Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Nanotechnology Driven Approaches for the Management of Parkinson’s Disease: Current Status and Future Perspectives

Author(s): Shrestha Sharma, Syed A. Rabbani*, Tanya Agarwal, Sanjula Baboota, Faheem H. Pottoo and Renu Kadian

Volume 22, Issue 4, 2021

Published on: 24 November, 2020

Page: [287 - 298] Pages: 12

DOI: 10.2174/1389200221666201124123405

Price: $65

Abstract

Parkinson’s disease (PD) is believed to be one of the commonly found adult-onset movement disorder occurring due to neurodegeneration and striatal dopamine deficiency. Although clinical diagnosis depends on the occurrence of bradykinesia and other cardinal motor features, PD is linked with many non-motor symptoms that are responsible for overall disability. Among several factors, genetic and environment-related factors are thought to be the major ones accountable for PD. Comprehensive research has shown that a number of drugs are effective in providing symptomatic relief to the patients suffering from PD. But some drug molecules suffer from significant drawbacks such as poor bioavailability and instability, therefore, they sometimes fail to deliver the expected results. Hence, to resolve these issues, new promising novel drug delivery systems have been developed. Liposomes, solid lipid nanoparticles, nanoemulsion, self-emulsifying drug delivery system (SEDDS), niosomes are some of the novel drug delivery system (NDDS) carriers that have been explored for enhancing the CNS concentration of levodopa, apomorphine, resveratrol, and other numerous drugs. This paper elucidates various drugs that have been studied for their potential contribution to the treatment and management of PD and also reviews and acknowledges the efforts of several scientists who successfully established various NDDS approaches for these drugs for the management of PD.

Keywords: Parkinson`s Disease, nanoemulsions, SNEDDS, liposomes, SLN, NDDS.

Graphical Abstract
[1]
Clarke, C.E. Parkinson’s disease. BMJ, 2007, 335(7617), 441-445.
[http://dx.doi.org/10.1136/bmj.39289.437454.AD] [PMID: 17762036]
[2]
Maagd, G.D.; Philip, A. Parkinson’s disease and its management. pharmacy and therapeutics. P&T, 2015, 40(8), 504-510.
[PMID: 26236139]
[3]
de Lau, L.M.; Breteler, M.M. Epidemiology of Parkinson’s disease. Lancet Neurol., 2006, 5(6), 525-535.
[http://dx.doi.org/10.1016/S1474-4422(06)70471-9] [PMID: 16713924]
[4]
Dorsey, E.R.; Sherer, T.; Okun, M.S.; Bloem, B.R. The emerging evidence of the parkinson pandemic. J. Parkinsons Dis., 2018, 8(s1)(Suppl. 1), S3-S8.
[http://dx.doi.org/10.3233/JPD-181474] [PMID: 30584159]
[5]
Billingsley, K.J.; Bandres-Ciga, S.; Saez-Atienzar, S.; Singleton, A.B. Genetic risk factors in Parkinson’s disease. Cell Tissue Res., 2018, 373(1), 9-20.
[http://dx.doi.org/10.1007/s00441-018-2817-y] [PMID: 29536161]
[6]
Srikanth, M.; Kessler, J.A. Nanotechnology—novel therapeutics for CNS disorders. Nat. Rev. Neurol., 2012, 8(6), 307-318.
[7]
Trompetero, A.; Gordillo, A.; Del Pilar, M.C.; Cristina, V.M.; Bustos Cruz, R.H. Alzheimer’s disease and parkinson’s disease: a review of current treatment adopting a nanotechnology approach. Curr. Pharm. Des., 2018, 24(1), 22-45.
[http://dx.doi.org/10.2174/1381612823666170828133059] [PMID: 28847307]
[8]
Mishra, S.; Sharma, S.; Javed, M.N.; Pottoo, F.H.; Barkat, M.A.; Harshita, ; Alam, M.S.; Amir, M.; Sarafroz, M. Bioinspired nanocomposites: applications in disease diagnosis and treatment. Pharm. Nanotechnol., 2019, 7(3), 206-219.
[http://dx.doi.org/10.2174/2211738507666190425121509] [PMID: 31030662]
[9]
Sharma, S.; Javed, M.N.; Pottoo, F.H.; Rabbani, S.A.; Barkat, M.A.; Harshita, ; Sarafroz, M.; Amir, M. Bioresponse inspired nanomaterials for targeted drug and gene delivery. Pharm. Nanotechnol., 2019, 7(3), 220-233.
[http://dx.doi.org/10.2174/2211738507666190429103814] [PMID: 31486751]
[10]
Raisman, R.; Cash, R.; Ruberg, M.; Javoy-Agid, F.; Agid, Y. Binding of [3H]SCH 23390 to D-1 receptors in the putamen of control and parkinsonian subjects. Eur. J. Pharmacol., 1985, 113(3), 467-468.
[http://dx.doi.org/10.1016/0014-2999(85)90101-3] [PMID: 2864270]
[11]
Seeman, P.; Niznik, H.B. Dopamine receptors and transporters in Parkinson’s disease and schizophrenia. FASEB J., 1990, 4(10), 2737-2744.
[http://dx.doi.org/10.1096/fasebj.4.10.2197154] [PMID: 2197154]
[12]
Scherfler, C.; Khan, N.L.; Pavese, N.; Eunson, L.; Graham, E.; Lees, A.J.; Quinn, N.P.; Wood, N.W.; Brooks, D.J.; Piccini, P.P. Striatal and cortical pre- and postsynaptic dopaminergic dysfunction in sporadic parkin-linked parkinsonism. Brain, 2004, 127(Pt 6), 1332-1342.
[http://dx.doi.org/10.1093/brain/awh150] [PMID: 15090472]
[13]
Sourkes, T.L. On the origin of homovanillic acid (HVA) in the cerebrospinal fluid. J. Neural Transm. (Vienna), 1973, 34(2), 153-157.
[http://dx.doi.org/10.1007/BF01244668] [PMID: 4722573]
[14]
Barbeau, A. Dopamine and basal ganglia diseases. Arch. Neurol., 1961, 4, 97-102.
[http://dx.doi.org/10.1001/archneur.1961.00450070099011] [PMID: 13686755]
[15]
Lieu, C.A.; Subramanian, T. The interhemispheric connections of the striatum: implications for Parkinson’s disease and drug-induced dyskinesias. Brain Res. Bull., 2012, 87(1), 1-9.
[http://dx.doi.org/10.1016/j.brainresbull.2011.09.013] [PMID: 21963946]
[16]
Aosaki, T.; Miura, M.; Suzuki, T.; Nishimura, K.; Masuda, M. Acetylcholine-dopamine balance hypothesis in the striatum: an update. Geriatr. Gerontol. Int., 2010, 10(Suppl. 1), S148-S157.
[http://dx.doi.org/10.1111/j.1447-0594.2010.00588.x] [PMID: 20590830]
[17]
Pérez, L.M.; Farriols, C.; Puente, V.; Planas, J.; Ruiz, I. The use of subcutaneous scopolamine as a palliative treatment in Parkinson’s disease. Palliat. Med., 2011, 25(1), 92-93.
[http://dx.doi.org/10.1177/0269216310381662] [PMID: 20817746]
[18]
Yarnall, A.; Rochester, L.; Burn, D.J. The interplay of cholinergic function, attention, and falls in Parkinson’s disease. Mov. Disord., 2011, 26(14), 2496-2503.
[http://dx.doi.org/10.1002/mds.23932] [PMID: 21898597]
[19]
Bédard, C.; Wallman, M.J.; Pourcher, E.; Gould, P.V.; Parent, A.; Parent, M. Serotonin and dopamine striatal innervation in Parkinson’s disease and Huntington’s chorea. Parkinsonism Relat. Disord., 2011, 17(8), 593-598.
[http://dx.doi.org/10.1016/j.parkreldis.2011.05.012] [PMID: 21664855]
[20]
Paul, J.; Kuruvilla, K.P.; Mathew, J.; Kumar, P.; Paulose, C.S. Dopamine D₁ and D₂ receptor subtypes functional regulation in cerebral cortex of unilateral rotenone lesioned Parkinson’s rat model: effect of serotonin, dopamine and norepinephrine. Parkinsonism Relat. Disord., 2011, 17(4), 255-259.
[http://dx.doi.org/10.1016/j.parkreldis.2010.12.018] [PMID: 21306935]
[21]
Jaeger, D.; Kita, H. Functional connectivity and integrative properties of globus pallidus neurons. Neuroscience, 2011, 198, 44-53.
[http://dx.doi.org/10.1016/j.neuroscience.2011.07.050] [PMID: 21835227]
[22]
Kobylecki, C.; Hill, M.P.; Crossman, A.R.; Ravenscroft, P. Synergistic antidyskinetic effects of topiramate and amantadine in animal models of Parkinson’s disease. Mov. Disord., 2011, 26(13), 2354-2363.
[http://dx.doi.org/10.1002/mds.23867] [PMID: 21953539]
[23]
Masilamoni, G.J.; Bogenpohl, J.W.; Alagille, D.; Delevich, K.; Tamagnan, G.; Votaw, J.R.; Wichmann, T.; Smith, Y. Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain, 2011, 134(Pt 7), 2057-2073.
[http://dx.doi.org/10.1093/brain/awr137] [PMID: 21705423]
[24]
Bridi, J.C.; Hirth, F. Mechanisms of α-Synuclein induced synaptopathy in Parkinson’s disease. Front. Neurosci., 2018, 12, 80.
[http://dx.doi.org/10.3389/fnins.2018.00080] [PMID: 29515354]
[25]
Perez-Pardo, P.; Kliest, T.; Dodiya, H.B.; Broersen, L.M.; Garssen, J.; Keshavarzian, A.; Kraneveld, A.D. The gut-brain axis in Parkinson’s disease: possibilities for food-based therapies. Eur. J. Pharmacol., 2017, 817, 86-95.
[http://dx.doi.org/10.1016/j.ejphar.2017.05.042] [PMID: 28549787]
[26]
Willard, A.M.; Isett, B.R. State transitions in the SNr predict the onset of motor deficits in models of progressive dopamine depletion in mice. eLife, 2019, 8, e42746.
[http://dx.doi.org/10.7554/eLife.42746] [PMID: 30839276]
[27]
Calo, L.; Wegrzynowicz, M.; Santivañez-Perez, J.; Grazia Spillantini, M. Synaptic failure and α-synuclein. Mov. Disord., 2016, 31(2), 169-177.
[http://dx.doi.org/10.1002/mds.26479] [PMID: 26790375]
[28]
Ltic, S.; Perovic, M.; Mladenovic, A.; Raicevic, N.; Ruzdijic, S.; Rakic, L.; Kanazir, S. Alpha-synuclein is expressed in different tissues during human fetal development. J. Mol. Neurosci., 2004, 22(3), 199-204.
[http://dx.doi.org/10.1385/JMN:22:3:199] [PMID: 14997013]
[29]
Bellucci, A.; Collo, G.; Sarnico, I.; Battistin, L.; Missale, C.; Spano, P. Alpha-synuclein aggregation and cell death triggered by energy deprivation and dopamine overload are counteracted by D2/D3 receptor activation. J. Neurochem., 2008, 106(2), 560-577.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05406.x] [PMID: 18410503]
[30]
Tinazzi, M.; Abbruzzese, G.; Antonini, A.; Ceravolo, R.; Fabbrini, G.; Lessi, P.; Barone, P. REASON Study Group. Reasons driving treatment modification in Parkinson’s disease: results from the cross-sectional phase of the REASON study. Parkinsonism Relat. Disord., 2013, 19(12), 1130-1135.
[http://dx.doi.org/10.1016/j.parkreldis.2013.08.006] [PMID: 23993249]
[31]
Garbayo, E.; Ansorena, E.; Blanco-Prieto, M.J. Drug development in Parkinson’s disease: from emerging molecules to innovative drug delivery systems. Maturitas, 2013, 76(3), 272-278.
[http://dx.doi.org/10.1016/j.maturitas.2013.05.019] [PMID: 23827471]
[32]
Hasnain, M.S.; Javed, M.N.; Alam, M.S.; Rishishwar, P.; Rishishwar, S.; Ali, S.; Nayak, A.K.; Beg, S. Purple heart plant leaves extract-mediated silver nanoparticle synthesis: optimization by Box-Behnken design. Mater. Sci. Eng. C, 2019, 99, 1105-1114.
[http://dx.doi.org/10.1016/j.msec.2019.02.061] [PMID: 30889643]
[33]
Alam, M.S.; Javed, M.N.; Pottoo, F.H.; Waziri, A.; Almalki, F.A.; Hasnain, M.S.; Garg, A.; Saifullah, M.K. QbD approached comparison of reaction mechanism in microwave synthesized gold nanoparticles and their superior catalytic role against hazardous nitro-dye. Appl. Organomet. Chem., 2019, 33(9), e5071.
[34]
Alam, M.S.; Garg, A.; Pottoo, F.H.; Saifullah, M.K.; Tareq, A.I.; Manzoor, O.; Mohsin, M.; Javed, M.N. Gum ghatti mediated, one pot green synthesis of optimized gold nanoparticles: investigation of process-variables impact using Box-Behnken based statistical design. Int. J. Biol. Macromol., 2017, 104(Pt A), 758-767.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.129] [PMID: 28601649]
[35]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[36]
Chen, C.; Han, D.; Cai, C.; Tang, X. An overview of liposome lyophilization and its future potential. J. Control. Release, 2010, 142(3), 299-311.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.024] [PMID: 19874861]
[37]
Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv., 2016, 23(9), 3319-3329.
[http://dx.doi.org/10.1080/10717544.2016.1177136] [PMID: 27145899]
[38]
Drummond, D.C.; Kirpotin, D. Liposomes useful for drug delivery to the brain. US2007/0110798, 2007.
[39]
Medina, O.P.; Zhu, Y.; Kairemo, K. Targeted liposomal drug delivery in cancer. Curr. Pharm. Des., 2004, 10(24), 2981-2989.
[http://dx.doi.org/10.2174/1381612043383467] [PMID: 15379663]
[40]
Dubowchik, G.M.; Walker, M.A. Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs. Pharmacol. Ther., 1999, 83(2), 67-123.
[http://dx.doi.org/10.1016/S0163-7258(99)00018-2] [PMID: 10511457]
[41]
Gao, J.; Sun, J.; Li, H.; Liu, W.; Zhang, Y.; Li, B.; Qian, W.; Wang, H.; Chen, J.; Guo, Y. Lyophilized HER2-specific PEGylated immunoliposomes for active siRNA gene silencing. Biomaterials, 2010, 31(9), 2655-2664.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.112] [PMID: 20035999]
[42]
Xiang, Y.; Wu, Q.; Liang, L.; Wang, X.; Wang, J.; Zhang, X.; Pu, X.; Zhang, Q. Chlorotoxin-modified stealth liposomes encapsulating levodopa for the targeting delivery against Parkinson’s disease in the MPTP-induced mice model. J. Drug Target., 2012, 20(1), 67-75.
[http://dx.doi.org/10.3109/1061186X.2011.595490] [PMID: 22149216]
[43]
Fu, S.; Kurzrock, R. Development of curcumin as an epigenetic agent. Cancer, 2010, 116(20), 4670-4676.
[http://dx.doi.org/10.1002/cncr.25414] [PMID: 20597137]
[44]
Zhou, H.; Beevers, C.S.; Huang, S. The targets of curcumin. Curr. Drug Targets, 2011, 12(3), 332-347.
[http://dx.doi.org/10.2174/138945011794815356] [PMID: 20955148]
[45]
Chiu, S.; Terpstra, K.J.; Bureau, Y.; Hou, J.; Raheb, H.; Cernvosky, Z.; Badmeav, V.; Copen, J.; Husni, M.; Woodbury-Farina, M. Liposomal-formulated curcumin [Lipocurc™] targeting HDAC (histone deacetylase) prevents apoptosis and improves motor deficits in Park 7 (DJ-1)-knockout rat model of Parkinson’s disease: implications for epigenetics-based nanotechnology- driven drug platform. J. Complement. Integr. Med., 2013, 10(1), 75-88.
[http://dx.doi.org/10.1515/jcim-2013-0020] [PMID: 24200537]
[46]
Lopalco, A.; Cutrignelli, A.; Denora, N.; Lopedota, A.; Franco, M.; Laquintana, V. Transferrin Functionalized Liposomes Loading Dopamine HCl: development and permeability studies across an in vitro model of human blood-brain barrier. Nanomaterials (Basel), 2018, 8(3), 178.
[http://dx.doi.org/10.3390/nano8030178] [PMID: 29558440]
[47]
Wang, M.; Li, L.; Zhang, X.; Liu, Y.; Zhu, R. Magnetic resveratrol liposomes as a new theranostic platform for magnetic resonance imaging guided Parkinson’s disease targeting therapy. ACS Sustain. Chem.& Eng., 2018, 6(12), 1-38.
[http://dx.doi.org/10.1021/acssuschemeng.8b04507]
[48]
Esposito, E.; Fantin, M.; Marti, M.; Drechsler, M.; Paccamiccio, L.; Mariani, P.; Sivieri, E.; Lain, F.; Menegatti, E.; Morari, M.; Cortesi, R. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm. Res., 2008, 25(7), 1521-1530.
[http://dx.doi.org/10.1007/s11095-007-9514-y] [PMID: 18172580]
[49]
Manjunath, K.; Reddy, J.S.; Venkateswarlu, V. Solid lipid nanoparticles as drug delivery systems. Methods Find. Exp. Clin. Pharmacol., 2005, 27(2), 127-144.
[http://dx.doi.org/10.1358/mf.2005.27.2.876286] [PMID: 15834465]
[50]
Mishra, V.; Bansal, K.K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J.M. Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics, 2018, 10(4), 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[51]
Stacy, M.; Silver, D. Apomorphine for the acute treatment of “off” episodes in Parkinson’s disease. Parkinsonism Relat. Disord., 2008, 14(2), 85-92.
[http://dx.doi.org/10.1016/j.parkreldis.2007.07.016] [PMID: 18083605]
[52]
Subramony, J.A. Apomorphine in dopaminergic therapy. Mol. Pharm., 2006, 3(4), 380-385.
[http://dx.doi.org/10.1021/mp060012c] [PMID: 16889431]
[53]
Tsai, M.J.; Huang, Y.B.; Wu, P.C.; Fu, Y.S.; Kao, Y.R.; Fang, J.Y.; Tsai, Y.H. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations. J. Pharm. Sci., 2011, 100(2), 547-557.
[http://dx.doi.org/10.1002/jps.22285] [PMID: 20740670]
[54]
Montenegro, L.; Campisi, A.; Sarpietro, M.G.; Carbone, C.; Acquaviva, R.; Raciti, G.; Puglisi, G. In vitro evaluation of idebenone-loaded solid lipid nanoparticles for drug delivery to the brain. Drug Dev. Ind. Pharm., 2011, 37(6), 737-746.
[http://dx.doi.org/10.3109/03639045.2010.539231] [PMID: 21204752]
[55]
Storch, A.; Burkhardt, K.; Ludolph, A.C.; Schwarz, J. Protective effects of riluzole on dopamine neurons: involvement of oxidative stress and cellular energy metabolism. J. Neurochem., 2000, 75(6), 2259-2269.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0752259.x] [PMID: 11080177]
[56]
Bondì, M.L.; Craparo, E.F.; Giammona, G.; Drago, F. Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine (Lond.), 2010, 5(1), 25-32.
[http://dx.doi.org/10.2217/nnm.09.67] [PMID: 20025461]
[57]
Pardeshi, C.V.; Rajput, P.V.; Belgamwar, V.S.; Tekade, A.R.; Surana, S.J. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. Drug Deliv., 2013, 20(1), 47-56.
[http://dx.doi.org/10.3109/10717544.2012.752421] [PMID: 23311653]
[58]
Rehman, M.U.; Khan, M.A.; Khan, W.S.; Shafique, M.; Khan, M. Fabrication of niclosamide loaded solid lipid nanoparticles: in vitro characterization and comparative in vivo evaluation. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 1926-1934.
[PMID: 29113501]
[59]
Fernandes, C.; Martins, C.; Fonseca, A.; Nunes, R.; Matos, M.J.; Silva, R.; Garrido, J.; Sarmento, B.; Remião, F.; Otero-Espinar, F.J.; Uriarte, E.; Borges, F. PEGylated PLGA nanoparticles as a smart carrier to increase the cellular uptake of a coumarin-based monoamine oxidase B inhibitor. ACS Appl. Mater. Interfaces, 2018, 10(46), 39557-39569.
[http://dx.doi.org/10.1021/acsami.8b17224] [PMID: 30352150]
[60]
Savardekar, P.; Bajaj, A. Nanoemulsions- a review. Int. J. Res., 2016, 6(2), 312-322.
[61]
Shinde, R.L.; Jindal, A.; Devarajan, P. Microemulsions and nanoemulsions for targeted drug delivery to the brain. Curr. Nanosci., 2011, 7(1), 119-133.
[http://dx.doi.org/10.2174/157341311794480282]
[62]
Karami, Z.; Saghatchi Zanjani, M.R.; Hamidi, M. Nanoemulsions in CNS drug delivery: recent developments, impacts and challenges. Drug Discov. Today, 2019, 24(5), 1104-1115.
[http://dx.doi.org/10.1016/j.drudis.2019.03.021] [PMID: 30914298]
[63]
Bonferoni, M.C.; Rossi, S.; Sandri, G.; Ferrari, F.; Gavini, E.; Rassu, G.; Giunchedi, P. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics, 2019, 11(2), 84.
[http://dx.doi.org/10.3390/pharmaceutics11020084] [PMID: 30781585]
[64]
Schirinzi, T.; Martella, G.; Imbriani, P.; Di Lazzaro, G.; Franco, D.; Colona, V.L.; Alwardat, M.; Sinibaldi Salimei, P.; Mercuri, N.B.; Pierantozzi, M.; Pisani, A. Dietary vitamin E as a protective factor for Parkinson’s disease. Front. Neurol., 2019, 10, 148.
[http://dx.doi.org/10.3389/fneur.2019.00148] [PMID: 30863359]
[65]
Fariss, M.W.; Zhang, J-G. Vitamin E therapy in Parkinson’s disease. Toxicology, 2003, 189(1-2), 129-146.
[http://dx.doi.org/10.1016/S0300-483X(03)00158-6] [PMID: 12821288]
[66]
Gaba, B.; Khan, T.; Haider, M.D.; Alam, T.; Baboota, B.; Parvez, S.; Ali, J. Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model. Biomed Res. Inter, 2019, 1-20.
[67]
Sa, F.; Guo, B.J.; Li, S.; Zhang, Z.J.; Chan, H.M.; Zheng, Y.; Lee, S.M. Pharmacokinetic study and optimal formulation of new anti-Parkinson natural compound schisantherin A. Parkinsons Dis., 2015, 2015, 951361.
[http://dx.doi.org/10.1155/2015/951361] [PMID: 26075137]
[68]
Kumar, S.; Dang, S.; Nigam, K.; Ali, J.; Baboota, S. Selegiline nanoformulation in attenuation of oxidative stress and upregulation of dopamine in the brain for the treatment of Parkinson’s disease. Rejuvenation Res., 2018, 21(5), 464-476.
[http://dx.doi.org/10.1089/rej.2017.2035] [PMID: 29717617]
[69]
Nasr, M. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery. Drug Deliv., 2016, 23(4), 1444-1452.
[http://dx.doi.org/10.3109/10717544.2015.1092619] [PMID: 26401600]
[70]
Pangeni, R.; Sharma, S.; Mustafa, G.; Ali, J.; Baboota, S. Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress. Nanotech, 2014, 25(48), 485102.
[71]
Mustafa, G.; Baboota, S.; Ahuja, A.; Ali, J. Formulation development of chitosan coated intra nasal ropinirole nanoemulsion for better management option of parkinson: an in vitro ex vivo evaluation. Curr. Nanosci., 2012, 8(3), 348-360.
[http://dx.doi.org/10.2174/157341312800620331]
[72]
Mandal, S.; Mandal, S.D.; Chuttani, K.; Sawant, K.K.; Subudhi, B.B. Neuroprotective effect of ibuprofen by intranasal application of mucoadhesive nanoemulsion in MPTP induced Parkinson model. J. Pharm. Investig., 2016, 46, 41-53.
[http://dx.doi.org/10.1007/s40005-015-0212-1]
[73]
Gupta, B.K.; Kumar, S.; Kaur, H.; Ali, J.; Baboota, S. Attenuation of oxidative damage by coenzyme Q10 loaded nanoemulsion through oral route for the management of Parkinson’s disease. Rejuvenation Res., 2018, 21(3), 232-248.
[http://dx.doi.org/10.1089/rej.2017.1959] [PMID: 28844183]
[74]
Boyle, S.P.; Dobson, V.L.; Duthie, S.J.; Hinselwood, D.C.; Kyle, J.A.; Collins, A.R. Bioavailability and efficiency of rutin as an antioxidant: a human supplementation study. Eur. J. Clin. Nutr., 2000, 54(10), 774-782.
[http://dx.doi.org/10.1038/sj.ejcn.1601090] [PMID: 11083486]
[75]
Sharma, S.; Rabbani, S.A.; Narang, J.K.; Hyder Pottoo, F.; Ali, J.; Kumar, S.; Baboota, S. Role of rutin nanoemulsion in ameliorating oxidative stress: pharmacokinetic and pharmacodynamics studies. Chem. Phys. Lipids, 2020, 228, 104890.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.104890] [PMID: 32032570]
[76]
Balakrishnan, P.; Lee, B.J.; Oh, D.H.; Kim, J.O.; Lee, Y.I.; Kim, D.D.; Jee, J.P.; Lee, Y.B.; Woo, J.S.; Yong, C.S.; Choi, H.G. Enhanced oral bioavailability of coenzyme Q10 by self-emulsifying drug delivery systems. Int. J. Pharm., 2009, 374(1-2), 66-72.
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.008] [PMID: 19446761]
[77]
Khedekar, K.; Mittal, S. Self emulsifying drug delivery system: a review. Int. J. Pharm. Investig., 2013, 4(12), 4494-4507.
[http://dx.doi.org/10.13040/IJPSR.0975-8232]
[78]
Shukla, J.B. Self micro emulsifying drug delivery system pharma science monitor. J. Pharm. Pharm. Sci., 2010, 1(2), 13-33.
[79]
Vadlamudi, H.C.; Yalavarthi, P.R.; Rao, V.M.B.; Thanniru, J.; Vandana, K.R.; Sundaresan, C.R. Potential of microemulsified entacapone drug delivery systems in the management of acute Parkinson’s disease. J. Acute Dis., 2016, 1-12.
[http://dx.doi.org/10.1016/j.joad.2016.05.004]
[80]
Sharma, S.; Narang, J.K.; Ali, J.; Baboota, S. Synergistic antioxidant action of vitamin E and rutin SNEDDS in ameliorating oxidative stress in a Parkinson's disease model. Nanotech, 2016, 27(37), 37510.
[81]
Hussein, Z.A.; Rajab, N.A. Formulation and characterization of bromocriptine mesylate as liquid self-nano emulsifying drug delivery system. Iraqi J. Pharm. Sci., 2018, 27(2), 93-101.
[http://dx.doi.org/10.31351/vol27iss2pp93-101]
[82]
Kazi, K.M.; Mandal, A.S.; Biswas, N.; Guha, A.; Chatterjee, S.; Behera, M.; Kuotsu, K. Niosome: a future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res., 2010, 1(4), 374-380.
[http://dx.doi.org/10.4103/0110-5558.76435] [PMID: 22247876]
[83]
Gharbavi, M.; Amani, J.; Kheiri-Manjili, H.; Danafar, H.; Sharafi, A. Niosome: a promising nanocarrier for natural drug delivery through blood-brain barrier. Adv. Pharmacol. Pharm. Sci., 2018, 2018, 1-15.
[84]
Gunay, M.S.; Ozer, Y.A.; Erdogan, S.; Bodard, S. Development of nanosized, pramipexole-encapsulated liposomes and niosomes for the treatment of Parkinson’s disease. J. Nanosci. Nanotechnol., 2017, 17(8), 5155-5167.
[http://dx.doi.org/10.1166/jnn.2017.13799]
[85]
Rinaldi, F.; Seguella, L.; Gigli, S.; Hanieh, P.N.; Del Favero, E.; Cantù, L.; Pesce, M.; Sarnelli, G.; Marianecci, C.; Esposito, G.; Carafa, M. inPentasomes: An innovative nose-to-brain pentamidine delivery blunts MPTP parkinsonism in mice. J. Control. Release, 2019, 294(294), 17-26.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.007] [PMID: 30529726]
[86]
Vavia, V.G.P. Intranasal delivery of bromocriptine loaded lipid nano carriers for enhanced brain delivery in Parkinson’s disease. Mov. Disord., 2018, 33(2)
[87]
Patra, J.K.; Das, G.; Fraceto, L.F.; Caampos, E.V.R.; Torres, M.P.R.; Acosta-Torres, L.A.; Diaz-Torres, L.A.; Grillo, R.; M Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.-S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol., 2018, 16, 71.
[88]
Lovelyn, C.; Attama, A.A. Current status of nanoemulsions in drug delivery. J. Biomater. Nanobiotechnol., 2011, 2, 626-630.
[http://dx.doi.org/10.4236/jbnb.2011.225075]

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy