpL3 plays a crucial role in cell response to nucleolar stress induced by 5-FU and L-OHP. Oncotarget, 2014, 5(22), 11737-11751.
[http://dx.doi.org/10.18632/oncotarget.2591] [PMID: 25473889]
[36]
Sharma, A.; Mishra, T.; Thacker, G.; Mishra, M.; Narender, T.; Trivedi, A.K. Chebulinic acid inhibits MDA-MB-231 breast cancer metastasis and promotes cell death through down regulation of SOD1 and induction of autophagy. Cell Biol. Int., 2020.
[http://dx.doi.org/10.1002/cbin.11463] [PMID: 32902904]
[37]
Sui, H.; Duan, P.; Guo, P.; Hao, L.; Liu, X.; Zhang, J.; Zhu, H.; Zhao, M.; Wang, H.; Li, Q.; Wang, S. Zhi Zhen Fang formula reverses Hedgehog pathway mediated multidrug resistance in colorectal cancer. Oncol. Rep., 2017, 38(4), 2087-2095.
[http://dx.doi.org/10.3892/or.2017.5917] [PMID: 28849164]
[38]
Chen, H.Y.; Lang, Y.D.; Lin, H.N.; Liu, Y.R.; Liao, C.C.; Nana, A.W.; Yen, Y.; Chen, R.H. miR-103/107 prolong Wnt/β-catenin signaling and colorectal cancer stemness by targeting Axin2. Sci. Rep., 2019, 9(1), 9687.
[http://dx.doi.org/10.1038/s41598-019-41053-z] [PMID: 31273221]
[39]
Lai, H.T.; Tseng, W.K.; Huang, S.W.; Chao, T.C.; Su, Y. MicroRNA-203 diminishes the stemness of human colon cancer cells by suppressing GATA6 expression. J. Cell. Physiol., 2020, 235(3), 2866-2880.
[http://dx.doi.org/10.1002/jcp.29192] [PMID: 31544978]
[40]
Dong, Y.S.; Hou, W.G.; Li, Y.; Liu, D.B.; Hao, G.Z.; Zhang, H.F.; Li, J.C.; Zhao, J.; Zhang, S.; Liang, G.B.; Li, W. Unexpected requirement for a binding partner of the syntaxin family in phagocytosis by murine testicular Sertoli cells. Cell Death Differ., 2016, 23(5), 787-800.
[http://dx.doi.org/10.1038/cdd.2015.139] [PMID: 26494466]
[41]
Zhang, C.; Lai, J.H.; Hu, B.; Zhang, S.; Zhao, J.; Li, W. A chromatin modifier regulates Sertoli cell response to mono-(2-ethylhexyl) phthalate (MEHP) via tissue inhibitor of metalloproteinase 2 (TIMP2) signaling. Biochim. Biophys. Acta, 2014, 1839(11), 1170-1182.
[http://dx.doi.org/10.1016/j.bbagrm.2014.08.006] [PMID: 25153068]
[42]
Asgari-Karchekani, S.; Karimian, M.; Mazoochi, T.; Taheri, M.A.; Khamehchian, T. CDX2 Protein Expression in Colorectal Cancer and ItsCorrelation with Clinical and Pathological Characteristics, Prognosis, and Survival Rate of Patients. J. Gastrointest. Cancer, 2020, 51(3), 844-849.
[http://dx.doi.org/10.1007/s12029-019-00314-w] [PMID: 31630373]
[43]
Zhang, S.; Li, W.; Zhu, C.; Wang, X.; Li, Z.; Zhang, J.; Zhao, J.; Hu, J.; Li, T.; Zhang, Y. Sertoli cell-specific expression of metastasis-associated protein 2 (MTA2) is required for transcriptional regulation of the follicle-stimulating hormone receptor (FSHR) gene during spermatogenesis. J. Biol. Chem., 2012, 287(48), 40471-40483.
[http://dx.doi.org/10.1074/jbc.M112.383802] [PMID: 23086931]
[44]
Jin, X.; Zhang, S.; Ding, T.; Zhao, P.; Zhang, C.; Zhang, Y.; Li, W. Testicular Lmcd1 regulates phagocytosis by Sertoli cells through modulation of NFAT1/Txlna signaling pathway. Aging Cell, 2020, 19(10), e13217.
[http://dx.doi.org/10.1111/acel.13217] [PMID: 32840323]
[45]
Radhakrishnan, H.; Walther, W.; Zincke, F.; Kobelt, D.; Imbastari, F.; Erdem, M.; Kortüm, B.; Dahlmann, M.; Stein, U. MACC1-the first decade of a key metastasis molecule from gene discovery to clinical translation. Cancer Metastasis Rev., 2018, 37(4), 805-820.
[http://dx.doi.org/10.1007/s10555-018-9771-8] [PMID: 30607625]
[46]
Bailey, P.; Chang, D.K.; Nones, K.; Johns, A.L.; Patch, A.M.; Gingras, M.C.; Miller, D.K.; Christ, A.N.; Bruxner, T.J.; Quinn, M.C.; Nourse, C.; Murtaugh, L.C.; Harliwong, I.; Idrisoglu, S.; Manning, S.; Nourbakhsh, E.; Wani, S.; Fink, L.; Holmes, O.; Chin, V.; Anderson, M.J.; Kazakoff, S.; Leonard, C.; Newell, F.; Waddell, N.; Wood, S.; Xu, Q.; Wilson, P.J.; Cloonan, N.; Kassahn, K.S.; Taylor, D.; Quek, K.; Robertson, A.; Pantano, L.; Mincarelli, L.; Sanchez, L.N.; Evers, L.; Wu, J.; Pinese, M.; Cowley, M.J.; Jones, M.D.; Colvin, E.K.; Nagrial, A.M.; Humphrey, E.S.; Chantrill, L.A.; Mawson, A.; Humphris, J.; Chou, A.; Pajic, M.; Scarlett, C.J.; Pinho, A.V.; Giry-Laterriere, M.; Rooman, I.; Samra, J.S.; Kench, J.G.; Lovell, J.A.; Merrett, N.D.; Toon, C.W.; Epari, K.; Nguyen, N.Q.; Barbour, A.; Zeps, N.; Moran-Jones, K.; Jamieson, N.B.; Graham, J.S.; Duthie, F.; Oien, K.; Hair, J.; Grützmann, R.; Maitra, A.; Iacobuzio-Donahue, C.A.; Wolfgang, C.L.; Morgan, R.A.; Lawlor, R.T.; Corbo, V.; Bassi, C.; Rusev, B.; Capelli, P.; Salvia, R.; Tortora, G.; Mukhopadhyay, D.; Petersen, G.M.; Munzy, D.M.; Fisher, W.E.; Karim, S.A.; Eshleman, J.R.; Hruban, R.H.; Pilarsky, C.; Morton, J.P.; Sansom, O.J.; Scarpa, A.; Musgrove, E.A.; Bailey, U.M.; Hofmann, O.; Sutherland, R.L.; Wheeler, D.A.; Gill, A.J.; Gibbs, R.A.; Pearson, J.V.; Waddell, N.; Biankin, A.V.; Grimmond, S.M. Australian pancreatic cancer genome initiative. genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 2016, 531(7592), 47-52.
[http://dx.doi.org/10.1038/nature16965] [PMID: 26909576]
[47]
Ma, L.; Duan, C.C.; Yang, Z.Q.; Ding, J.L.; Liu, S.; Yue, Z.P.; Guo, B. Novel insights into Dhh signaling in antler chondrocyte proliferation and differentiation: Involvement of Foxa. J. Cell. Physiol., 2020, 235(9), 6023-6031.
[http://dx.doi.org/10.1002/jcp.29528] [PMID: 31960430]
[48]
Maeda, Y.; Tsuchiya, T.; Hao, H.; Tompkins, D.H.; Xu, Y.; Mucenski, M.L.; Du, L.; Keiser, A.R.; Fukazawa, T.; Naomoto, Y.; Nagayasu, T.; Whitsett, J.A. Kras(G12D) and Nkx2-1 haploinsufficiency induce mucinous adenocarcinoma of the lung. J. Clin. Invest., 2012, 122(12), 4388-4400.
[http://dx.doi.org/10.1172/JCI64048] [PMID: 23143308]
[49]
Han, S.; Dziedzic, N.; Gadue, P.; Keller, G.M.; Gouon-Evans, V. An endothelial cell niche induces hepatic specification through dual repression of Wnt and Notch signaling. Stem Cells, 2011, 29(2), 217-228.
[http://dx.doi.org/10.1002/stem.576] [PMID: 21732480]
[50]
Dai, K.; Chen, R.; Ding, Y.; Niu, Z.; Fan, J.; Xu, C. Induction of functional hepatocyte-like cells by overexpression of FOXA3 and HNF4α in rat bone marrow mesenchymal stem cells. Cells Tissues Organs, 2014, 200(2), 132-140.
[http://dx.doi.org/10.1159/000380762] [PMID: 25896100]
[51]
Huang, P.; Zhang, L.; Gao, Y.; He, Z.; Yao, D.; Wu, Z.; Cen, J.; Chen, X.; Liu, C.; Hu, Y.; Lai, D.; Hu, Z.; Chen, L.; Zhang, Y.; Cheng, X.; Ma, X.; Pan, G.; Wang, X.; Hui, L. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell, 2014, 14(3), 370-384.
[http://dx.doi.org/10.1016/j.stem.2014.01.003] [PMID: 24582927]
[52]
Lim, K.T.; Kim, J.; Hwang, S.I.; Zhang, L.; Han, H.; Bae, D.; Kim, K.P.; Hu, Y.P.; Schöler, H.R.; Lee, I.; Hui, L.; Han, D.W. Direct conversion of mouse fibroblasts into cholangiocyte progenitor cells. Stem Cell Reports, 2018, 10(5), 1522-1536.
[http://dx.doi.org/10.1016/j.stemcr.2018.03.002] [PMID: 29606616]
[53]
Li, H.; Chen, Y.X.; Wen, J.G.; Zhou, H.H. Metastasis-associated in colon cancer 1: A promising biomarker for the metastasis and prognosis of colorectal cancer. Oncol. Lett., 2017, 14(4), 3899-3908.
[http://dx.doi.org/10.3892/ol.2017.6670] [PMID: 28943898]
[54]
Kim, H.J.; Moon, S.J.; Kim, S.H.; Heo, K.; Kim, J.H. DBC1 regulates Wnt/β-catenin-mediated expression of MACC1, a key regulator of cancer progression, in colon cancer. Cell Death Dis., 2018, 9(8), 831.
[http://dx.doi.org/10.1038/s41419-018-0899-9] [PMID: 30082743]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy