Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

A Review on Thiocyanation of Indoles

Author(s): Chitteti Divyavani, Pannala Padmaja, Vinod G. Ugale and Pedavenkatagari Narayana Reddy*

Volume 18, Issue 3, 2021

Published on: 03 December, 2020

Page: [233 - 247] Pages: 15

DOI: 10.2174/1570179417999201203211855

Price: $65

conference banner
Abstract

Background: The thiocyanation of indoles is a direct way for carbon-sulfur bond formation to access 3-thiocyanato-indoles. 3-thiocyanato-indoles exhibit potent biological and pharmacological activities and also serve as building blocks to synthesize many biologically active sulfur-containing indole derivatives.

Objective: The aim of this review is to highlight different approaches for the thiocyanation of indoles focusing on its scope and mechanism.

Conclusion: In this review, we have summarized various methods for the thiocyanation of indoles. Selection of new methods for the preparation of 3-thiocyanato-indoles will be done. The mechanistic aspects and significance of the methods are also briefly discussed.

Keywords: Organosulfur compounds, thiocyanation, indoles, oxidants, acid catalysts, electrochemical thiocyanation, photocatalyzed thiocyanation.

Next »
Graphical Abstract
[1]
Cottrell, D.M.; Capers, J.; Salem, M.M.; DeLuca-Fradley, K.; Croft, S.L.; Werbovetz, K.A. Antikinetoplastid activity of 3-aryl-5-thiocyanatomethyl-1,2,4-oxadiazoles. Bioorg. Med. Chem., 2004, 12(11), 2815-2824.
[http://dx.doi.org/10.1016/j.bmc.2004.03.054] [PMID: 15142541]
[2]
Havens, C.G.; Bryant, N.; Asher, L.; Lamoreaux, L.; Perfetto, S.; Brendle, J.J.; Werbovetz, K.A. Cellular effects of leishmanial tubulin inhibitors on L. donovani. Mol. Biochem. Parasitol., 2000, 110(2), 223-236.
[http://dx.doi.org/10.1016/S0166-6851(00)00272-3] [PMID: 11071278]
[3]
Artico, M.; Silvestri, R.; Pagnozzi, E.; Bruno, B.; Novellino, E.; Greco, G.; Massa, S.; Ettorre, A.; Loi, A.G.; Scintu, F.; La Colla, P. Structure-based design, synthesis, and biological evaluation of novel pyrrolyl aryl sulfones: HIV-1 non-nucleoside reverse transcriptase inhibitors active at nanomolar concentrations. J. Med. Chem., 2000, 43(9), 1886-1891.
[http://dx.doi.org/10.1021/jm9901125] [PMID: 10794705]
[4]
Kumar, S.; Gopalakrishnan, V.; Hegde, M.; Rana, V.; Dhepe, S.S.; Ramareddy, S.A.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Srivastava, M.; Raghavan, S.C.; Karki, S.S. Synthesis and antiproliferative activity of imidazo[2,1-b][1,3,4]thiadiazole derivatives. Bioorg. Med. Chem. Lett., 2014, 24(19), 4682-4688.
[http://dx.doi.org/10.1016/j.bmcl.2014.08.032] [PMID: 25205189]
[5]
Beletskaya, I.P.; Ananikov, V.P. Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions. Chem. Rev., 2011, 111(3), 1596-1636.
[http://dx.doi.org/10.1021/cr100347k] [PMID: 21391564]
[6]
Guy, R.G. In the chemistry of cyanates and their thio derivatives; S., Patai, Ed.; John Wiley Sons: New York,, 1977, p. 819..
[7]
Castanheiro, T.; Suffert, J.; Donnard, M.; Gulea, M. Recent advances in the chemistry of organic thiocyanates. Chem. Soc. Rev., 2016, 45(3), 494-505.
[http://dx.doi.org/10.1039/C5CS00532A] [PMID: 26658383]
[8]
Wood, J.L. ?Inorganic Reactions; R., Adams, Ed.; John Wiley Sons, New York, NY, USA, 1946, 3..
[9]
Mehta, R.G.; Liu, J.; Constantinou, A.; Thomas, C.F.; Hawthorne, M.; You, M.; Gerhüser, C.; Pezzuto, J.M.; Moon, R.C.; Moriarty, R.M. Cancer chemopreventive activity of brassinin, a phytoalexin from cabbage. Carcinogenesis, 1995, 16(2), 399-404.
[http://dx.doi.org/10.1093/carcin/16.2.399] [PMID: 7859373]
[10]
Chandler, J.D.; Day, B.J. Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties. Biochem. Pharmacol., 2012, 84(11), 1381-1387.
[http://dx.doi.org/10.1016/j.bcp.2012.07.029] [PMID: 22968041]
[11]
Whitehouse, M.W.; Jones, M. Pro-inflammatory activity in rats of thiocyanate, a metabolite of the hydrocyanic acid inhaled from tobacco smoke. Inflamm. Res., 2009, 58(10), 693-704.
[http://dx.doi.org/10.1007/s00011-009-0038-2] [PMID: 19360377]
[12]
Chandler, J.D.; Min, E.; Huang, J.; McElroy, C.S.; Dickerhof, N.; Mocatta, T.; Fletcher, A.A.; Evans, C.M.; Liang, L.; Patel, M.; Kettle, A.J.; Nichols, D.P.; Day, B.J. Antiinflammatory and antimicrobial effects of thiocyanate in a cystic fibrosis mouse model. Am. J. Respir. Cell Mol. Biol., 2015, 53(2), 193-205.
[http://dx.doi.org/10.1165/rcmb.2014-0208OC] [PMID: 25490247]
[13]
Wei, Z.L.; Kozikowski, A.P. A short and efficient synthesis of the pharmacological research tool GW501516 for the peroxisome proliferator-activated receptor δ. J. Org. Chem., 2003, 68(23), 9116-9118.
[http://dx.doi.org/10.1021/jo035140g] [PMID: 14604391]
[14]
Verkruijsse, H.D.; Brandsma, L. A simple and safe procedure for bis(methylthio)- and bis (ethylthio) acetylene. Synthesis, 1991, 10, 818.
[http://dx.doi.org/10.1055/s-1991-26578]
[15]
Kitagawa, I.; Ueda, Y.; Kawasaki, T.; Mosettig, E. Steroids with functional sulfur groups. III. The reaction of some thiocyano steroids. J. Org. Chem., 1963, 28, 2228-2232.
[http://dx.doi.org/10.1021/jo01044a018]
[16]
Toste, F.D.; LaRaronde, F.; Still, I.W.J. Thiocyanate as a versatile synthetic unit: Efficient conversion of ArSCN to aryl alkyl sulfides and aryl thioesters. Tetrahedron Lett., 1995, 36, 2949-2952.
[http://dx.doi.org/10.1016/0040-4039(95)00445-I]
[17]
Riemschneider, R.; Wojahn, F.; Orlick, G. Thiocarbamates. III. Aryl Thiocarbamates from Aryl Thiocyanates. J. Am. Chem. Soc., 1951, 73, 5905-5907.
[http://dx.doi.org/10.1021/ja01156a552]
[18]
Riemschneider, R. Thiocarbamates and related compounds. X. A new reaction of thiocyanates. J. Am. Chem. Soc., 1956, 78, 844-847.
[http://dx.doi.org/10.1021/ja01585a038]
[19]
Prabhu, K.R.; Ramesha, A.R.; Chandrasekaran, S. Reductive dimerization of organic thiocyanates to disulfides mediated by tetrathiomolybdate. J. Org. Chem., 1995, 60, 7142-7143.
[http://dx.doi.org/10.1021/jo00127a017]
[20]
Wood, J.L. Organic Reactions; Wiley: New York, 1967, Vol. 3, pp. 240-266.
[21]
Kelly, T.R.; Kim, M.H.; Certis, A.D.M. Structure correction and synthesis of the naturally occurring benzothiazinone BMY 40662. J. Org. Chem., 1993, 58, 5855-5857.
[http://dx.doi.org/10.1021/jo00073a057]
[22]
MacKinnon, D.L.; Farrell, A.P. The effect of 2-(thiocyanomethylthio)benzothiazole on juvenile coho salmon (Oncorhynchus Kisutch): sublethal toxicity testing. Environ. Toxicol. Chem., 1992, 11, 1541-1548.
[http://dx.doi.org/10.1002/etc.5620111104]
[23]
Falck, J.R.; Gao, S.; Prasad, R.N.; Koduru, S.R. Electrophilic α-thiocyanation of chiral and achiral N-acyl imides. A convenient route to 5-substituted and 5,5-disubstituted 2,4-thiazolidinediones. Bioorg. Med. Chem. Lett., 2008, 18(6), 1768-1771.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.034] [PMID: 18308568]
[24]
Aoyama, T.; Murata, S.; Takido, T.; Kodomari, M. Novel one-pot three-step reaction using supported reagents system: Synthesis of 2-aminothiazoles. Tetrahedron, 2007, 63, 11933-11937.
[http://dx.doi.org/10.1016/j.tet.2007.09.017]
[25]
Zhang, Z.; Liebeskind, L.S. Palladium-catalyzed, copper(I)-mediated coupling of boronic acids and benzylthiocyanate. A cyanide-free cyanation of boronic acids. Org. Lett., 2006, 8(19), 4331-4333.
[http://dx.doi.org/10.1021/ol061741t] [PMID: 16956219]
[26]
Ian, W.J.; Still, L.; Martyn, J.P. The generation of (samarium) thiolates from aryl thiocyanates and their reaction with epoxides: A route to β-hydroxy sulfides. Synth. Commun., 1998, 28, 913-923.
[http://dx.doi.org/10.1080/00032719808006491]
[27]
Demko, Z.P.; Sharpless, K.B. An intramolecular [2 + 3] cycloaddition route to fused 5-heterosubstituted tetrazoles. Org. Lett., 2001, 3(25), 4091-4094.
[http://dx.doi.org/10.1021/ol010220x] [PMID: 11735592]
[28]
Varela, J.A.; Castedo, L.; Saá, C. Scope of Ru(II)-catalyzed synthesis of pyridines from alkynes and nitriles. J. Org. Chem., 2003, 68(22), 8595-8598.
[http://dx.doi.org/10.1021/jo035050b] [PMID: 14575491]
[29]
Melzig, L.; Rauhut, C.B.; Naredi-Rainer, N.; Knochel, P. Difunctionalisation of arenes and heteroarenes by directed metallation and sulfoxide-magnesium exchange. Chemistry, 2011, 17(19), 5362-5372.
[http://dx.doi.org/10.1002/chem.201003657] [PMID: 21462274]
[30]
Wang, F.; Chen, C.; Deng, G.; Xi, C. Concise approach to benzisothiazol-3(2H)-one via copper-catalyzed tandem reaction of o-bromobenzamide and potassium thiocyanate in water. J. Org. Chem., 2012, 77(8), 4148-4151.
[http://dx.doi.org/10.1021/jo300250x] [PMID: 22443210]
[31]
Lu, X.; Wang, H.; Gao, R.; Sun, D.; Bi, X. Microwave-assisted synthesis of asymmetric disulfides. RSC Advances, 2014, 4, 28794-28797.
[http://dx.doi.org/10.1039/C4RA03592E]
[32]
Pawliczek, M.; Garve, L.K.B.; Werz, D.B. Activation of aryl thiocyanates followed by aryne insertion: access to 1,2-thiobenzonitriles. Org. Lett., 2015, 17(7), 1716-1719.
[http://dx.doi.org/10.1021/acs.orglett.5b00494] [PMID: 25775431]
[33]
Brown, S.P.; Smith, A.B. III Peptide/protein stapling and unstapling: introduction of s-tetrazine, photochemical release, and regeneration of the peptide/protein. J. Am. Chem. Soc., 2015, 137(12), 4034-4037.
[http://dx.doi.org/10.1021/ja512880g] [PMID: 25793939]
[34]
Bayarmagnai, B.; Matheis, C.; Jouvin, K.; Goossen, L.J. Synthesis of difluoromethyl thioethers from difluoromethyl trimethylsilane and organothiocyanates generated in situ. Angew. Chem. Int. Ed. Engl., 2015, 54(19), 5753-5756.
[http://dx.doi.org/10.1002/anie.201500899] [PMID: 25766315]
[35]
Guan, Q.; Han, C.; Zuo, D.; Zhai, M.; Li, Z.; Zhang, Q.; Zhai, Y.; Jiang, X.; Bao, K.; Wu, Y.; Zhang, W. Synthesis and evaluation of benzimidazole carbamates bearing indole moieties for antiproliferative and antitubulin activities. Eur. J. Med. Chem., 2014, 87, 306-315.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.071] [PMID: 25262051]
[36]
Rhoennstad, P.; Kallin, E.; Apelqvist, T.; Wennerstaal, M.; Cheng, A. Novel estrogen receptor ligands. Patent WO2009/127686, 2009.
[37]
Feng, S.; Gao, L.; Hong, D.; Wang, L.; Yun, H.; Zhao, S.H. Novel indazoles for the treatment and prophylaxis of respiratory syncytial virus infection.Patent WO 2014/9302, 2014.
[38]
Williams, T.; Zhang, X-F. Non-nucleoside reverse transcriptase inhibitors. Patent WO 2007/021629, 2007.
[39]
Fortes, M.P.; da Silva, P.B.; da Silva, T.G.; Kaufman, T.S.; Militão, G.C.; Silveira, C.C. Synthesis and preliminary evaluation of 3-thiocyanato-1H-indoles as potential anticancer agents. Eur. J. Med. Chem., 2016, 118, 21-26.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.039] [PMID: 27116711]
[40]
Monila, R.; Neelima, D. 3-Thiocyanato-1H-indoles as potential anticancer agents: Two dimensional quantitative structure activity relationship study. Int. J. Pharm. Chem. Anal., 2016, 3, 198-204.
[41]
Brandon, P.C. Thiocyanato-indoles as energy-transfer inhibitors in photophosphorylation. Arch. Biochem. Biophys., 1970, 138(2), 655-673.
[http://dx.doi.org/10.1016/0003-9861(70)90382-6] [PMID: 4393556]
[42]
Pezzella, A.; Palma, A.; Iadonisi, A.; Napolitano, A.; d’Ischia, M. The first entry to 5,6-dihydroxy-3-mercaptoindole, 5-hydroxy-3-mercaptoindole and their 2-carbomethoxy derivatives by a mild thiocyanation/reduction methodology. Tetrahedron Lett., 2007, 48, 3883-3886.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.141]
[43]
Carpenter, W.; Grant, M.S.; Snyder, H.R. The action of sulfur on indole. J. Am. Chem. Soc., 1960, 82, 2739-2742.
[http://dx.doi.org/10.1021/ja01496a022]
[44]
Chowdhury, H.; Goswami, A. Synthesis of 3-(2-thiopyridyl)indoles via the ruthenium catalyzed [2 + 2 + 2] cycloaddition of diynes and 3-thiocyanatoindoles. Org. Biomol. Chem., 2017, 15(27), 5824-5830.
[http://dx.doi.org/10.1039/C7OB01101F] [PMID: 28661531]
[45]
Kaufman, S.T.; Silveira, C.C.; Fortes, P.M.; Bassaco, M.M. A convenient eco-friendly system for the synthesis of 5-sulfenyl tetrazole derivatives of indoles and pyrroles employing CeCl3.7H2O in PEG-400. RSC Advances, 2014, 4, 34519-34530.
[http://dx.doi.org/10.1039/C4RA05625F]
[46]
Misra, R.; Ramesh, M.; Prabhat, G.; Shaikh, M.M. Tetracyanoethylene substituted triphenylamine analogues. Tetrahedron Lett., 2014, 55, 7102-7105.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.148]
[47]
Nikoofar, K. A brief on thiocyanation of N-activated arenes and N-bearing hetero aromatic compounds. Chem. Sci. Trans., 2013, 2, 691-700.
[48]
Rezayati, S.; Ramazani, A. A review on electrophilic thiocyanation of aromatic and heteroaromatic compounds. Tetrahedron, 2020, 76(36)131382
[http://dx.doi.org/10.1016/j.tet.2020.131382]
[49]
Yadav, J.S.; Reddy, B.V.S.; Shubashree, S.; Sadashiv, K. Iodine/MeOH: A novel and efficient reagent system for thiocyanation of aromatics and heteroaromatics. Tetrahedron Lett., 2004, 45, 2951-2954.
[http://dx.doi.org/10.1016/j.tetlet.2004.02.073]
[50]
Yadav, J.S.; Reddy, B.V.S.; Krishna, A.D.; Suresh Reddy, Ch.; Narsaiah, A.V. Ferric(III) chloride-promoted electrophilic thiocyanation of aromatic and heteroaromatic compounds. Synthesis, 2005, 6, 961-964.
[http://dx.doi.org/10.1055/s-2005-861852]
[51]
Wu, G.; Liu, Q.; Shen, Y.; Wu, W.; Wu, L. Regioselective thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and oxone. Tetrahedron Lett., 2005, 46, 5831-5834.
[http://dx.doi.org/10.1016/j.tetlet.2005.06.132]
[52]
Yadav, J.S.; Reddy, B.V.S.; Krishna, B.M. IBX: A novel and versatile oxidant for electrophilic thiocyanation of indoles, pyrrole and arylamines. Synthesis, 2008, 23, 3779-3782.
[http://dx.doi.org/10.1055/s-0028-1083636]
[53]
Wu, J.; Wu, G.; Wu, L. Thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and I2O5. Synthetic. Communications,, 2008, 38, 2367-2373.
[54]
Memarian, H.R.; Mohammadpoor-Baltork, I.; Nikoofar, K. Ultrasound-assisted thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and DDQ. Ultrason. Sonochem., 2008, 15(4), 456-462.
[http://dx.doi.org/10.1016/j.ultsonch.2007.09.010] [PMID: 18024154]
[55]
Xiang, Q.P.; Lei, M.Y.; Zou, J.P.; Zhang, W. Mn(OAc)3-promoted regioselective free radical thiocyanation of indoles and anilines. Tetrahedron Lett., 2009, 50, 347-349.
[http://dx.doi.org/10.1016/j.tetlet.2008.11.007]
[56]
Iranpoor, N.; Firouzabadi, H.; Khalili, D.; Shahin, R. A new application for diethyl azodicarboxylate: Efficient and regioselective thiocyanation of aromatics amines. Tetrahedron Lett., 2010, 51, 3508-3510.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.096]
[57]
Iranpoor, N.; Firouzabadi, H.; Shahin, R.; Khalili, D. 2,2′-Azobenzothiazole as a new recyclable oxidant for heterogeneous thiocyanation of aromatic compounds with ammonium thiocyanate. Synth. Commun., 2012, 42, 2040-2047.
[http://dx.doi.org/10.1080/00397911.2010.551699]
[58]
Khazaei, A.; Zolfigol, M.A.; Mokhlesi, M.; Panah, F.D.F.; Sijadifar, S. Simple and highly efficient catalytic thiocyanation of aromatic compounds in aqueous media. Helv. Chim. Acta, 2012, 95, 106-114.
[http://dx.doi.org/10.1002/hlca.201100244]
[59]
Khalili, D. Graphene oxide: A promising carbocatalyst for the regioselective thiocyanation of aromatic amines, phenols, anisols and enolizable ketones by hydrogen peroxide/KSCN in water. New J. Chem., 2016, 40, 2547-2553.
[http://dx.doi.org/10.1039/C5NJ02314A]
[60]
Jiang, H.; Yu, W.; Tang, X.; Li, J.; Wu, W. Copper-catalyzed aerobic oxidative regioselective thiocyanation of aromatics and heteroaromatics. J. Org. Chem., 2017, 82(18), 9312-9320.
[http://dx.doi.org/10.1021/acs.joc.7b01122] [PMID: 28812887]
[61]
Mete, T.B.; Khopade, T.M.; Bhat, R.G. Transition-metal-free regioselective thiocyanation of phenols, anilines and heterocycles. Tetrahedron Lett., 2016, 58, 415-418.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.043]
[62]
Yadav, J.S.; Subba Reddy, B.V.; Jayasudhan Reddy, Y. 1-Chloromethyl-4-fluoro-1,4- diazoniabicyclo[2,2,2]octane bis(tetrafluoroborate) as novel and versatile reagent for the rapid thiocyanation of indoles, azaindole, and carbazole. Chem. Lett., 2008, 37, 652-653.
[http://dx.doi.org/10.1246/cl.2008.652]
[63]
Nair, V.; George, T.G.; Nair, L.G.; Panicker, S.B. A direct synthesis of aryl thiocyanates using cerium(IV) ammonium nitrate. Tetrahedron Lett., 1999, 40, 1195-1196.
[http://dx.doi.org/10.1016/S0040-4039(98)02563-5]
[64]
Ali, M.; Zarchi, K.; Banihashemi, R. Thiocyanation of aromatic and heteroaromatic compounds using polymer-supported thiocyanate ion as the versatile reagent and ceric ammonium nitrate as the versatile single-electron oxidant. J. Sulfur Chem., 2016, 37, 282-295.
[http://dx.doi.org/10.1080/17415993.2015.1137919]
[65]
Khosravi, K.; Azizi, A.; Naserifar, S. Efficient oxidative dehydrogenation of dihydropyrimidinones and thiocyanation of aromatic compounds using 1,1,2,2- tetrahydroperoxy-1,2-diphenylethane as the oxidant. Org. Chem. Res., 2019, 5, 128-138.
[66]
Toste, F.D.; Stefano, V.D.; Still, I.W.J. A versatile procedure for the preparation of aryl thiocyanates using N-thiocyanatosuccinimide (NTS). Synth. Commun., 1995, 25, 1277-1286.
[http://dx.doi.org/10.1080/00397919508012691]
[67]
Wang, C.; Wang, Z.; Wang, L.; Chen, Q.; He, M. Catalytic thiourea promoted electrophilic thiocyanation of indoles and aromatic amines with NCS/NH4SCN. Chin. J. Chem., 2016, 34, 1081-1085.
[http://dx.doi.org/10.1002/cjoc.201600344]
[68]
Wang, Z.; Wang, L.; Chen, Q.; He, M. Rapid and efficient thiocyanation of phenols, indoles, and anilines in 1,1,1,3,3,3-hexafluoro-2-propanol under ultrasound irradiation. Synth. Commun., 2018, 48, 76-84.
[http://dx.doi.org/10.1080/00397911.2017.1390139]
[69]
Grant, M.S.; Snyder, H.R. Thiocyanation of indole. Some reactions of 3-thiocyanoindole. J. Am. Chem. Soc., 1960, 82, 2742-2744.
[http://dx.doi.org/10.1021/ja01496a023]
[70]
Tamura, Y.; Kwon, S.; Chun, M.W.; Ikeda, M. Thiocycnation of indoles. J. Heterocycl. Chem., 1978, 15, 425-427.
[http://dx.doi.org/10.1002/jhet.5570150312]
[71]
Chakrabarty, M.; Sarkar, S. A clay-mediated eco-friendly thiocyanation of indoles and carbazoles. Tetrahedron Lett., 2003, 44, 8131-8133.
[http://dx.doi.org/10.1016/j.tetlet.2003.09.032]
[72]
Murthy, Y.L.N.; Govindh, B.; Diwakar, B.S.; Nagalakshmi, K.; Venu, R. Microwave-assisted neat reaction technology for regioselective thiocyanation of substituted anilines and indoles in solid media. J. Iran. Chem. Soc., 2011, 8, 292-297.
[http://dx.doi.org/10.1007/BF03246227]
[73]
Das, B.; Satya Kumar, A. Efficient thiocyanation of indoles using para-toulene sulfonic acid. Synth. Commun., 2010, 40, 337-341.
[http://dx.doi.org/10.1080/00397910902883744]
[74]
Lenin, R.; Raju, R.M. A simple and efficient thiocyanation of indoles, anilines and keto compounds catalyzed by a polystyrene resin amberlyst-15. Lett. Org. Chem., 2010, 7, 392-395.
[http://dx.doi.org/10.2174/157017810791514878]
[75]
Sajjadifar, S.; Karimian, S.; Noorizadeh, H.; Veisi, H. Regioselective thiocyanation of aromatic and heteroaromatic compounds using [2-(sulfooxy)ethyl]sulfamic acid as an efficient, recyclable organocatalyst and novel difunctional brønsted acid. J. Catal., 2013, 1-7.
[76]
Nikoofar, K.; Gorji, S. AlCl3-Promoted thiocyanation of N-containing aromatic and heteroaromatic compounds under solvent-free conditions. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190, 1138-1145.
[http://dx.doi.org/10.1080/10426507.2014.978321]
[77]
Nikoofar, K.; Gorji, S. Determination of the promoting effect of nano SiO2 and H3PO4@nano SiO2 in the thiocyanation of N-containing aromatic compounds under solvent-free conditions. J. Sulfur Chem., 2015, 36, 178-186.
[http://dx.doi.org/10.1080/17415993.2015.1004066]
[78]
de Klein, W.J. Electrochemical synthesis of vicinal dithiocyanates from olefins and a thiocyanate salt in acidic media. Electrochim. Acta, 1973, 18, 413-416.
[http://dx.doi.org/10.1016/0013-4686(73)80044-1]
[79]
Gitkis, A.; Becker, J.Y. Anodic thiocyanation of mono-and di substituted aromatic compounds. Electrochim. Acta, 2010, 55, 5854-5859.
[http://dx.doi.org/10.1016/j.electacta.2010.05.035]
[80]
Fotouhi, L.; Nikoofar, K. Electrochemical thiocyanation of nitrogen-containing aromatic and heteroaromatic compounds. Tetrahedron Lett., 2013, 54, 2903-2905.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.106]
[81]
Kokorekin, V.A.; Sigacheva, V.L.; Petrosyan, V.A. New data on heteroarene thiocyanation by anodic oxidation of NH4SCN. The processes of electroinduced nucleophilic aromatic substitution of hydrogen. Tetrahedron Lett., 2014, 55, 4306-4309.
[http://dx.doi.org/10.1016/j.tetlet.2014.06.028]
[82]
Zhang, X.; Wang, C.; Jiang, H.; Sun, L. A low-cost electrochemical thio- and selenocyanation strategy for electron-rich arenes under catalyst-and oxidant-free conditions. RSC Advances, 2018, 8, 22042-22045.
[http://dx.doi.org/10.1039/C8RA04407D]
[83]
Hari, D.P.; König, B. The photocatalyzed Meerwein arylation: classic reaction of aryl diazonium salts in a new light. Angew. Chem. Int. Ed. Engl., 2013, 52(18), 4734-4743.
[http://dx.doi.org/10.1002/anie.201210276] [PMID: 23576379]
[84]
Zeitler, K. Photoredox catalysis with visible light. Angew. Chem. Int. Ed. Engl., 2009, 48(52), 9785-9789.
[http://dx.doi.org/10.1002/anie.200904056] [PMID: 19946918]
[85]
Shi, L.; Xia, W. Photoredox functionalization of C-H bonds adjacent to a nitrogen atom. Chem. Soc. Rev., 2012, 41(23), 7687-7697.
[http://dx.doi.org/10.1039/c2cs35203f] [PMID: 22869017]
[86]
Hering, T.; Hari, D.P.; König, B. Visible-light-mediated α-arylation of enol acetates using aryl diazonium salts. J. Org. Chem., 2012, 77(22), 10347-10352.
[http://dx.doi.org/10.1021/jo301984p] [PMID: 23101908]
[87]
Rueping, M.; Vila, C.; Bootwicha, T. Continuous flow organocatalytic C–H functionalization and cross-dehydrogenative coupling reactions: Visible light organophotocatalysis for multicomponent reactions and C–C, C–P bond formations. ACS Catal., 2013, 3, 1676-1680.
[http://dx.doi.org/10.1021/cs400350j]
[88]
Skubi, K.L.; Yoon, T.P. Organic chemistry: Shape control in reactions with light. Nature, 2014, 515(7525), 45-46.
[http://dx.doi.org/10.1038/515045a] [PMID: 25373672]
[89]
Xu, Z.; Gao, L.; Wang, L.; Gong, M.; Wang, W.; Yuan, R. Visible light photoredox catalyzed biaryl synthesis using nitrogen heterocycles as promoter. ACS Catal., 2015, 5, 45-50.
[http://dx.doi.org/10.1021/cs5011037]
[90]
Fan, W.; Yang, Q.; Xu, F.; Li, P. A visible-light-promoted aerobic metal-free C-3 thiocyanation of indoles. J. Org. Chem., 2014, 79(21), 10588-10592.
[http://dx.doi.org/10.1021/jo5015799] [PMID: 25299422]
[91]
Wang, L.; Wang, C.; Liu, W.; Chen, Q.; He, M. Visible-light-induced aerobic thiocyanation of indoles using reusable TiO2/MoS2 nanocomposite photocatalyst. Tetrahedron Lett., 2016, 57, 1771-1774.
[http://dx.doi.org/10.1016/j.tetlet.2016.03.028]
[92]
Sarvari, M.H.; Hosseinpour, Z.; Koohgard, M. Visible light thiocyanation of N-bearing aromatic and heteroaromatic compounds using Ag/TiO2 nanotube photocatalyst. New J. Chem., 2018, 42, 19237-19244.
[http://dx.doi.org/10.1039/C8NJ03128B]
[93]
Pan, C.; Yu, G.; Zhang, W.; Tang, J.; Yu, W.; Huang, Q.; Fu, Y.; Kuang, G. Visible light-driven C-3 functionalization of indoles over conjugated microporous polymers. ACS Catal., 2018, 8, 8084-8091.
[http://dx.doi.org/10.1021/acscatal.8b01478]
[94]
Sarvari, H.M.; Koohgard, M. ARS-TiO2 photocatalyzed direct functionalization of sp2 C-H bonds toward thiocyanation and cyclization reactions under visible light. Catal. Sci. Technol., 2020, 10, 1401-1407.
[http://dx.doi.org/10.1039/C9CY02268F]
[95]
Wu, D.; Qiu, J.; Karmaker, P.G.; Yin, H.; Chen, F.X. N-Thiocyanatosaccharin: A Sweet electrophilic thiocyanation reagent and the synthetic applications. J. Org. Chem., 2018, 83(3), 1576-1583.
[http://dx.doi.org/10.1021/acs.joc.7b02850] [PMID: 29302964]
[96]
Li, C.; Long, P.; Wu, H.; Yin, H.; Chen, F.X. N-Thiocyanato-dibenzenesulfonimide: A new electrophilic thiocyanating reagent with enhanced reactivity. Org. Biomol. Chem., 2019, 17(30), 7131-7134.
[http://dx.doi.org/10.1039/C9OB01340G] [PMID: 31309967]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy