Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

GPRASP/ARMCX Protein Family: Potential Involvement in Health and Diseases Revealed by their Novel Interacting Partners

Author(s): Juliette Kaeffer, Gabrielle Zeder-Lutz, Frédéric Simonin* and Sandra Lecat*

Volume 21 , Issue 3 , 2021

Published on: 02 December, 2020

Page: [227 - 254] Pages: 28

DOI: 10.2174/1568026620666201202102448

Price: $65

Abstract

GPRASP (GPCR-associated sorting protein)/ARMCX (ARMadillo repeat-Containing proteins on the X chromosome) family is composed of 10 proteins, whose genes are located on a small locus of the X chromosome except one. They possess at least two armadillo-like repeats on their carboxylterminal homologous sequence, but they can be subdivided on specific sequence features. Subfamily 1 (GPRASP1, GPRASP2, GPRASP3, ARMCX4 and ARMCX5) displays additional repeated motifs while a mitochondrial targeting transmembrane domain is present in subfamily 2 (ARMC10, ARMCX1, ARMCX2, ARMCX3 and ARMCX6). Although their roles are not yet fully understood, the recent identification of several interacting partners has shed new light on the processes in which GPRASP/ARMCX proteins are implicated. Among the interacting partners of proteins from subfamily 1, many are GPCRs. GPRASP1 binds trafficking proteins, such as Beclin2 and the Dysbindin-HRS-Gαs complex, to participate in GPCR post-endocytic sorting. Moreover, in vitro as well as in vivo experiments indicate that GPRASP1 is a critical player in the adaptive responses related to chronic treatments with GPCR agonists. GPRASP2 seems to play a key role in the signaling of the hedgehog pathway in the primary cilium through a Smoothened-GPRASP2-Pifo complex. Identified small compound inhibitors of this complex could treat drug-resistant smoothened derived cancer forms. Deletion of GPRASP2 in mice causes neurodevelopmental alteration and affects mGluR5 regulation, reflected by autism-like behavior. Several members of subfamily 2, in complex with TRAK2 and MIRO, are involved in the trafficking of mitochondria in axons and in the regulation of their size and division, influencing the cell cycle. The essential role of GPRASP/ARMCX proteins in cellular physiology is supported by human cases of deletions, causing male neonatal lethality by pulmonary delayed development, dysmorphic face, and psychiatric and intellectual impacts in females.

Keywords: Pharmacology, Signalling, α-solenoid Scaffolding proteins, Membrane trafficking, Mitochondria dynamics, Ciliopathies, Neurite outgrowth.

« Previous
Graphical Abstract
[1]
Simonin, F.; Karcher, P.; Boeuf, J.J-M.; Matifas, A.; Kieffer, B.L. Identification of a novel family of G protein-coupled receptor associated sorting proteins. J. Neurochem., 2004, 89(3), 766-775.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02411.x] [PMID: 15086532]
[2]
Abu-Helo, A.; Simonin, F. Identification and biological significance of G protein-coupled receptor associated sorting proteins (GASPs). Pharmacol. Ther., 2010, 126(3), 244-250.
[http://dx.doi.org/10.1016/j.pharmthera.2010.03.004] [PMID: 20394773]
[3]
López-Doménech, G.; Serrat, R.; Mirra, S.; D’Aniello, S.; Somorjai, I.; Abad, A.; Vitureira, N.; García-Arumí, E.; Alonso, M.T.; Rodriguez-Prados, M.; Burgaya, F.; Andreu, A.L.; García-Sancho, J.; Trullas, R.; Garcia-Fernàndez, J.; Soriano, E. The Eutherian Armcx genes regulate mitochondrial trafficking in neurons and interact with Miro and Trak2. Nat. Commun., 2012, 3, 814.
[http://dx.doi.org/10.1038/ncomms1829] [PMID: 22569362]
[4]
Serrat, R.; Mirra, S.; Figueiro-Silva, J.; Navas-Pérez, E.; Quevedo, M.; López-Doménech, G.; Podlesniy, P.; Ulloa, F.; Garcia-Fernàndez, J.; Trullas, R.; Soriano, E. The Armc10/SVH gene: genome context, regulation of mitochondrial dynamics and protection against Aβ-induced mitochondrial fragmentation. Cell Death Dis., 2014, 5, e1163-e1163.
[http://dx.doi.org/10.1038/cddis.2014.121] [PMID: 24722288]
[5]
Huang, R.; Xing, Z.; Luan, Z.; Wu, T.; Wu, X.; Hu, G. A specific splicing variant of SVH, a novel human armadillo repeat protein, is up-regulated in hepatocellular carcinomas. Cancer Res., 2003, 63(13), 3775-3782.
[PMID: 12839973]
[6]
Winter, E.E.; Ponting, C.P. Mammalian BEX, WEX and GASP genes: coding and non-coding chimaerism sustained by gene conversion events. BMC Evol. Biol., 2005, 5, 54-67.
[http://dx.doi.org/10.1186/1471-2148-5-54] [PMID: 16221301]
[7]
Grillo, L.; Reitano, S.; Belfiore, G.; Spalletta, A.; Amata, S.; Bottitta, M.; Barone, C.; Falco, M.; Fichera, M.; Romano, C. Familial 1.1 Mb deletion in chromosome Xq22.1 associated with mental retardation and behavioural disorders in female patients. Eur. J. Med. Genet., 2010, 53(2), 113-116.
[http://dx.doi.org/10.1016/j.ejmg.2010.01.001] [PMID: 20096387]
[8]
Yamamoto, T.; Wilsdon, A.; Joss, S.; Isidor, B.; Erlandsson, A.; Suri, M.; Sangu, N.; Shimada, S.; Shimojima, K.; Le Caignec, C.; Samuelsson, L.; Stefanova, M. An emerging phenotype of Xq22 microdeletions in females with severe intellectual disability, hypotonia and behavioral abnormalities. J. Hum. Genet., 2014, 59(6), 300-306.
[http://dx.doi.org/10.1038/jhg.2014.21] [PMID: 24646727]
[9]
Cao, Y.; Aypar, U. A novel Xq22.1 deletion in a male with multiple congenital abnormalities and respiratory failure. Eur. J. Med. Genet., 2016, 59(5), 274-277.
[http://dx.doi.org/10.1016/j.ejmg.2016.03.004] [PMID: 26995686]
[10]
Mácha, J.; Teichmanová, R.; Sater, A.K.; Wells, D.E.; Tlapáková, T.; Zimmerman, L.B.; Krylov, V. Deep ancestry of mammalian X chromosome revealed by comparison with the basal tetrapod Xenopus tropicalis. BMC Genomics, 2012, 13, 315.
[http://dx.doi.org/10.1186/1471-2164-13-315] [PMID: 22800176]
[11]
Jung, B.; Messias, A.C.; Schorpp, K.; Geerlof, A.; Schneider, G.; Saur, D.; Hadian, K.; Sattler, M.; Wanker, E.E.; Hasenöder, S.; Lickert, H. Novel small molecules targeting ciliary transport of Smoothened and oncogenic Hedgehog pathway activation. Sci. Rep., 2016, 6, 22540.
[http://dx.doi.org/10.1038/srep22540] [PMID: 26931153]
[12]
Bornert, O.; Møller, T.C.; Boeuf, J.; Candusso, M-P.; Wagner, R.; Martinez, K.L.; Simonin, F. Identification of a novel protein-protein interaction motif mediating interaction of GPCR-associated sorting proteins with G protein-coupled receptors. PLoS One, 2013, 8(2)e56336
[http://dx.doi.org/10.1371/journal.pone.0056336] [PMID: 23441177]
[13]
Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res., 2009, 37(Web Server issue), W202-W208.
[http://dx.doi.org/10.1093/nar/gkp335] [PMID: 19458158]
[14]
Striegl, H.; Andrade-Navarro, M.A.; Heinemann, U. Armadillo motifs involved in vesicular transport. PLoS One, 2010, 5(2)e8991
[http://dx.doi.org/10.1371/journal.pone.0008991] [PMID: 20126549]
[15]
Gul, I.S.; Hulpiau, P.; Saeys, Y.; van Roy, F. Metazoan evolution of the armadillo repeat superfamily. Cell. Mol. Life Sci., 2017, 74(3), 525-541.
[http://dx.doi.org/10.1007/s00018-016-2319-6] [PMID: 27497926]
[16]
Whistler, J.L.; Enquist, J.; Marley, A.; Fong, J.; Gladher, F.; Tsuruda, P.; Murray, S.R.; Von Zastrow, M. Modulation of postendocytic sorting of G protein-coupled receptors. Science, 2002, 297(5581), 615-620.
[http://dx.doi.org/10.1126/science.1073308] [PMID: 12142540]
[17]
Heydorn, A.; Søndergaard, B.P.; Ersbøll, B.; Holst, B.; Nielsen, F.C.; Haft, C.R.; Whistler, J.; Schwartz, T.W. A library of 7TM receptor C-terminal tails. Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP). J. Biol. Chem., 2004, 279(52), 54291-54303.
[http://dx.doi.org/10.1074/jbc.M406169200] [PMID: 15452121]
[18]
Moser, E.; Kargl, J.; Whistler, J.L.; Waldhoer, M.; Tschische, P. G protein-coupled receptor-associated sorting protein 1 regulates the postendocytic sorting of seven-transmembrane-spanning G protein-coupled receptors. Pharmacology, 2010, 86(1), 22-29.
[http://dx.doi.org/10.1159/000314161] [PMID: 20693822]
[19]
He, C.; Wei, Y.; Sun, K.; Li, B.; Dong, X.; Zou, Z.; Liu, Y.; Kinch, L.N.; Khan, S.; Sinha, S.; Xavier, R.J.; Grishin, N.V.; Xiao, G.; Eskelinen, E-L.; Scherer, P.E.; Whistler, J.L.; Levine, B. Beclin 2 functions in autophagy, degradation of G protein-coupled receptors, and metabolism. Cell, 2013, 154(5), 1085-1099.
[http://dx.doi.org/10.1016/j.cell.2013.07.035] [PMID: 23954414]
[20]
Matsuki, T.; Kiyama, A.; Kawabuchi, M.; Okada, M.; Nagai, K. A novel protein interacts with a clock-related protein, rPer1. Brain Res., 2001, 916(1-2), 1-10.
[http://dx.doi.org/10.1016/S0006-8993(01)02857-8] [PMID: 11597585]
[21]
Mou, Z.; Tapper, A.R.; Gardner, P.D. The armadillo repeat-containing protein, ARMCX3, physically and functionally interacts with the developmental regulatory factor Sox10. J. Biol. Chem., 2009, 284(20), 13629-13640.
[http://dx.doi.org/10.1074/jbc.M901177200] [PMID: 19304657]
[22]
Cartoni, R.; Norsworthy, M.W.; Bei, F.; Wang, C.; Li, S.; Zhang, Y.; Gabel, C.V.; Schwarz, T.L.; He, Z. The mammalian-specific protein armcx1 regulates mitochondrial transport during axon regeneration. Neuron, 2016, 92(6), 1294-1307.
[http://dx.doi.org/10.1016/j.neuron.2016.10.060] [PMID: 28009275]
[23]
Chen, Z.; Lei, C.; Wang, C.; Li, N.; Srivastava, M.; Tang, M.; Zhang, H.; Choi, J.M.; Jung, S.Y.; Qin, J.; Chen, J. Global phosphoproteomic analysis reveals ARMC10 as an AMPK substrate that regulates mitochondrial dynamics. Nat. Commun., 2019, 10(1), 104.
[http://dx.doi.org/10.1038/s41467-018-08004-0] [PMID: 30631047]
[24]
López-Doménech, G.; Covill-Cooke, C.; Ivankovic, D.; Halff, E.F.; Sheehan, D.F.; Norkett, R.; Birsa, N.; Kittler, J.T. Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J., 2018, 37(3), 321-336.
[http://dx.doi.org/10.15252/embj.201696380] [PMID: 29311115]
[25]
Lee, S-Y.; Kang, M-G.; Park, J-S.; Lee, G.; Ting, A.Y.; Rhee, H-W. APEX fingerprinting reveals the subcellular localization of proteins of interest. Cell Rep., 2016, 15(8), 1837-1847.
[http://dx.doi.org/10.1016/j.celrep.2016.04.064] [PMID: 27184847]
[26]
Modi, S.; López-Doménech, G.; Halff, E.F.; Covill-Cooke, C.; Ivankovic, D.; Melandri, D.; Arancibia-Cárcamo, I.L.; Burden, J.J.; Lowe, A.R.; Kittler, J.T. Miro clusters regulate ER-mitochondria contact sites and link cristae organization to the mitochondrial transport machinery. Nat. Commun., 2019, 10(1), 4399.
[http://dx.doi.org/10.1038/s41467-019-12382-4] [PMID: 31562315]
[27]
Serrat, R.; López-Doménech, G.; Mirra, S.; Quevedo, M.; Garcia-Fernàndez, J.; Ulloa, F.; Burgaya, F.; Soriano, E. The non-canonical Wnt/PKC pathway regulates mitochondrial dynamics through degradation of the arm-like domain-containing protein Alex3. PLoS One, 2013, 8(7)e67773
[http://dx.doi.org/10.1371/journal.pone.0067773] [PMID: 23844091]
[28]
Liu, C.; Lin, C.; Yao, J.; Wei, Q.; Xing, G.; Cao, X. Dynamic expression analysis of armc10, the homologous gene of human GPRASP2, in zebrafish embryos. Mol. Med. Rep., 2017, 16(5), 5931-5937.
[http://dx.doi.org/10.3892/mmr.2017.7357] [PMID: 28849214]
[29]
Oliviero, G.; Brien, G.L.; Waston, A.; Streubel, G.; Jerman, E.; Andrews, D.; Doyle, B.; Munawar, N.; Wynne, K.; Crean, J.; Bracken, A.P.; Cagney, G. Dynamic protein interactions of the polycomb repressive complex 2 during differentiation of pluripotent cells. Mol. Cell. Proteomics, 2016, 15(11), 3450-3460.
[http://dx.doi.org/10.1074/mcp.M116.062240] [PMID: 27634302]
[30]
Lin, J-R.; Mondal, A.M.; Liu, R.; Hu, J. Minimalist ensemble algorithms for genome-wide protein localization prediction. BMC Bioinformatics, 2012, 13, 157.
[http://dx.doi.org/10.1186/1471-2105-13-157] [PMID: 22759391]
[31]
Nguyen Ba, A.N.; Pogoutse, A.; Provart, N.; Moses, A.M. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics, 2009, 10, 202.
[http://dx.doi.org/10.1186/1471-2105-10-202] [PMID: 19563654]
[32]
Mirra, S.; Ulloa, F.; Gutierrez-Vallejo, I.; Martì, E.; Soriano, E. Function of armcx3 and armc10/svh genes in the regulation of progenitor proliferation and neural differentiation in the chicken spinal cord. Front. Cell. Neurosci., 2016, 10, 47.
[http://dx.doi.org/10.3389/fncel.2016.00047] [PMID: 26973462]
[33]
Beausoleil, S.A.; Jedrychowski, M.; Schwartz, D.; Elias, J.E.; Villén, J.; Li, J.; Cohn, M.A.; Cantley, L.C.; Gygi, S.P. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA, 2004, 101(33), 12130-12135.
[http://dx.doi.org/10.1073/pnas.0404720101] [PMID: 15302935]
[34]
Rozan, L.M.; El-Deiry, W.S. Identification and characterization of proteins interacting with Traf4, an enigmatic p53 target. Cancer Biol. Ther., 2006, 5(9), 1228-1235.
[http://dx.doi.org/10.4161/cbt.5.9.3295] [PMID: 16969126]
[35]
Fournier, D.; Palidwor, G.A.; Shcherbinin, S.; Szengel, A.; Schaefer, M.H.; Perez-Iratxeta, C.; Andrade-Navarro, M.A. Functional and genomic analyses of alpha-solenoid proteins. PLoS One, 2013, 8(11)e79894
[http://dx.doi.org/10.1371/journal.pone.0079894] [PMID: 24278209]
[36]
Andrade, M.A.; Perez-Iratxeta, C.; Ponting, C.P. Protein repeats: structures, functions, and evolution. ScienceDirect, 2001, 134, 117-131.
[37]
van der Lee, R.; Buljan, M.; Lang, B.; Weatheritt, R.J.; Daughdrill, G.W.; Dunker, A.K.; Fuxreiter, M.; Gough, J.; Gsponer, J.; Jones, D.T.; Kim, P.M.; Kriwacki, R.W.; Oldfield, C.J.; Pappu, R.V.; Tompa, P.; Uversky, V.N.; Wright, P.E.; Babu, M.M. Classification of intrinsically disordered regions and proteins. Chem. Rev., 2014, 114(13), 6589-6631.
[http://dx.doi.org/10.1021/cr400525m] [PMID: 24773235]
[38]
Rosciglione, S.; Thériault, C.; Boily, M-O.; Paquette, M.; Lavoie, C. Gαs regulates the post-endocytic sorting of G protein-coupled receptors. Nat. Commun., 2014, 5, 4556.
[http://dx.doi.org/10.1038/ncomms5556] [PMID: 25089012]
[39]
Marley, A.; von Zastrow, M. Dysbindin promotes the post-endocytic sorting of G protein-coupled receptors to lysosomes. PLoS One, 2010, 5(2)e9325
[http://dx.doi.org/10.1371/journal.pone.0009325] [PMID: 20174469]
[40]
Jung, B.; Padula, D.; Burtscher, I.; Landerer, C.; Lutter, D.; Theis, F.; Messias, A.C.; Geerlof, A.; Sattler, M.; Kremmer, E.; Boldt, K.; Ueffing, M.; Lickert, H. Pitchfork and gprasp2 target smoothened to the primary cilium for hedgehog pathway activation. PLoS One, 2016, 11(2)e0149477
[http://dx.doi.org/10.1371/journal.pone.0149477] [PMID: 26901434]
[41]
Modell, A.E.; Blosser, S.L.; Arora, P.S. Systematic targeting of protein-protein interactions. Trends Pharmacol. Sci., 2016, 37(8), 702-713.
[http://dx.doi.org/10.1016/j.tips.2016.05.008] [PMID: 27267699]
[42]
Mabonga, L.; Kappo, A.P. Protein-protein interaction modulators: advances, successes and remaining challenges. Biophys. Rev., 2019, 11(4), 559-581.
[http://dx.doi.org/10.1007/s12551-019-00570-x] [PMID: 31301019]
[43]
Ambadipudi, S.; Zweckstetter, M. Targeting intrinsically disordered proteins in rational drug discovery. Expert Opin. Drug Discov., 2016, 11(1), 65-77.
[http://dx.doi.org/10.1517/17460441.2016.1107041] [PMID: 26549326]
[44]
Neira, J.L.; Bintz, J.; Arruebo, M.; Rizzuti, B.; Bonacci, T.; Vega, S.; Lanas, A.; Velázquez-Campoy, A.; Iovanna, J.L.; Abián, O. Identification of a drug targeting an intrinsically disordered protein involved in pancreatic adenocarcinoma. Sci. Rep., 2017, 7, 39732.
[http://dx.doi.org/10.1038/srep39732] [PMID: 28054562]
[45]
Magalhaes, A.C.; Dunn, H.; Ferguson, S.S. Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br. J. Pharmacol., 2012, 165(6), 1717-1736.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01552.x] [PMID: 21699508]
[46]
Dores, M.R.; Trejo, J. Atypical regulation of G protein-coupled receptor intracellular trafficking by ubiquitination. Curr. Opin. Cell Biol., 2014, 27, 44-50.
[http://dx.doi.org/10.1016/j.ceb.2013.11.004] [PMID: 24680429]
[47]
Lagerström, M.C.; Schiöth, H.B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov., 2008, 7(4), 339-357.
[http://dx.doi.org/10.1038/nrd2518] [PMID: 18382464]
[48]
Hilger, D.; Masureel, M.; Kobilka, B.K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol., 2018, 25(1), 4-12.
[http://dx.doi.org/10.1038/s41594-017-0011-7] [PMID: 29323277]
[49]
Jong, Y.I.; Harmon, S.K.; O’Malley, K.L. Intracellular GPCRs Play Key Roles in Synaptic Plasticity. ACS Chem. Neurosci., 2018, 9(9), 2162-2172.
[http://dx.doi.org/10.1021/acschemneuro.7b00516] [PMID: 29409317]
[50]
Weinberg, Z.Y.; Puthenveedu, M.A. Regulation of G protein-coupled receptor signaling by plasma membrane organization and endocytosis. Traffic, 2019, 20(2), 121-129.
[PMID: 30536564]
[51]
Maurice, P.; Guillaume, J-L.; Benleulmi-Chaachoua, A.; Daulat, A.M.; Kamal, M.; Jockers, R. GPCR-interacting proteins, major players of GPCR function. Adv. Pharmacol., 2011, 62, 349-380.
[http://dx.doi.org/10.1016/B978-0-12-385952-5.00001-4] [PMID: 21907915]
[52]
Wollert, T.; Hurley, J.H. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature, 2010, 464(7290), 864-869.
[http://dx.doi.org/10.1038/nature08849] [PMID: 20305637]
[53]
Schmidt, O.; Teis, D. The ESCRT machinery. Curr. Biol., 2012, 22(4), R116-R120.
[http://dx.doi.org/10.1016/j.cub.2012.01.028] [PMID: 22361144]
[54]
Hislop, J.N.; von Zastrow, M. Role of ubiquitination in endocytic trafficking of G-protein-coupled receptors. Traffic, 2011, 12(2), 137-148.
[http://dx.doi.org/10.1111/j.1600-0854.2010.01121.x] [PMID: 20854416]
[55]
Li, X.; Létourneau, D.; Holleran, B.; Leduc, R.; Lavigne, P.; Lavoie, C. Gαs protein binds ubiquitin to regulate epidermal growth factor receptor endosomal sorting. Proc. Natl. Acad. Sci. USA, 2017, 114(51), 13477-13482.
[http://dx.doi.org/10.1073/pnas.1708215114] [PMID: 29192023]
[56]
Zheng, B.; Lavoie, C.; Tang, T-D.; Ma, P.; Meerloo, T.; Beas, A.; Farquhar, M.G. Regulation of epidermal growth factor receptor degradation by heterotrimeric Galphas protein. Mol. Biol. Cell, 2004, 15(12), 5538-5550.
[http://dx.doi.org/10.1091/mbc.e04-06-0446] [PMID: 15469987]
[57]
Beas, A.O.; Taupin, V.; Teodorof, C.; Nguyen, L.T.; Garcia-Marcos, M.; Farquhar, M.G. Gαs promotes EEA1 endosome maturation and shuts down proliferative signaling through interaction with GIV (Girdin). Mol. Biol. Cell, 2012, 23(23), 4623-4634.
[http://dx.doi.org/10.1091/mbc.e12-02-0133] [PMID: 23051738]
[58]
Holmfeldt, P.; Ganuza, M.; Marathe, H.; He, B.; Hall, T.; Kang, G.; Moen, J.; Pardieck, J.; Saulsberry, A.C.; Cico, A.; Gaut, L.; McGoldrick, D.; Finkelstein, D.; Tan, K.; McKinney-Freeman, S. Functional screen identifies regulators of murine hematopoietic stem cell repopulation. J. Exp. Med., 2016, 213(3), 433-449.
[http://dx.doi.org/10.1084/jem.20150806] [PMID: 26880577]
[59]
Morales-Hernández, A.; Benaksas, C.; Chabot, A.; Caprio, C.; Ferdous, M.; Zhao, X.; Kang, G.; McKinney-Freeman, S. GPRASP proteins are critical negative regulators of hematopoietic stem cell transplantation. Blood, 2020, 135(14), 1111-1123.
[http://dx.doi.org/10.1182/blood.2019003435] [PMID: 32027737]
[60]
Chute, J.P. Stem cell engraftment within our G(P)RASP. Blood, 2020, 135(14), 1077-1078.
[http://dx.doi.org/10.1182/blood.2020005117] [PMID: 32243516]
[61]
Manfra, O.; Van Craenenbroeck, K.; Skieterska, K.; Frimurer, T.; Schwartz, T.W.; Levy, F.O.; Andressen, K.W. Downregulation of 5-ht7 serotonin receptors by the atypical antipsychotics clozapine and olanzapine. role of motifs in the c-terminal domain and interaction with gasp-1. ACS Chem. Neurosci., 2015, 6(7), 1206-1218.
[http://dx.doi.org/10.1021/cn500339p] [PMID: 25706089]
[62]
Kargl, J.; Balenga, N.A.; Platzer, W.; Martini, L.; Whistler, J.L.; Waldhoer, M. The GPCR-associated sorting protein 1 regulates ligand-induced down-regulation of GPR55. Br. J. Pharmacol., 2012, 165(8), 2611-2619.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01562.x] [PMID: 21718301]
[63]
Tschische, P.; Moser, E.; Thompson, D.; Vischer, H.F.; Parzmair, G.P.; Pommer, V.; Platzer, W.; Schwarzbraun, T.; Schaider, H.; Smit, M.J.; Martini, L.; Whistler, J.L.; Waldhoer, M. The G-protein coupled receptor associated sorting protein GASP-1 regulates the signalling and trafficking of the viral chemokine receptor US28. Traffic, 2010, 11(5), 660-674.
[http://dx.doi.org/10.1111/j.1600-0854.2010.01045.x] [PMID: 20102549]
[64]
Buenaventura, T.; Kanda, N.; Douzenis, P.C.; Jones, B.; Bloom, S.R.; Chabosseau, P.; Corrêa, I.R., Jr; Bosco, D.; Piemonti, L.; Marchetti, P.; Johnson, P.R.; Shapiro, A.M.J.; Rutter, G.A.; Tomas, A. A Targeted rnai screen identifies endocytic trafficking factors that control glp-1 receptor signaling in pancreatic β-cells. Diabetes, 2018, 67(3), 385-399.
[http://dx.doi.org/10.2337/db17-0639] [PMID: 29284659]
[65]
Thompson, D.; Martini, L.; Whistler, J.L. Altered ratio of D1 and D2 dopamine receptors in mouse striatum is associated with behavioral sensitization to cocaine. PLoS One, 2010, 5(6)e11038
[http://dx.doi.org/10.1371/journal.pone.0011038] [PMID: 20543951]
[66]
Boeuf, J.; Trigo, J.M.; Moreau, P-H.; Lecourtier, L.; Vogel, E.; Cassel, J-C.; Mathis, C.; Klosen, P.; Maldonado, R.; Simonin, F. Attenuated behavioural responses to acute and chronic cocaine in GASP-1-deficient mice. Eur. J. Neurosci., 2009, 30(5), 860-868.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06865.x] [PMID: 19712096]
[67]
Martini, L.; Thompson, D.; Kharazia, V.; Whistler, J.L. Differential regulation of behavioral tolerance to WIN55,212-2 by GASP1. Neuropsychopharmacology, 2010, 35(6), 1363-1373.
[http://dx.doi.org/10.1038/npp.2010.6] [PMID: 20164830]
[68]
Waldhoer, M.; Bartlett, S.E.; Whistler, J.L. Opioid receptors. Annu. Rev. Biochem., 2004, 73, 953-990.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.073940] [PMID: 15189164]
[69]
Roeckel, L-A.; Le Coz, G-M.; Gavériaux-Ruff, C.; Simonin, F. Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience, 2016, 338, 160-182.
[http://dx.doi.org/10.1016/j.neuroscience.2016.06.029] [PMID: 27346146]
[70]
Tappe-Theodor, A.; Agarwal, N.; Katona, I.; Rubino, T.; Martini, L.; Swiercz, J.; Mackie, K.; Monyer, H.; Parolaro, D.; Whistler, J.; Kuner, T.; Kuner, R. A molecular basis of analgesic tolerance to cannabinoids. J. Neurosci., 2007, 27(15), 4165-4177.
[http://dx.doi.org/10.1523/JNEUROSCI.5648-06.2007] [PMID: 17428994]
[71]
Martini, L.; Waldhoer, M.; Pusch, M.; Kharazia, V.; Fong, J.; Lee, J.H.; Freissmuth, C.; Whistler, J.L. Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J., 2007, 21(3), 802-811.
[http://dx.doi.org/10.1096/fj.06-7132com] [PMID: 17197383]
[72]
Kuramoto, K.; Wang, N.; Fan, Y.; Zhang, W.; Schoenen, F.J.; Frankowski, K.J.; Marugan, J.; Zhou, Y.; Huang, S.; He, C. Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids. Autophagy, 2016, 12(9), 1460-1471.
[http://dx.doi.org/10.1080/15548627.2016.1187367] [PMID: 27305347]
[73]
Giros, B.; el Mestikawy, S.; Bertrand, L.; Caron, M.G. Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett., 1991, 295(1-3), 149-154.
[http://dx.doi.org/10.1016/0014-5793(91)81406-X] [PMID: 1765147]
[74]
Kilty, J.E.; Lorang, D.; Amara, S.G. Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science, 1991, 254(5031), 578-579.
[http://dx.doi.org/10.1126/science.1948035] [PMID: 1948035]
[75]
Madhavan, A.; Argilli, E.; Bonci, A.; Whistler, J.L. Loss of D2 dopamine receptor function modulates cocaine-induced glutamatergic synaptic potentiation in the ventral tegmental area. J. Neurosci., 2013, 33(30), 12329-12336.
[http://dx.doi.org/10.1523/JNEUROSCI.0809-13.2013] [PMID: 23884939]
[76]
Bartlett, S.E.; Enquist, J.; Hopf, F.W.; Lee, J.H.; Gladher, F.; Kharazia, V.; Waldhoer, M.; Mailliard, W.S.; Armstrong, R.; Bonci, A.; Whistler, J.L. Dopamine responsiveness is regulated by targeted sorting of D2 receptors. Proc. Natl. Acad. Sci. USA, 2005, 102(32), 11521-11526.
[http://dx.doi.org/10.1073/pnas.0502418102] [PMID: 16049099]
[77]
Cho, D.; Zheng, M.; Min, C.; Kwon, K.; Shin, C.; Choi, H.; Kim, K. ARF6 and GASP-1 Are Post-Endocytic Sorting Proteins Selectively Involved in the Intracellular Trafficking of Dopamine D 2 Receptors Mediated by GRK and PKC in Transfected Cells: Post-Endocytic Pathways of Dopamine D 2 Receptors. Br. J. Pharmacol., 2013, 168, 1355-1374.
[http://dx.doi.org/10.1111/bph.12025] [PMID: 23082996]
[78]
Thompson, D.; Whistler, J.L. Dopamine D(3) receptors are down-regulated following heterologous endocytosis by a specific interaction with G protein-coupled receptor-associated sorting protein-1. J. Biol. Chem., 2011, 286(2), 1598-1608.
[http://dx.doi.org/10.1074/jbc.M110.158345] [PMID: 21030592]
[79]
Gerdes, J.M.; Davis, E.E.; Katsanis, N. The vertebrate primary cilium in development, homeostasis, and disease. Cell, 2009, 137(1), 32-45.
[http://dx.doi.org/10.1016/j.cell.2009.03.023] [PMID: 19345185]
[80]
von Zastrow, M.; Williams, J.T. Modulating neuromodulation by receptor membrane traffic in the endocytic pathway. Neuron, 2012, 76(1), 22-32.
[http://dx.doi.org/10.1016/j.neuron.2012.09.022] [PMID: 23040804]
[81]
Omori, Y.; Chaya, T.; Yoshida, S.; Irie, S.; Tsujii, T.; Furukawa, T. Identification of G protein-coupled receptors (GPCRs) in primary cilia and their possible involvement in body weight control. PLoS One, 2015, 10(6)e0128422
[http://dx.doi.org/10.1371/journal.pone.0128422] [PMID: 26053317]
[82]
Mykytyn, K.; Askwith, C. G-Protein-coupled receptor signaling in cilia. Cold Spring Harb. Perspect. Biol., 2017, 9(9)a028183
[http://dx.doi.org/10.1101/cshperspect.a028183] [PMID: 28159877]
[83]
Garcia, G., III; Raleigh, D.R.; Reiter, J.F. How the ciliary membrane is organized inside-out to communicate outside-in. Curr. Biol., 2018, 28(8), R421-R434.
[http://dx.doi.org/10.1016/j.cub.2018.03.010] [PMID: 29689227]
[84]
Pala, R.; Alomari, N.; Nauli, S.M. Primary cilium-dependent signaling mechanisms. Int. J. Mol. Sci., 2017, 18(11), 2272.
[http://dx.doi.org/10.3390/ijms18112272] [PMID: 29143784]
[85]
Kinzel, D.; Boldt, K.; Davis, E.E.; Burtscher, I.; Trümbach, D.; Diplas, B.; Attié-Bitach, T.; Wurst, W.; Katsanis, N.; Ueffing, M.; Lickert, H. Pitchfork regulates primary cilia disassembly and left-right asymmetry. Dev. Cell, 2010, 19(1), 66-77.
[http://dx.doi.org/10.1016/j.devcel.2010.06.005] [PMID: 20643351]
[86]
Xing, G.; Yao, J.; Liu, C.; Wei, Q.; Qian, X.; Wu, L.; Lu, Y.; Cao, X. GPRASP2, a novel causative gene mutated in an X-linked recessive syndromic hearing loss. J. Med. Genet., 2017, 54(6), 426-430.
[http://dx.doi.org/10.1136/jmedgenet-2016-104320] [PMID: 28096187]
[87]
Tateya, T.; Imayoshi, I.; Tateya, I.; Hamaguchi, K.; Torii, H.; Ito, J.; Kageyama, R. Hedgehog signaling regulates prosensory cell properties during the basal-to-apical wave of hair cell differentiation in the mammalian cochlea. Development, 2013, 140(18), 3848-3857.
[http://dx.doi.org/10.1242/dev.095398] [PMID: 23946445]
[88]
Kovacs, jeffrey J.; Whalen, E.J.; Liu, R.; Xiao, K.; Kim, J.; Chen, M.; Jiangbo, W.; Chen, W.; Lefkowitz, R.J. β-arrestin-mediated localization of smoothened to the primary cilium. Science, 2008, 320, 1777-1781.
[89]
Butler, M.G.; Rafi, S.K.; Hossain, W.; Stephan, D.A.; Manzardo, A.M. Whole exome sequencing in females with autism implicates novel and candidate genes. Int. J. Mol. Sci., 2015, 16(1), 1312-1335.
[http://dx.doi.org/10.3390/ijms16011312] [PMID: 25574603]
[90]
Piton, A.; Gauthier, J.; Hamdan, F.F.; Lafrenière, R.G.; Yang, Y.; Henrion, E.; Laurent, S.; Noreau, A.; Thibodeau, P.; Karemera, L.; Spiegelman, D.; Kuku, F.; Duguay, J.; Destroismaisons, L.; Jolivet, P.; Côté, M.; Lachapelle, K.; Diallo, O.; Raymond, A.; Marineau, C.; Champagne, N.; Xiong, L.; Gaspar, C.; Rivière, J-B.; Tarabeux, J.; Cossette, P.; Krebs, M-O.; Rapoport, J.L.; Addington, A.; Delisi, L.E.; Mottron, L.; Joober, R.; Fombonne, E.; Drapeau, P.; Rouleau, G.A. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol. Psychiatry, 2011, 16(8), 867-880.
[http://dx.doi.org/10.1038/mp.2010.54] [PMID: 20479760]
[91]
Edfawy, M.; Guedes, J.R.; Pereira, M.I.; Laranjo, M.; Carvalho, M.J.; Gao, X.; Ferreira, P.A.; Caldeira, G.; Franco, L.O.; Wang, D.; Cardoso, A.L.; Feng, G.; Carvalho, A.L.; Peça, J. Abnormal mGluR-mediated synaptic plasticity and autism-like behaviours in Gprasp2 mutant mice. Nat. Commun., 2019, 10(1), 1431.
[http://dx.doi.org/10.1038/s41467-019-09382-9] [PMID: 30926797]
[92]
De Rubeis, S.; He, X.; Goldberg, A.P.; Poultney, C.S.; Samocha, K.; Cicek, A.E.; Kou, Y.; Liu, L.; Fromer, M.; Walker, S.; Singh, T.; Klei, L.; Kosmicki, J.; Shih-Chen, F.; Aleksic, B.; Biscaldi, M.; Bolton, P.F.; Brownfeld, J.M.; Cai, J.; Campbell, N.G.; Carracedo, A.; Chahrour, M.H.; Chiocchetti, A.G.; Coon, H.; Crawford, E.L.; Curran, S.R.; Dawson, G.; Duketis, E.; Fernandez, B.A.; Gallagher, L.; Geller, E.; Guter, S.J.; Hill, R.S.; Ionita-Laza, J.; Jimenz Gonzalez, P.; Kilpinen, H.; Klauck, S.M.; Kolevzon, A.; Lee, I.; Lei, I.; Lei, J.; Lehtimäki, T.; Lin, C-F.; Ma’ayan, A.; Marshall, C.R.; McInnes, A.L.; Neale, B.; Owen, M.J.; Ozaki, N.; Parellada, M.; Parr, J.R.; Purcell, S.; Puura, K.; Rajagopalan, D.; Rehnström, K.; Reichenberg, A.; Sabo, A.; Sachse, M.; Sanders, S.J.; Schafer, C.; Schulte-Rüther, M.; Skuse, D.; Stevens, C.; Szatmari, P.; Tammimies, K.; Valladares, O.; Voran, A.; Li-San, W.; Weiss, L.A.; Willsey, A.J.; Yu, T.W.; Yuen, R.K.C.; Cook, E.H.; Freitag, C.M.; Gill, M.; Hultman, C.M.; Lehner, T.; Palotie, A.; Schellenberg, G.D.; Sklar, P.; State, M.W.; Sutcliffe, J.S.; Walsh, C.A.; Scherer, S.W.; Zwick, M.E.; Barett, J.C.; Cutler, D.J.; Roeder, K.; Devlin, B.; Daly, M.J.; Buxbaum, J.D. DDD Study; Homozygosity Mapping Collaborative for Autism; UK10K Consortium. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 2014, 515(7526), 209-215.
[http://dx.doi.org/10.1038/nature13772] [PMID: 25363760]
[93]
Zhou, J.; McCarrey, J.R.; Wang, P.J.A.A. 1.1-Mb segmental deletion on the X chromosome causes meiotic failure in male mice. Biol. Reprod., 2013, 88(6), 159.
[http://dx.doi.org/10.1095/biolreprod.112.106963] [PMID: 23677977]
[94]
Zhou, J.; Goldberg, E.M.; Leu, N.A.; Zhou, L.; Coulter, D.A.; Wang, P.J. Respiratory failure, cleft palate and epilepsy in the mouse model of human Xq22.1 deletion syndrome. Hum. Mol. Genet., 2014, 23(14), 3823-3829.
[http://dx.doi.org/10.1093/hmg/ddu095] [PMID: 24569167]
[95]
Mathis, C.; Bott, J-B.; Candusso, M-P.; Simonin, F.; Cassel, J-C. Impaired striatum-dependent behavior in GASP-1-knock-out mice. Genes Brain Behav., 2011, 10(3), 299-308.
[http://dx.doi.org/10.1111/j.1601-183X.2010.00666.x] [PMID: 21091868]
[96]
Shin, J-O.; Song, J.; Choi, H.S.; Lee, J.; Lee, K.; Ko, H.W.; Bok, J. Activation of sonic hedgehog signaling by a Smoothened agonist restores congenital defects in mouse models of endocrine-cerebro-osteodysplasia syndrome. EBioMedicine, 2019, 49, 305-317.
[http://dx.doi.org/10.1016/j.ebiom.2019.10.016] [PMID: 31662288]
[97]
Li, S.; Jin, S.; Jin, C. The correlative hypotheses between Pitchfork and Kif3a in palate development. Med. Hypotheses, 2019, 126, 23-25.
[http://dx.doi.org/10.1016/j.mehy.2019.03.005] [PMID: 31010494]
[98]
Heese, K. G proteins, p60TRP, and neurodegenerative diseases. Mol. Neurobiol., 2013, 47(3), 1103-1111.
[http://dx.doi.org/10.1007/s12035-013-8410-1] [PMID: 23345134]
[99]
Lobingier, B.T.; von Zastrow, M. When trafficking and signaling mix: How subcellular location shapes G protein-coupled receptor activation of heterotrimeric G proteins. Traffic, 2019, 20(2), 130-136.
[http://dx.doi.org/10.1111/tra.12634] [PMID: 30578610]
[100]
Tilokani, L.; Nagashima, S.; Paupe, V.; Prudent, J. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem., 2018, 62(3), 341-360.
[http://dx.doi.org/10.1042/EBC20170104] [PMID: 30030364]
[101]
Frezza, C. The role of mitochondria in the oncogenic signal transduction. Int. J. Biochem. Cell Biol., 2014, 48, 11-17.
[http://dx.doi.org/10.1016/j.biocel.2013.12.013] [PMID: 24397955]
[102]
McBride, H.M.; Neuspiel, M.; Wasiak, S. Mitochondria: more than just a powerhouse. Curr. Biol., 2006, 16(14), R551-R560.
[http://dx.doi.org/10.1016/j.cub.2006.06.054] [PMID: 16860735]
[103]
Noguchi, M.; Kasahara, A. Mitochondrial dynamics coordinate cell differentiation. Biochem. Biophys. Res. Commun., 2018, 500(1), 59-64.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.094] [PMID: 28634072]
[104]
Saxton, W.M.; Hollenbeck, P.J. The axonal transport of mitochondria. J. Cell Sci., 2012, 125(Pt 9), 2095-2104.
[http://dx.doi.org/10.1242/jcs.053850] [PMID: 22619228]
[105]
Millecamps, S.; Julien, J-P. Axonal transport deficits and neurodegenerative diseases. Nat. Rev. Neurosci., 2013, 14(3), 161-176.
[http://dx.doi.org/10.1038/nrn3380] [PMID: 23361386]
[106]
Kanfer, G.; Courthéoux, T.; Peterka, M.; Meier, S.; Soste, M.; Melnik, A.; Reis, K.; Aspenström, P.; Peter, M.; Picotti, P.; Kornmann, B. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat. Commun., 2015, 6, 8015.
[http://dx.doi.org/10.1038/ncomms9015] [PMID: 26259702]
[107]
Kay, L.; Pienaar, I.S.; Cooray, R.; Black, G.; Soundararajan, M. Understanding miro gtpases: implications in the treatment of neurodegenerative disorders. Mol. Neurobiol., 2018, 55(9), 7352-7365.
[http://dx.doi.org/10.1007/s12035-018-0927-x] [PMID: 29411264]
[108]
Giacomello, M.; Pyakurel, A.; Glytsou, C.; Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol., 2020, 21(4), 204-224.
[http://dx.doi.org/10.1038/s41580-020-0210-7] [PMID: 32071438]
[109]
Smith, G.M.; Gallo, G. The role of mitochondria in axon development and regeneration. Dev. Neurobiol., 2018, 78(3), 221-237.
[http://dx.doi.org/10.1002/dneu.22546] [PMID: 29030922]
[110]
Park, K.K.; Liu, K.; Hu, Y.; Smith, P.D.; Wang, C.; Cai, B.; Xu, B.; Connolly, L.; Kramvis, I.; Sahin, M.; He, Z. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science, 2008, 322(5903), 963-966.
[http://dx.doi.org/10.1126/science.1161566] [PMID: 18988856]
[111]
Sun, F.; Park, K.K.; Belin, S.; Wang, D.; Lu, T.; Chen, G.; Zhang, K.; Yeung, C.; Feng, G.; Yankner, B.A.; He, Z. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature, 2011, 480(7377), 372-375.
[http://dx.doi.org/10.1038/nature10594] [PMID: 22056987]
[112]
Cheng, J.; Zhang, T.; Ji, H.; Tao, K.; Guo, J.; Wei, W. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochim. Biophys. Acta, 2016, 1866(2), 232-251.
[PMID: 27681874]
[113]
Wauson, E.M.; Dbouk, H.A.; Ghosh, A.B.; Cobb, M.H.G. G protein-coupled receptors and the regulation of autophagy. Trends Endocrinol. Metab., 2014, 25(5), 274-282.
[http://dx.doi.org/10.1016/j.tem.2014.03.006] [PMID: 24751357]
[114]
Du, Z.; Wu, J.; Wang, J.; Liang, Y.; Zhang, S.; Shang, Z.; Zuo, W. MicroRNA-1298 is downregulated in non-small cell lung cancer and suppresses tumor progression in tumor cells. Diagn. Pathol., 2019, 14(1), 132.
[http://dx.doi.org/10.1186/s13000-019-0911-4] [PMID: 31801557]
[115]
Zeller, C.; Dai, W.; Steele, N.L.; Siddiq, A.; Walley, A.J.; Wilhelm-Benartzi, C.S.M.; Rizzo, S.; van der Zee, A.; Plumb, J.A.; Brown, R. Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene, 2012, 31(42), 4567-4576.
[http://dx.doi.org/10.1038/onc.2011.611] [PMID: 22249249]
[116]
Zhu, Z.; Yang, Q.; Zhang, B.; Wu, W.; Yuan, F.; Zhu, Z. miR-106b promotes metastasis of early gastric cancer by targeting alex1 in vitro and in vivo. Cell. Physiol. Biochem., 2019, 52(3), 606-616.
[http://dx.doi.org/10.33594/000000043] [PMID: 30907988]
[117]
Abadir, P.M.; Foster, D.B.; Crow, M.; Cooke, C.A.; Rucker, J.J.; Jain, A.; Smith, B.J.; Burks, T.N.; Cohn, R.D.; Fedarko, N.S.; Carey, R.M.; O’Rourke, B.; Walston, J.D. Identification and characterization of a functional mitochondrial angiotensin system. Proc. Natl. Acad. Sci. USA, 2011, 108(36), 14849-14854.
[http://dx.doi.org/10.1073/pnas.1101507108] [PMID: 21852574]
[118]
Belous, A.; Wakata, A.; Knox, C.D.; Nicoud, I.B.; Pierce, J.; Anderson, C.D.; Pinson, C.W.; Chari, R.S. Mitochondrial P2Y-Like receptors link cytosolic adenosine nucleotides to mitochondrial calcium uptake. J. Cell. Biochem., 2004, 92(5), 1062-1073.
[http://dx.doi.org/10.1002/jcb.20144] [PMID: 15258927]
[119]
Bénard, G.; Massa, F.; Puente, N.; Lourenço, J.; Bellocchio, L.; Soria-Gómez, E.; Matias, I.; Delamarre, A.; Metna-Laurent, M.; Cannich, A.; Hebert-Chatelain, E.; Mulle, C.; Ortega-Gutiérrez, S.; Martín-Fontecha, M.; Klugmann, M.; Guggenhuber, S.; Lutz, B.; Gertsch, J.; Chaouloff, F.; López-Rodríguez, M.L.; Grandes, P.; Rossignol, R.; Marsicano, G. Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat. Neurosci., 2012, 15(4), 558-564.
[http://dx.doi.org/10.1038/nn.3053] [PMID: 22388959]
[120]
Suofu, Y.; Li, W.; Jean-Alphonse, F.G.; Jia, J.; Khattar, N.K.; Li, J.; Baranov, S.V.; Leronni, D.; Mihalik, A.C.; He, Y.; Cecon, E.; Wehbi, V.L.; Kim, J.; Heath, B.E.; Baranova, O.V.; Wang, X.; Gable, M.J.; Kretz, E.S.; Di Benedetto, G.; Lezon, T.R.; Ferrando, L.M.; Larkin, T.M.; Sullivan, M.; Yablonska, S.; Wang, J.; Minnigh, M.B.; Guillaumet, G.; Suzenet, F.; Richardson, R.M.; Poloyac, S.M.; Stolz, D.B.; Jockers, R.; Witt-Enderby, P.A.; Carlisle, D.L.; Vilardaga, J-P.; Friedlander, R.M. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl. Acad. Sci. USA, 2017, 114(38), E7997-E8006.
[http://dx.doi.org/10.1073/pnas.1705768114] [PMID: 28874589]
[121]
Fang, Y.; Ma, X.; Zeng, J.; Jin, Y.; Hu, Y.; Wang, J.; Liu, R.; Cao, C. The profile of genetic mutations in papillary thyroid cancer detected by whole exome sequencing. Cell. Physiol. Biochem., 2018, 50(1), 169-178.
[http://dx.doi.org/10.1159/000493966] [PMID: 30278442]
[122]
Heese, K.; Yamada, T.; Akatsu, H.; Yamamoto, T.; Kosaka, K.; Nagai, Y.; Sawada, T. Characterizing the new transcription regulator protein p60TRP. J. Cell. Biochem., 2004, 91(5), 1030-1042.
[http://dx.doi.org/10.1002/jcb.20010] [PMID: 15034937]
[123]
Mishra, M.; Heese, K. P60TRP interferes with the GPCR/secretase pathway to mediate neuronal survival and synaptogenesis. J. Cell. Mol. Med., 2011, 15(11), 2462-2477.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01248.x] [PMID: 21199326]
[124]
Chang, Y-S.; Huang, H-D.; Yeh, K-T.; Chang, J-G. Identification of novel mutations in endometrial cancer patients by whole-exome sequencing. Int. J. Oncol., 2017, 50(5), 1778-1784.
[http://dx.doi.org/10.3892/ijo.2017.3919] [PMID: 28339086]
[125]
Klaas, M.; Kangur, T.; Viil, J.; Mäemets-Allas, K.; Minajeva, A.; Vadi, K.; Antsov, M.; Lapidus, N.; Järvekülg, M.; Jaks, V. The alterations in the extracellular matrix composition guide the repair of damaged liver tissue. Sci. Rep., 2016, 6, 27398.
[http://dx.doi.org/10.1038/srep27398] [PMID: 27264108]
[126]
Smith, C.A.; McClive, P.J.; Sinclair, A.H. Temporal and spatial expression profile of the novel armadillo-related gene, Alex2, during testicular differentiation in the mouse embryo. Dev. Dyn., 2005, 233(1), 188-193.
[http://dx.doi.org/10.1002/dvdy.20309] [PMID: 15759267]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy