Abstract
Autophagy is a process in which eukaryotic cells sequester and degrade cytoplasm and organelles via the lysosomal pathway. This process allows turnover of intracellular organelles, participates in the maintenance of cellular homeostasis and prevents accumulation of defective cellular structures. Increased autophagy is normally induced by environmental cues such as starvation and hormones, while excessive levels of autophagy can lead to autophagic programmed cell death (PCD), with features that differ from those of the apoptotic PCD process. Since autophagic PCD plays a key role in development, morphogenesis and regeneration in several animal taxa, identification of evolutionarily conserved components of the autophagic machinery is a basic starting point in order to unravel the role of autophagy under both physiological and pathological conditions. Here we summarize recent findings on the role of autophagy in two different invertebrate taxa, Platyhelminthes and Insects, focusing attention on two complex events occurring in those systems, namely planarian regeneration and insect metamorphosis. Both represent good models in which to investigate the process of autophagy and its relationship with other PCD mechanisms.
Keywords: Autophagy, autophagic programmed cell death, invertebrates, starvation, development, regeneration, planarian, insects
Current Pharmaceutical Design
Title: Autophagy in Invertebrates: Insights Into Development, Regeneration and Body Remodeling
Volume: 14 Issue: 2
Author(s): Gianluca Tettamanti, Emili Salo, Cristina Gonzalez-Estevez, Daniel A. Felix, Annalisa Grimaldi and Magda de Eguileor
Affiliation:
Keywords: Autophagy, autophagic programmed cell death, invertebrates, starvation, development, regeneration, planarian, insects
Abstract: Autophagy is a process in which eukaryotic cells sequester and degrade cytoplasm and organelles via the lysosomal pathway. This process allows turnover of intracellular organelles, participates in the maintenance of cellular homeostasis and prevents accumulation of defective cellular structures. Increased autophagy is normally induced by environmental cues such as starvation and hormones, while excessive levels of autophagy can lead to autophagic programmed cell death (PCD), with features that differ from those of the apoptotic PCD process. Since autophagic PCD plays a key role in development, morphogenesis and regeneration in several animal taxa, identification of evolutionarily conserved components of the autophagic machinery is a basic starting point in order to unravel the role of autophagy under both physiological and pathological conditions. Here we summarize recent findings on the role of autophagy in two different invertebrate taxa, Platyhelminthes and Insects, focusing attention on two complex events occurring in those systems, namely planarian regeneration and insect metamorphosis. Both represent good models in which to investigate the process of autophagy and its relationship with other PCD mechanisms.
Export Options
About this article
Cite this article as:
Tettamanti Gianluca, Salo Emili, Gonzalez-Estevez Cristina, Felix A. Daniel, Grimaldi Annalisa and Eguileor de Magda, Autophagy in Invertebrates: Insights Into Development, Regeneration and Body Remodeling, Current Pharmaceutical Design 2008; 14(2) . https://dx.doi.org/10.2174/138161208783378716
DOI https://dx.doi.org/10.2174/138161208783378716 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |

- Author Guidelines
- Editorial Policies
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Allegations from Whistleblowers
- Publishing Ethics and Rectitude
- Increase Visibility Of Your Article
- Archiving Policies
- Reviewer Guidelines
- Guest Editor Guidelines
- Board Recruitment Workflow
- Short Guide for New Editors
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Announcements
- Forthcoming Thematic Issues
Related Articles
-
Misoprostol Reverse Hippocampal Neuron Cyclooxygenase-2 Downstream Signaling Imbalance in Aluminum-Overload Rats
Current Alzheimer Research Selenium in the Therapy of Neurological Diseases. Where is it Going?
Current Neuropharmacology Advances of Phenoxazines: Synthesis, Reactivity and Their Medicinal Applications
Current Medicinal Chemistry A Combination of Two Antioxidants (An SOD Mimic and Ascorbate) Produces a Pro-Oxidative Effect Forcing Escherichia coli to Adapt Via Induction of oxyR Regulon
Anti-Cancer Agents in Medicinal Chemistry Dual Functional Small Molecule Probes as Fluorophore and Ligand for Misfolding Proteins
Current Organic Chemistry Therapeutic Prospects of PPARs in Psychiatric Disorders: A Comprehensive Review
Current Drug Targets Applications of Human Umbilical Cord Blood Cells in Central Nervous System Regeneration
Current Stem Cell Research & Therapy The Role of Microglial Cell Subsets in Alzheimers Disease
Current Alzheimer Research Molecular Mechanisms Determining Opposed Functional States of Microglia
Current Neuropharmacology Role of FK506 Binding Proteins in Neurodegenerative Disorders
Current Medicinal Chemistry Intrathecal Administration of Melatonin Ameliorates the Neuroinflammation- Mediated Sensory and Motor Dysfunction in A Rat Model of Compression Spinal Cord Injury
Current Molecular Pharmacology Alzheimer’s Disease and Environmental Exposure to Lead: The Epidemiologic Evidence and Potential Role of Epigenetics
Current Alzheimer Research The Application of Freidinger Lactams and their Analogs in the Design of Conformationally Constrained Peptidomimetics
Current Medicinal Chemistry Natural Compounds with Proteasome Inhibitory Activity for Cancer Prevention and Treatment
Current Protein & Peptide Science Oxidative Stress in the Early Stage of Psychosis
Current Topics in Medicinal Chemistry Aquaporins and Neurodegenerative Diseases
Current Neuropharmacology The Classic Basic Protein of Myelin – Conserved Structural Motifs and the Dynamic Molecular Barcode Involved in Membrane Adhesion and Protein-Protein Interactions
Current Protein & Peptide Science Recent Multi-target Approaches on the Development of Anti- Alzheimer's Agents Integrating Metal Chelation Activity
Current Medicinal Chemistry Stem Cell Pharmacogenomics
Current Topics in Medicinal Chemistry NMDA Receptor Antagonists as Antidepressant and Antidementia Drugs: Recent Developments and Future Prospects
Current Medicinal Chemistry - Central Nervous System Agents