Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Current and Advanced Nanomaterials in Dentistry as Regeneration Agents: An Update

Author(s): Mohsen Yazdanian, Aghil Rahmani, Elahe Tahmasebi*, Hamid Tebyanian*, Alireza Yazdanian and Seyed Ali Mosaddad

Volume 21, Issue 7, 2021

Published on: 24 November, 2020

Page: [899 - 918] Pages: 20

DOI: 10.2174/1389557520666201124143449

Price: $65

Abstract

In modern dentistry, nanomaterials have strengthened their foothold among tissue engineering strategies for treating bone and dental defects due to a variety of reasons, including trauma and tumors. Besides their finest physiochemical features, the biomimetic characteristics of nanomaterials promote cell growth and stimulate tissue regeneration. The single units of these chemical substances are small-sized particles, usually between 1 to 100 nm, in an unbound state. This unbound state allows particles to constitute aggregates with one or more external dimensions and provide a high surface area. Nanomaterials have brought advances in regenerative dentistry from the laboratory to clinical practice. They are particularly used for creating novel biomimetic nanostructures for cell regeneration, targeted treatment, diagnostics, imaging, and the production of dental materials. In regenerative dentistry, nanostructured matrices and scaffolds help control cell differentiation better. Nanomaterials recapitulate the natural dental architecture and structure and form functional tissues better compared to the conventional autologous and allogenic tissues or alloplastic materials. The reason is that novel nanostructures provide an improved platform for supporting and regulating cell proliferation, differentiation, and migration. In restorative dentistry, nanomaterials are widely used in constructing nanocomposite resins, bonding agents, endodontic sealants, coating materials, and bioceramics. They are also used for making daily dental hygiene products such as mouth rinses. The present article classifies nanostructures and nanocarriers in addition to reviewing their design and applications for bone and dental regeneration.

Keywords: Nanomaterial, nanoparticle, regenerative dentistry, dental regeneration, bone regeneration.

« Previous
Graphical Abstract
[1]
Feng, X.; Chen, A.; Zhang, Y.; Wang, J.; Shao, L.; Wei, L. Application of dental nanomaterials: Potential toxicity to the central nervous system. Int. J. Nanomedicine, 2015, 10, 3547-3565.
[PMID: 25999717]
[2]
Gong, T.; Xie, J.; Liao, J.; Zhang, T.; Lin, S.; Lin, Y. Nanomaterials and bone regeneration. Bone Res., 2015, 3, 15029.
[http://dx.doi.org/10.1038/boneres.2015.29] [PMID: 26558141]
[3]
Padmanabhan, J.; Kyriakides, T.R. Nanomaterials, inflammation, and tissue engineering. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(3), 355-370.
[http://dx.doi.org/10.1002/wnan.1320] [PMID: 25421333]
[4]
Dye Bruce, A.; Thornton-Evans, G.; Li, X. Iafolla, TJ Dental caries and tooth loss in adults in the United States, 2011–2012 NCHS data brief; National Center for Health Statistics, 2015, p. 197.
[5]
(a)Kuchler-Bopp, S.; Larrea, A.; Petry, L.; Idoux-Gillet, Y.; Sebastian, V.; Ferrandon, A.; Schwinté, P.; Arruebo, M.; Benkirane-Jessel, N. Promoting bioengineered tooth innervation using nanostructured and hybrid scaffolds., Acta Biomater., 2017, 50, 493-501..
[http://dx.doi.org/10.1016/j.actbio.2017.01.001] [PMID: 28057509]
(b)Xu, H.H.; Weir, M.D.; Sun, L.; Moreau, J.L.; Takagi, S.; Chow, L.C.; Antonucci, J.M. Strong nanocomposites with Ca, PO(4), and F release for caries inhibition. J. Dent. Res., 2010, 89(1), 19-28.
[http://dx.doi.org/10.1177/0022034509351969] [PMID: 19948941]
[6]
Du, B.; Liu, W.; Deng, Y.; Li, S.; Liu, X.; Gao, Y.; Zhou, L. Angiogenesis and bone regeneration of porous nano-hydroxyapatite/coralline blocks coated with rhVEGF165 in critical-size alveolar bone defects in vivo. Int. J. Nanomedicine, 2015, 10, 2555-2565.
[PMID: 25848271]
[7]
Bose, S.; Roy, M.; Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol., 2012, 30(10), 546-554.
[http://dx.doi.org/10.1016/j.tibtech.2012.07.005] [PMID: 22939815]
[8]
Yi, H.; Ur Rehman, F.; Zhao, C.; Liu, B.; He, N. Recent advances in nano scaffolds for bone repair. Bone Res., 2016, 4, 16050.
[http://dx.doi.org/10.1038/boneres.2016.50] [PMID: 28018707]
[9]
Sivolella, S.; Stellini, E.; Brunello, G.; Gardin, C.; Ferroni, L.; Bressan, E.; Zavan, B. Silver nanoparticles in alveolar bone surgery devices. J. Nanomater., 2012, 2012, 1-12.
[http://dx.doi.org/10.1155/2012/975842]
[10]
(a)Li, G.; Zhou, T.; Lin, S.; Shi, S.; Lin, Y. Nanomaterials for craniofacial and dental tissue engineering. J. Dent. Res., 2017, 96(7), 725-732..
[http://dx.doi.org/10.1177/0022034517706678 ] [PMID: 28463533]
(b)Verma, S.; Domb, A.J.; Kumar, N. Nanomaterials for regenerative medicine. Nanomedicine (Lond.), 2011, 6(1), 157-181.
[http://dx.doi.org/10.2217/nnm.10.146] [PMID: 21182426]
[11]
Pokrowiecki, R.; Pałka, K.; Mielczarek, A. Nanomaterials in dentistry: A cornerstone or a black box? Nanomedicine (Lond.), 2018, 13(6), 639-667.
[http://dx.doi.org/10.2217/nnm-2017-0329] [PMID: 29417862]
[12]
Xia, Y.; Zhang, F.; Xie, H.; Gu, N. Nanoparticle-reinforced resin-based dental composites. J. Dent., 2008, 36(6), 450-455.
[http://dx.doi.org/10.1016/j.jdent.2008.03.001] [PMID: 18407396]
[13]
Singh, A.P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther., 2019, 4(1), 33.
[http://dx.doi.org/10.1038/s41392-019-0068-3] [PMID: 32859918]
[14]
(a)Wu, X.; Li, J.; Wang, L.; Huang, D.; Zuo, Y.; Li, Y. The release properties of silver ions from Ag-nHA/TiO2/PA66 antimicrobial composite scaffolds. Biomed. Mater., 2010, 5(4).
[http://dx.doi.org/10.1088/1748-6041/5/4/044105 ] [PMID: 20683127]
(b)Yang, X.; Yang, F.; Walboomers, X.F.; Bian, Z.; Fan, M.; Jansen, J.A. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. J. Biomed. Mater. Res. A, 2010, 93(1), 247-257.
[PMID: 19557787]
[15]
Boverhof, D.R.; Bramante, C.M.; Butala, J.H.; Clancy, S.F.; Lafranconi, M.; West, J.; Gordon, S.C. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul. Toxicol. Pharmacol., 2015, 73(1), 137-150.
[http://dx.doi.org/10.1016/j.yrtph.2015.06.001] [PMID: 26111608]
[16]
Alves Cardoso, D.; Jansen, J.A.; Leeuwenburgh, S.C. Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration. J. Biomed. Mater. Res. B Appl. Biomater., 2012, 100(8), 2316-2326.
[http://dx.doi.org/10.1002/jbm.b.32794] [PMID: 23015272]
[17]
Liu, W.; Su, P.; Gonzales, A., III; Chen, S.; Wang, N.; Wang, J.; Li, H.; Zhang, Z.; Webster, T.J. Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: Experiments and modeling. Int. J. Nanomedicine, 2015, 10, 1997-2019.
[http://dx.doi.org/10.2147/IJN.S74418] [PMID: 25792833]
[18]
Abdel Hamid, D.M.; Abdel El-Ghani, S.F.; Khashaba, M.M. Characterization of nano-hydroxyapatite silica gel and evaluation of its combined effect with Solcoseryl paste on bone formation: An experimental study in New Zealand rabbits. Future Dental J., 2018, 4(2), 279-287.
[http://dx.doi.org/10.1016/j.fdj.2018.05.007]
[19]
(a)Kharaziha, M.; Fathi, M.H.; Edris, H.; Nourbakhsh, N.; Talebi, A.; Salmanizadeh, S. PCL-forsterite nanocomposite fibrous membranes for controlled release of dexamethasone. J. Mater. Sci. Mater. Med., 2015, 26(1), 5364..
[http://dx.doi.org/10.1007/s10856-014-5364-4 ] [PMID: 25578712]
(b)Sowmya, S.; Mony, U.; Jayachandran, P.; Reshma, S.; Kumar, R.A.; Arzate, H.; Nair, S.V.; Jayakumar, R. Tri-Layered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone. Adv. Healthc. Mater., 2017, 6(7)
[http://dx.doi.org/10.1002/adhm.201601251] [PMID: 28128898]
[20]
Coelho, C.C.; Grenho, L.; Gomes, P.S.; Quadros, P.A.; Fernandes, M.H. Nano-hydroxyapatite in oral care cosmetics: Characterization and cytotoxicity assessment. Sci. Rep., 2019, 9(1), 11050.
[http://dx.doi.org/10.1038/s41598-019-47491-z] [PMID: 31363145]
[21]
(a)Kim, J. E.; Takanche, J. S.; Kim, J. S.; Lee, M. H.; Jeon, J. G.; Park, I. S.; Yi, H. K. Phelligridin D-loaded oral nanotube titanium implant enhances osseointegration and prevents osteolysis in rat mandible. Artif. Cells Nanomed. Biotechnol., 2018, 46(supp 2), 397-407..
[http://dx.doi.org/10.1080/21691401.2018.1458033]
(b)Li, J.; Li, Y.; Ma, S.; Gao, Y.; Zuo, Y.; Hu, J. Enhancement of bone formation by BMP-7 transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects. J. Biomed. Mater. Res. A, 2010, 95(4), 973-981.
[http://dx.doi.org/10.1002/jbm.a.32926] [PMID: 20845497]
[22]
Mielczarek, A.; Gedrange, T.; Michalik, J. An in vitro evaluation of the effect of fluoride products on white spot lesion remineralization. Am. J. Dent., 2015, 28(1), 51-56.
[PMID: 25864243]
[23]
Souza, B.M.; Comar, L.P.; Vertuan, M.; Fernandes Neto, C.; Buzalaf, M.A.; Magalhães, A.C. Effect of an experimental paste with hydroxyapatite nanoparticles and fluoride on dental demineralisation and remineralisation in situ. Caries Res., 2015, 49(5), 499-507.
[http://dx.doi.org/10.1159/000438466] [PMID: 26278685]
[24]
Carvalho, S.M.; Oliveira, A.A.; Jardim, C.A.; Melo, C.B.; Gomes, D.A.; de Fátima Leite, M.; Pereira, M.M. Characterization and induction of cementoblast cell proliferation by bioactive glass nanoparticles. J. Tissue Eng. Regen. Med., 2012, 6(10), 813-821.
[http://dx.doi.org/10.1002/term.488] [PMID: 22499432]
[25]
Wang, B.; Yang, M.; Liu, L.; Yan, G.; Yan, H.; Feng, J.; Li, Z.; Li, D.; Sun, H.; Yang, B. Osteogenic potential of Zn2+-passivated carbon dots for bone regeneration in vivo. Biomater. Sci., 2019, 7(12), 5414-5423.
[http://dx.doi.org/10.1039/C9BM01181A] [PMID: 31633717]
[26]
Memarzadeh, K.; Sharili, A.S.; Huang, J.; Rawlinson, S.C.; Allaker, R.P. Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants. J. Biomed. Mater. Res. A, 2015, 103(3), 981-989.
[http://dx.doi.org/10.1002/jbm.a.35241] [PMID: 24862288]
[27]
Sowjanya, J.A.; Singh, J.; Mohita, T.; Sarvanan, S.; Moorthi, A.; Srinivasan, N.; Selvamurugan, N. Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf. B Biointerfaces, 2013, 109, 294-300.
[http://dx.doi.org/10.1016/j.colsurfb.2013.04.006] [PMID: 23668983]
[28]
Gaihre, B.; Lecka-Czernik, B.; Jayasuriya, A.C. Injectable nanosilica-chitosan microparticles for bone regeneration applications. J. Biomater. Appl., 2018, 32(6), 813-825.
[http://dx.doi.org/10.1177/0885328217741523] [PMID: 29160129]
[29]
Roopavath, U.K.; Soni, R.; Mahanta, U.; Deshpande, A.S.; Rath, S.N. 3D printable SiO2 nanoparticle ink for patient specific bone regeneration. RSC Advances, 2019, 9(41), 23832-23842.
[http://dx.doi.org/10.1039/C9RA03641E]
[30]
Ogawa, K.; Miyaji, H.; Kato, A.; Kosen, Y.; Momose, T.; Yoshida, T.; Nishida, E.; Miyata, S.; Murakami, S.; Takita, H.; Fugetsu, B.; Sugaya, T.; Kawanami, M. Periodontal tissue engineering by nano beta-tricalcium phosphate scaffold and fibroblast growth factor-2 in one-wall infrabony defects of dogs. J. Periodontal Res., 2016, 51(6), 758-767.
[http://dx.doi.org/10.1111/jre.12352] [PMID: 27870141]
[31]
(a)Azami, M.; Jalilifiroozinezhad, S.; Mozafari, M.; Rabiee, M. Synthesis and solubility of calcium fluoride/hydroxy-fluorapatite nanocrystals for dental applications. Ceram. Int., 2011, 37(6), 2007-2014..
[http://dx.doi.org/10.1016/j.ceramint.2011.02.025]
(b)Schneider, O.D.; Mohn, D.; Fuhrer, R.; Klein, K.; Kämpf, K.; Nuss, K.M.; Sidler, M.; Zlinszky, K.; von Rechenberg, B.; Stark, W.J. Biocompatibility and bone formation of flexible, cotton wool-like PLGA/calcium phosphate nanocomposites in sheep. Open Orthop. J., 2011, 5, 63-71.
[http://dx.doi.org/10.2174/1874325001105010063] [PMID: 21566736]
[32]
Fricain, J.C.; Schlaubitz, S.; Le Visage, C.; Arnault, I.; Derkaoui, S.M.; Siadous, R.; Catros, S.; Lalande, C.; Bareille, R.; Renard, M.; Fabre, T.; Cornet, S.; Durand, M.; Léonard, A.; Sahraoui, N.; Letourneur, D.; Amédée, J. A nano-hydroxyapatite--pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials, 2013, 34(12), 2947-2959.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.049] [PMID: 23375393]
[33]
Gera, S.; Sampathi, S.; Dodoala, S. Role of nanoparticles in drug delivery and regenerative therapy for bone diseases. Curr. Drug Deliv., 2017, 14(7), 904-916.
[http://dx.doi.org/10.2174/1567201813666161230142123] [PMID: 28034360]
[34]
Ma, L.; Liu, J.; Li, N.; Wang, J.; Duan, Y.; Yan, J.; Liu, H.; Wang, H.; Hong, F. Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials, 2010, 31(1), 99-105.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.028] [PMID: 19783296]
[35]
Saleem, S.S.; Bakr, D.K.; Saeed, D.H.R. The effect of addition of titanium oxide nanofillers on the water sorption and solubility of resin based composite (an in vitro study). Iraqi Dent. J., 2014, 36(3), 132.
[http://dx.doi.org/10.26477/idj.v36i3.28]
[36]
Tan, H.L.; Teow, S.Y.; Pushpamalar, J. Application of metal anoparticle hydrogel composites in tissue regeneration. Bioengineering (Basel), 2019, 6(1), 17.
[http://dx.doi.org/10.3390/bioengineering6010017] [PMID: 30754677]
[37]
González-Sánchez, M.I.; Perni, S.; Tommasi, G.; Morris, N.G.; Hawkins, K.; López-Cabarcos, E.; Prokopovich, P. Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Mater. Sci. Eng. C, 2015, 50, 332-340.
[http://dx.doi.org/10.1016/j.msec.2015.02.002] [PMID: 25746278]
[38]
Yi, C.; Liu, D.; Fong, C.C.; Zhang, J.; Yang, M. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano, 2010, 4(11), 6439-6448.
[http://dx.doi.org/10.1021/nn101373r] [PMID: 21028783]
[39]
Heo, D.N.; Ko, W-K.; Bae, M.S.; Lee, J.B.; Lee, D-W.; Byun, W.; Lee, C.H.; Kim, E-C.; Jung, B-Y.; Kwon, I.K. Enhanced bone regeneration with a gold nanoparticle-hydrogel complex. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(11), 1584-1593.
[http://dx.doi.org/10.1039/C3TB21246G] [PMID: 32261377]
[40]
Ribeiro, M.; Ferraz, M.P.; Monteiro, F.J.; Fernandes, M.H.; Beppu, M.M.; Mantione, D.; Sardon, H. Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration. Nanomedicine (Lond.), 2017, 13(1), 231-239.
[http://dx.doi.org/10.1016/j.nano.2016.08.026] [PMID: 27591960]
[41]
Ma, S.; Adayi, A.; Liu, Z.; Li, M.; Wu, M.; Xiao, L.; Sun, Y.; Cai, Q.; Yang, X.; Zhang, X.; Gao, P. Asymmetric collagen/chitosan membrane containing minocycline-loaded chitosan nanoparticles for guided bone regeneration. Sci. Rep., 2016, 6(1), 31822.
[http://dx.doi.org/10.1038/srep31822] [PMID: 27546177]
[42]
Cao, L.; Werkmeister, J.A.; Wang, J.; Glattauer, V.; McLean, K.M.; Liu, C. Bone regeneration using photocrosslinked hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles. Biomaterials, 2014, 35(9), 2730-2742.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.028] [PMID: 24438908]
[43]
Seo, S-J.; Kim, H-W.; Lee, J-H. Electrospun nanofibers applications in dentistry. J. Nanomater., 2016, 2016, 1-7.
[http://dx.doi.org/10.1155/2016/5931946]
[44]
(a)Xavier Acasigua, G.A.; Bernardi, L.; Braghirolli, D.I.; Filho, M.S.; Pranke, P.; Medeiros Fossati, A.C. Nanofiber scaffolds support bone regeneration associated with pulp stem cells., Curr. Stem Cell Res. Ther., 2014, 9(4), 330-337..
[http://dx.doi.org/10.2174/1574888X09666140228123911] [PMID: 24588088]
(b)Wang, S.; Kowal, T.J.; Marei, M.K.; Falk, M.M.; Jain, H. Nanoporosity significantly enhances the biological performance of engineered glass tissue scaffolds. Tissue Eng. Part A, 2013, 19(13-14), 1632-1640.
[http://dx.doi.org/10.1089/ten.tea.2012.0585] [PMID: 23427819]
[45]
(a)Li, X.; Ma, C.; Xie, X.; Sun, H.; Liu, X. Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system., Acta Biomater., 2016, 35, 57-67..
[http://dx.doi.org/10.1016/j.actbio.2016.02.040 ] [PMID: 26931056]
(b)Wang, Y.F.; Wang, C.Y.; Wan, P.; Wang, S.G.; Wang, X.M. Comparison of bone regeneration in alveolar bone of dogs on mineralized collagen grafts with two composition ratios of nano-hydroxyapatite and collagen. Regen. Biomater., 2016, 3(1), 33-40.
[http://dx.doi.org/10.1093/rb/rbv025] [PMID: 26816654]
[46]
Zhang, Y.; Miron, R.J.; Li, S.; Shi, B.; Sculean, A.; Cheng, X. Novel MesoPorous BioGlass/silk scaffold containing adPDGF-B and adBMP7 for the repair of periodontal defects in beagle dogs. J. Clin. Periodontol., 2015, 42(3), 262-271.
[http://dx.doi.org/10.1111/jcpe.12364] [PMID: 25580515]
[47]
(a)Martins-Júnior, P.A.; Alcântara, C.E.; Resende, R.R.; Ferreira, A.J. Carbon nanotubes: Directions and perspectives in oral regenerative medicine. J. Dent. Res., 2013, 92(7), 575-583..
[http://dx.doi.org/10.1177/0022034513490957 ] [PMID: 23677650]
(b)Sá, M.A.; Andrade, V.B.; Mendes, R.M.; Caliari, M.V.; Ladeira, L.O.; Silva, E.E.; Silva, G.A.; Corrêa-Júnior, J.D.; Ferreira, A.J. Carbon nanotubes functionalized with sodium hyaluronate restore bone repair in diabetic rat sockets., Oral Dis., 2013, 19(5), 484-493..
[http://dx.doi.org/ 10.1111/odi.12030] [PMID: 23107153]
(c)Martins-Júnior, P.A.; Sá, M.A.; Reis, A.C.; Queiroz-Junior, C.M.; Caliari, M.V.; Teixeira, M.M.; Ladeira, L.O.; Pinho, V.; Ferreira, A.J. Evaluation of carbon nanotubes functionalized with sodium hyaluronate in the inflammatory processes for oral regenerative medicine applications. Clin. Oral Investig., 2016, 20(7), 1607-1616.
[http://dx.doi.org/10.1007/s00784-015-1639-5] [PMID: 26556578]
[48]
Mendes, R.M.; Silva, G.A.; Caliari, M.V.; Silva, E.E.; Ladeira, L.O.; Ferreira, A.J. Effects of single wall carbon nanotubes and its functionalization with sodium hyaluronate on bone repair. Life Sci., 2010, 87(7-8), 215-222.
[http://dx.doi.org/10.1016/j.lfs.2010.06.010] [PMID: 20600151]
[49]
Deng, Y.; Zhou, P.; Liu, X.; Wang, L.; Xiong, X.; Tang, Z.; Wei, J.; Wei, S. Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite/carbon fiber ternary biocomposite. Colloids Surf. B Biointerfaces, 2015, 136, 64-73.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.001] [PMID: 26363268]
[50]
Inanç, B.; Arslan, Y.E.; Seker, S.; Elçin, A.E.; Elçin, Y.M. Periodontal ligament cellular structures engineered with electrospun poly(DL-lactide-co-glycolide) nanofibrous membrane scaffolds. J. Biomed. Mater. Res. A, 2009, 90(1), 186-195.
[http://dx.doi.org/10.1002/jbm.a.32066] [PMID: 18491392]
[51]
Yang, F.; Both, S.K.; Yang, X.; Walboomers, X.F.; Jansen, J.A. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomater., 2009, 5(9), 3295-3304.
[http://dx.doi.org/10.1016/j.actbio.2009.05.023] [PMID: 19470413]
[52]
Huang, Y.; Ren, J.; Ren, T.; Gu, S.; Tan, Q.; Zhang, L.; Lv, K.; Pan, K.; Jiang, X. Bone marrow stromal cells cultured on poly (lactide-co-glycolide)/nano-hydroxyapatite composites with chemical immobilization of Arg-Gly-Asp peptide and preliminary bone regeneration of mandibular defect thereof. J. Biomed. Mater. Res. A, 2010, 95(4), 993-1003.
[http://dx.doi.org/10.1002/jbm.a.32922] [PMID: 20872750]
[53]
Zhang, J.C.; Lu, H.Y.; Lv, G.Y.; Mo, A.C.; Yan, Y.G.; Huang, C. The repair of critical-size defects with porous hydroxyapatite/polyamide nanocomposite: An experimental study in rabbit mandibles. Int. J. Oral Maxillofac. Surg., 2010, 39(5), 469-477.
[http://dx.doi.org/10.1016/j.ijom.2010.01.013] [PMID: 20194003]
[54]
Choi, J.Y.; Jung, U.W.; Lee, I.S.; Kim, C.S.; Lee, Y.K.; Choi, S.H. Resolution of surgically created three-wall intrabony defects in implants using three different biomaterials: An in vivo study. Clin. Oral Implants Res., 2011, 22(3), 343-348.
[http://dx.doi.org/10.1111/j.1600-0501.2010.01978.x] [PMID: 20831755]
[55]
Felice, P.; Pistilli, R.; Piattelli, M.; Soardi, E.; Corvino, V.; Esposito, M. Posterior atrophic jaws rehabilitated with prostheses supported by 5 x 5 mm implants with a novel nanostructured calcium-incorporated titanium surface or by longer implants in augmented bone. Preliminary results from a randomised controlled trial. Eur. J. Oral Implantology, 2012, 5(2), 149-161.
[PMID: 22866291]
[56]
Yang, C.; Lee, J.S.; Jung, U.W.; Seo, Y.K.; Park, J.K.; Choi, S.H. Periodontal regeneration with nano-hyroxyapatite-coated silk scaffolds in dogs. J. Periodontal Implant Sci., 2013, 43(6), 315-322.
[http://dx.doi.org/10.5051/jpis.2013.43.6.315] [PMID: 24455445]
[57]
Uno, M.; Kurachi, M.; Wakamatsu, N.; Doi, Y. Effects of adding silver nanoparticles on the toughening of dental porcelain. J. Prosthet. Dent., 2013, 109(4), 241-247.
[http://dx.doi.org/10.1016/S0022-3913(13)60052-9] [PMID: 23566605]
[58]
Han, X.; Liu, H.; Wang, D.; Su, F.; Zhang, Y.; Zhou, W.; Li, S.; Yang, R. Alveolar bone regeneration around immediate implants using an injectable nHAC/CSH loaded with autogenic blood-acquired mesenchymal progenitor cells: An experimental study in the dog mandible. Clin. Implant Dent. Relat. Res., 2013, 15(3), 390-401.
[http://dx.doi.org/10.1111/j.1708-8208.2011.00373.x] [PMID: 21745333]
[59]
Zhang, S.; Chen, L.; Jiang, Y.; Cai, Y.; Xu, G.; Tong, T.; Zhang, W.; Wang, L.; Ji, J.; Shi, P.; Ouyang, H.W. Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater., 2013, 9(7), 7236-7247.
[http://dx.doi.org/10.1016/j.actbio.2013.04.003] [PMID: 23567945]
[60]
Shalumon, K.T.; Sowmya, S.; Sathish, D.; Chennazhi, K.P.; Nair, S.V.; Jayakumar, R. Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering. J. Biomed. Nanotechnol., 2013, 9(3), 430-440.
[http://dx.doi.org/10.1166/jbn.2013.1559] [PMID: 23620999]
[61]
Horváth, A.; Stavropoulos, A.; Windisch, P.; Lukács, L.; Gera, I.; Sculean, A. Histological evaluation of human intrabony periodontal defects treated with an unsintered nanocrystalline hydroxyapatite paste. Clin. Oral Investig., 2013, 17(2), 423-430.
[http://dx.doi.org/10.1007/s00784-012-0739-8] [PMID: 22552592]
[62]
Heo, D.N.; Ko, W.K.; Moon, H.J.; Kim, H.J.; Lee, S.J.; Lee, J.B.; Bae, M.S.; Yi, J.K.; Hwang, Y.S.; Bang, J.B.; Kim, E.C.; Do, S.H.; Kwon, I.K. Inhibition of osteoclast differentiation by gold nanoparticles functionalized with cyclodextrin curcumin complexes. ACS Nano, 2014, 8(12), 12049-12062.
[http://dx.doi.org/10.1021/nn504329u] [PMID: 25420230]
[63]
Eap, S.; Bécavin, T.; Keller, L.; Kökten, T.; Fioretti, F.; Weickert, J.L.; Deveaux, E.; Benkirane-Jessel, N.; Kuchler-Bopp, S. Nanofibers implant functionalized by neural growth factor as a strategy to innervate a bioengineered tooth. Adv. Healthc. Mater., 2014, 3(3), 386-391.
[http://dx.doi.org/10.1002/adhm.201300281] [PMID: 24124118]
[64]
Park, J.Y.; Yang, C.; Jung, I.H.; Lim, H.C.; Lee, J.S.; Jung, U.W.; Seo, Y.K.; Park, J.K.; Choi, S.H. Regeneration of rabbit calvarial defects using cells-implanted nano-hydroxyapatite coated silk scaffolds. Biomater. Res., 2015, 19, 7.
[http://dx.doi.org/10.1186/s40824-015-0027-1] [PMID: 26331078]
[65]
Jiang, W.; Li, L.; Zhang, D.; Huang, S.; Jing, Z.; Wu, Y.; Zhao, Z.; Zhao, L.; Zhou, S. Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Acta Biomater., 2015, 25, 240-252.
[http://dx.doi.org/10.1016/j.actbio.2015.07.023] [PMID: 26188325]
[66]
Chen, X.; Bai, S.; Li, B.; Liu, H.; Wu, G.; Liu, S.; Zhao, Y. Fabrication of gelatin methacrylate/nanohydroxyapatite microgel arrays for periodontal tissue regeneration. Int. J. Nanomedicine, 2016, 11, 4707-4718.
[http://dx.doi.org/10.2147/IJN.S111701] [PMID: 27695327]
[67]
Wang, X.; Xing, H.; Zhang, G.; Wu, X.; Zou, X.; Feng, L.; Wang, D.; Li, M.; Zhao, J.; Du, J.; Lv, Y. ; e, L.; Liu, H. Restoration of a critical mandibular bone defect using human alveolar bone-derivedstem cells and porous nano-HA/collagen/PLA scaffold. Stem Cells Int., 2016, 2016..
[http://dx.doi.org/10.1155/2016/8741641 ] [PMID: 27118977]
[68]
Han, J.; Ma, B.; Liu, H.; Wang, T.; Wang, F.; Xie, C.; Li, M.; Liu, H.; Ge, S. Hydroxyapatite nanowires modified polylactic acid membrane plays barrier/osteoinduction dual roles and promotes bone regeneration in a rat mandible defect model. J. Biomed. Mater. Res. A, 2018, 106(12), 3099-3110.
[http://dx.doi.org/10.1002/jbm.a.36502] [PMID: 30325096]
[69]
Carmo, A.B.X.D.; Sartoretto, S.C.; Alves, A.T.N.N.; Granjeiro, J.M.; Miguel, F.B.; Calasans-Maia, J.; Calasans-Maia, M.D. Alveolar bone repair with strontium- containing nanostructured carbonated hydroxyapatite. J. Appl. Oral Sci., 2018, 26.
[http://dx.doi.org/10.1590/1678-7757-2017-0084] [PMID: 29364342]
[70]
Li, D.; Zhang, K.; Shi, C.; Liu, L.; Yan, G.; Liu, C.; Zhou, Y.; Hu, Y.; Sun, H.; Yang, B. Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation. Int. J. Nanomedicine, 2018, 13, 7167-7181.
[http://dx.doi.org/10.2147/IJN.S174553] [PMID: 30464466]
[71]
Gulseren, G.; Tansik, G.; Garifullin, R.; Tekinay, A.B.; Guler, M.O. Dentin phosphoprotein mimetic peptide nanofibers promote biomineralization. Macromol. Biosci., 2019, 19(1)
[http://dx.doi.org/10.1002/mabi.201800080] [PMID: 29745025]
[72]
Xue, Y.; Hong, X.; Gao, J.; Shen, R.; Ye, Z. Preparation and biological characterization of the mixture of poly(lactic-co-glycolic acid)/chitosan/Ag nanoparticles for periodontal tissue engineering. Int. J. Nanomedicine, 2019, 14, 483-498.
[http://dx.doi.org/10.2147/IJN.S184396] [PMID: 30666109]
[73]
Lebold, T.; Jung, C.; Michaelis, J.; Bräuchle, C. Nanostructured silica materials as drug-delivery systems for doxorubicin: Single molecule and cellular studies. Nano Lett., 2009, 9(8), 2877-2883.
[http://dx.doi.org/10.1021/nl9011112] [PMID: 19572735]
[74]
Jakubova, R.; Mickova, A.; Buzgo, M.; Rampichova, M.; Prosecka, E.; Tvrdik, D.; Amler, E. Immobilization of thrombocytes on PCL nanofibres enhances chondrocyte proliferation in vitro. Cell Prolif., 2011, 44(2), 183-191.
[http://dx.doi.org/10.1111/j.1365-2184.2011.00737.x] [PMID: 21401760]
[75]
Su, J.; Xu, H.; Sun, J.; Gong, X.; Zhao, H. Dual delivery of BMP-2 and bFGF from a new nano-composite scaffold, loaded with vascular stents for large-size mandibular defect regeneration. Int. J. Mol. Sci., 2013, 14(6), 12714-12728.
[http://dx.doi.org/10.3390/ijms140612714] [PMID: 23778088]
[76]
Sun, Y.; Ye, X.; Cai, M.; Liu, X.; Xiao, J.; Zhang, C.; Wang, Y.; Yang, L.; Liu, J.; Li, S.; Kang, C.; Zhang, B.; Zhang, Q.; Wang, Z.; Hong, A.; Wang, X. Osteoblast-targeting-peptide modified nanoparticle for siRNA/microRNA delivery. ACS Nano, 2016, 10(6), 5759-5768.
[http://dx.doi.org/10.1021/acsnano.5b07828] [PMID: 27176123]
[77]
Lee, B.S.; Lee, C.C.; Wang, Y.P.; Chen, H.J.; Lai, C.H.; Hsieh, W.L.; Chen, Y.W. Controlled-release of tetracycline and lovastatin by poly(D,L-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs. Int. J. Nanomedicine, 2016, 11, 285-297.
[PMID: 26848264]
[78]
Wang, Y.; Yang, J.; Liu, H.; Wang, X.; Zhou, Z.; Huang, Q.; Song, D.; Cai, X.; Li, L.; Lin, K.; Xiao, J.; Liu, P.; Zhang, Q.; Cheng, Y. Osteotropic peptide-mediated bone targeting for photothermal treatment of bone tumors. Biomaterials, 2017, 114, 97-105.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.010] [PMID: 27855337]
[79]
Cai, M.; Yang, L.; Zhang, S.; Liu, J.; Sun, Y.; Wang, X. A bone-resorption surface-targeting nanoparticle to deliver anti-miR214 for osteoporosis therapy. Int. J. Nanomedicine, 2017, 12, 7469-7482.
[http://dx.doi.org/10.2147/IJN.S139775] [PMID: 29075114]
[80]
Lee, J.H.; Mandakhbayar, N.; El-Fiqi, A.; Kim, H.W. Intracellular co-delivery of Sr ion and phenamil drug through mesoporous bioglass nanocarriers synergizes BMP signaling and tissue mineralization. Acta Biomater., 2017, 60, 93-108.
[http://dx.doi.org/10.1016/j.actbio.2017.07.021] [PMID: 28713017]
[81]
Pei, B.; Wang, W.; Dunne, N.; Li, X. Applications of carbon nanotubes in bone tissue regeneration and engineering: Superiority, concerns, current advancements, and prospects. Nanomaterials (Basel), 2019, 9(10)E1501
[http://dx.doi.org/10.3390/nano9101501] [PMID: 31652533]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy