Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

General Review Article

Phyto-synthesized Gold Nanoparticles as Antitumor Agents

Author(s): Eugenia Dumitra Teodor* and Gabriel Lucian Radu

Volume 9 , Issue 1 , 2021

Published on: 23 November, 2020

Page: [51 - 60] Pages: 10

DOI: 10.2174/2211738508999201123213504

Price: $65

Abstract

Background: Phyto, or plant-derived metal nanoparticles, are an interesting and intensive studied group of green synthesized nanoparticles. In the last decade, numerous medicinal plant extracts were used for the synthesis of stable gold or silver nanoparticles with diverse biological effects, such as antioxidant activity, antimicrobial activity, anti-inflammatory activity, hypoglycemic effect, antitumor activity and catalytic activity.

Results: This review has systematized and discussed information from the last 5 years about the research regarding antitumor/anticancer potential of gold nanoparticles obtained via medicinal plant extracts, with special attention on their selective cytotoxicity on tumor cells and on their mechanism of action, in vitro and in vivo assessments.

Conclusion: Much more in vivo and clinical studies are needed before considering phyto-synthesized gold nanoparticles as significant for future medicine.

Keywords: Gold nanoparticles, medicinal plant extracts, green synthesis, cytotoxicity, antitumor activity, apoptosis, mechanism of action.

Graphical Abstract
[1]
Daniel, M-C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104(1), 293-346.
[http://dx.doi.org/10.1021/cr030698+] [PMID: 14719978]
[2]
Ghosh, S.K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev., 2007, 107(11), 4797-4862.
[http://dx.doi.org/10.1021/cr0680282] [PMID: 17999554]
[3]
Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K.; Poinern, G.E.J. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel), 2015, 8(11), 7278-7308.
[http://dx.doi.org/10.3390/ma8115377] [PMID: 28793638]
[4]
Mukherjee, S.; Nethi, S.K.; Patra, C.R. Green synthesized gold nanoparticles for future biomedical applications.In: Particulate Technology for Delivery of Therapeutics; Jana S. Jana S. Singapore Springer Singapore , 2017; p. 35993.
[http://dx.doi.org/10.1007/978-981-10-3647-7_11]
[5]
Kuppusamy, P.; Ichwan, S.J.A.; Al-Zikri, P.N.H.; Suriyah, W.H.; Soundharrajan, I.; Govindan, N.; Maniam, G.P.; Yusoff, M.M. In Vitro anticancer activity of Au, Ag nanoparticles synthesized using commelina nudiflora L. Aqueous extract against HCT-116 colon cancer cells. Biol. Trace Elem. Res., 2016, 173(2), 297-305.
[http://dx.doi.org/10.1007/s12011-016-0666-7] [PMID: 26961292]
[6]
Santhoshkumar, J.; Rajeshkumar, S.; Venkat Kumar, S. Phyto-assisted synthesis, characterization and applications of gold nanoparticles - A review. Biochem. Biophys. Rep., 2017, 11, 46-57.
[http://dx.doi.org/10.1016/j.bbrep.2017.06.004] [PMID: 28955767]
[7]
Gatea, F.; Teodor, E.D.; Seciu, A-M. Antitumour, antimicrobial and catalytic activity of gold nanoparticles synthesized by different pH propolis extracts. J. Nanopart. Res., 2015, 17(7), 320.
[http://dx.doi.org/10.1007/s11051-015-3127-x]
[8]
Francis, S.; Joseph, S.; Koshy, E.P.; Mathew, B. Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environ. Sci. Pollut. Res. Int., 2017, 24(21), 17347-17357.
[http://dx.doi.org/10.1007/s11356-017-9329-2] [PMID: 28589274]
[9]
Manjari, G.; Saran, S.; Arun, T. Facile Aglaia elaeagnoidea mediated synthesis of silver and gold nanoparticles: Antioxidant and catalysis properties. J. Cluster Sci., 2017, 28(4), 2041-2056.
[http://dx.doi.org/10.1007/s10876-017-1199-8]
[10]
Singh, P.; Kim, Y.J.; Wang, C.; Mathiyalagan, R.; Yang, D.C. The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications. Artif. Cells Nanomed. Biotechnol., 2016, 44(4), 1150-1157.
[PMID: 25771716]
[11]
Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Mohan, S.; Venkatesh, K.S.; Esakkirajan, M.; Kaleeswarran, P.; Alharbi, N.S.; Kadaikunnan, S.; Govindarajan, M.; Benelli, G.; Arumugam, A. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb. Pathog., 2016, 101, 1-11.
[http://dx.doi.org/10.1016/j.micpath.2016.10.011] [PMID: 27765621]
[12]
Ahn, S.; Singh, P.; Castro-Aceituno, V.; Yesmin Simu, S.; Kim, Y.J.; Mathiyalagan, R.; Yang, D.C. Gold nanoparticles synthesized using Panax ginseng leaves suppress inflammatory mediators production via blockade of NF-κB activation in macrophages. Artif. Cells Nanomed. Biotechnol., 2017, 45(2), 270-276.
[http://dx.doi.org/10.1080/21691401.2016.1228661] [PMID: 27611566]
[13]
Vimalraj, S.; Ashokkumar, T.; Saravanan, S. Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic properties. Biomed. Pharmacother., 2018, 105, 440-448.
[http://dx.doi.org/10.1016/j.biopha.2018.05.151] [PMID: 29879628]
[14]
Singh, P.; Kim, Y.J.; Yang, D.C. A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1949-1957.
[http://dx.doi.org/10.3109/21691401.2015.1115410] [PMID: 26698271]
[15]
Nune, S.K.; Chanda, N.; Shukla, R.; Katti, K.; Kulkarni, R.R.; Thilakavathi, S.; Mekapothula, S.; Kannan, R.; Katti, K.V. Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J. Mater. Chem., 2009, 19(19), 2912-2920.
[http://dx.doi.org/10.1039/b822015h] [PMID: 20161162]
[16]
Ahmed, S.; Annu, ; Ikram, S.; Yudha S, S. Biosynthesis of gold nanoparticles: A green approach. J. Photochem. Photobiol. B, 2016, 161, 141-153.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.04.034] [PMID: 27236049]
[17]
Anand, K.; Tiloke, C.; Naidoo, P.; Chuturgoon, A.A. Phytonanotherapy for management of diabetes using green synthesis nanoparticles. J. Photochem. Photobiol. B, 2017, 173, 626-639.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.06.028] [PMID: 28709077]
[18]
Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine (Lond.), 2010, 6(2), 257-262.
[http://dx.doi.org/10.1016/j.nano.2009.07.002] [PMID: 19616126]
[19]
Mukherjee, S.; Sushma, V.; Patra, S.; Barui, A.K.; Bhadra, M.P.; Sreedhar, B.; Patra, C.R. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology, 2012, 23(45), 455103.
[http://dx.doi.org/10.1088/0957-4484/23/45/455103] [PMID: 23064012]
[20]
Mukherjee, S.B.V.; Prashanthi, S.; Bangal, P.R. Potential therapeutic and diagnostic applications of one-step in situ biosynthesized gold nanoconjugates (2-in-1 system) in cancer treatment. RSC Advances, 2013, 3(7), 2318.
[http://dx.doi.org/10.1039/c2ra22299j]
[21]
Bhaumik, J.; Thakur, N.S.; Aili, P.K. Bioinspired nanotheranostic agents: Synthesis, surface functionalization, and antioxidant potential. ACS Biomater. Sci. Eng., 2015, 1(6), 382-392.
[http://dx.doi.org/10.1021/ab500171a]
[22]
Vijayan, R.; Joseph, S.; Mathew, B. Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 861-871.
[http://dx.doi.org/10.1080/21691401.2017.1345930] [PMID: 28681622]
[23]
Chahardoli, A.; Karimi, N.; Sadeghi, F.; Fattahi, A. Green approach for synthesis of gold nanoparticles from Nigella arvensis leaf extract and evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic activities. Artif. Cells Nanomed. Biotechnol., 2018, 46(3), 579-588.
[http://dx.doi.org/10.1080/21691401.2017.1332634] [PMID: 28541741]
[24]
Singh, P.; Singh, H.; Ahn, S.; Castro-Aceituno, V.; Jiménez, Z.; Simu, S.Y.; Kim, Y.J.; Yang, D.C. Pharmacological importance, characterization and applications of gold and silver nanoparticles synthesized by Panax ginseng fresh leaves. Artif. Cells Nanomed. Biotechnol., 2017, 45(7), 1415-1424.
[http://dx.doi.org/10.1080/21691401.2016.1243547] [PMID: 27855495]
[25]
Devi, G.K.; Sathishkumar, K. Synthesis of gold and silver nanoparticles using Mukia maderaspatna plant extract and its anticancer activity. IET Nanobiotechnol., 2017, 11(2), 143-151.
[http://dx.doi.org/10.1049/iet-nbt.2015.0054] [PMID: 28476996]
[26]
Patil, M.P.; Jin, X.; Simeon, N.C.; Palma, J.; Kim, D.; Ngabire, D.; Kim, N.H.; Tarte, N.H.; Kim, G.D. Anticancer activity of Sasa borealis leaf extract-mediated gold nanoparticles. Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 82-88.
[http://dx.doi.org/10.1080/21691401.2017.1293675] [PMID: 28278576]
[27]
Dhayalan, M.; Denison, M.I.J.; L, A.J.; Krishnan, K.; N, N.G. In vitro antioxidant, antimicrobial, cytotoxic potential of gold and silver nanoparticles prepared using Embelia ribes. Nat. Prod. Res., 2017, 31(4), 465-468.
[http://dx.doi.org/10.1080/14786419.2016.1166499] [PMID: 27104858]
[28]
Ashokkumar, T.; Arockiaraj, J.; Vijayaraghavan, K. Biosynthesis of gold nanoparticles using green roof species Portulaca grandiflora and their cytotoxic effects against C6 glioma human cancer cells. Environ. Prog. Sustain. Energy, 2016, 35(6), 1732-1740.
[http://dx.doi.org/10.1002/ep.12385]
[29]
Baharara, J.; Ramezani, T.; Divsalar, A.; Mousavi, M.; Seyedarabi, A. Induction of apoptosis by green synthesized gold nanoparticles through activation of caspase-3 and 9 in human cervical cancer cells. Avicenna J. Med. Biotechnol., 2016, 8(2), 75-83.
[PMID: 27141266]
[30]
Balashanmugam, P.; Durai, P.; Balakumaran, M.D.; Kalaichelvan, P.T. Phytosynthesized gold nanoparticles from C. roxburghii DC. leaf and their toxic effects on normal and cancer cell lines. J. Photochem. Photobiol. B, 2016, 165, 163-173.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.10.013] [PMID: 27855358]
[31]
Dorosti, N.; Jamshidi, F. Plant-mediated gold nanoparticles by Dracocephalum kotschyi as anticholinesterase agent: Synthesis, characterization, and evaluation of anticancer and antibacterial activity. J. Appl. Biomed., 2016, 14(3), 235-245.
[http://dx.doi.org/10.1016/j.jab.2016.03.001]
[32]
Firdhouse, M.J.; Lalitha, P. Flower-shaped gold nanoparticles synthesized using Kedrostis foetidissima and their antiproliferative activity against bone cancer cell lines. Int J Ind Chem, 2016, 7(4), 347-358.
[http://dx.doi.org/10.1007/s40090-016-0098-4]
[33]
Wang, C.; Mathiyalagan, R.; Kim, Y.J.; Castro-Aceituno, V.; Singh, P.; Ahn, S.; Wang, D.; Yang, D.C. Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Int. J. Nanomedicine, 2016, 11, 3691-3701.
[http://dx.doi.org/10.2147/IJN.S97181] [PMID: 27570451]
[34]
Jiménez Pérez, Z.E.; Mathiyalagan, R.; Markus, J.; Kim, Y.J.; Kang, H.M.; Abbai, R.; Seo, K.H.; Wang, D.; Soshnikova, V.; Yang, D.C. Ginseng-berry-mediated gold and silver nanoparticle synthesis and evaluation of their in vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines. Int. J. Nanomedicine, 2017, 12, 709-723.
[http://dx.doi.org/10.2147/IJN.S118373] [PMID: 28260881]
[35]
Mata, R.; Nakkala, J.R.; Sadras, S.R. Polyphenol stabilized colloidal gold nanoparticles from Abutilon indicum leaf extract induce apoptosis in HT-29 colon cancer cells. Colloids Surf. B Biointerfaces, 2016, 143, 499-510.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.069] [PMID: 27038915]
[36]
Uma Suganya, K.S.; Govindaraju, K.; Ganesh Kumar, V. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7). Appl. Surf. Sci., 2016, 371, 415-424.
[http://dx.doi.org/10.1016/j.apsusc.2016.03.004]
[37]
Yadav, A.; Ranade, S. Properties and bioactivity of flavonoids and sugars induced gold nanoparticles. Indian J. Biotechnol., 2016, 15, 531-537.
[38]
Muthukumar, T Green synthesis of gold nanoparticles and their enhanced synergistic antitumor activity using HepG2 and MCF7 cells and its antibacterial effects. Process Biochem., 2016, 51(3), 384-391.
[http://dx.doi.org/10.1016/j.procbio.2015.12.017]
[39]
Hoshyar, R.; Khayati, G.R.; Poorgholami, M.; Kaykhaii, M. A novel green one-step synthesis of gold nanoparticles using crocin and their anti-cancer activities. J. Photochem. Photobiol. B, 2016, 159, 237-242.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.03.056] [PMID: 27085640]
[40]
Abel, E.E.; John Poonga, P.R.; Panicker, S.G. Characterization and in vitro studies on anticancer, antioxidant activity against colon cancer cell line of gold nanoparticles capped with Cassia tora SM leaf extract. Appl. Nanosci., 2016, 6(1), 121-129.
[http://dx.doi.org/10.1007/s13204-015-0422-x]
[41]
Sun, B.; Hu, N.; Han, L.; Pi, Y.; Gao, Y.; Chen, K. Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 4012-4019.
[http://dx.doi.org/10.1080/21691401.2019.1575844] [PMID: 31591910]
[42]
Han, X.; Jiang, X.; Guo, L.; Wang, Y.; Veeraraghavan, V.P.; Krishna Mohan, S.; Wang, Z.; Cao, D. Anticarcinogenic potential of gold nanoparticles synthesized from Trichosanthes kirilowii in colon cancer cells through the induction of apoptotic pathway. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3577-3584.
[http://dx.doi.org/10.1080/21691401.2019.1626412] [PMID: 31456423]
[43]
Latha, D.; Prabu, P.; Arulvasu, C. Enhanced cytotoxic effect on human lung carcinoma cell line (A549) by gold nanoparticles synthesized from Justicia adhatoda leaf extract. Asian Pac. J. Trop. Biomed., 2018, 8(11), 540.
[http://dx.doi.org/10.4103/2221-1691.245969]
[44]
Huo, Y.; Singh, P.; Kim, Y.J.; Soshnikova, V.; Kang, J.; Markus, J.; Ahn, S.; Castro-Aceituno, V.; Mathiyalagan, R.; Chokkalingam, M.; Bae, K.S.; Yang, D.C. Biological synthesis of gold and silver chloride nanoparticles by Glycyrrhiza uralensis and in vitro applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 303-312.
[http://dx.doi.org/10.1080/21691401.2017.1307213] [PMID: 28375686]
[45]
Ahmad, N.; Bhatnagar, S.; Saxena, R.; Iqbal, D.; Ghosh, A.K.; Dutta, R. Biosynthesis and characterization of gold nanoparticles: Kinetics, in vitro and in vivo study. Mater. Sci. Eng. C, 2017, 78, 553-564.
[http://dx.doi.org/10.1016/j.msec.2017.03.282] [PMID: 28576021]
[46]
Patil, M.P.; Bayaraa, E.; Subedi, P. Biogenic synthesis, characterization of gold nanoparticles using Lonicera japonica and their anticancer activity on HeLa cells. J. Drug Deliv. Sci. Technol., 2019, 51, 83-90.
[http://dx.doi.org/10.1016/j.jddst.2019.02.021]
[47]
Ke, Y.; Al Aboody, M.S.; Alturaiki, W.; Alsagaby, S.A.; Alfaiz, F.A.; Veeraraghavan, V.P.; Mickymaray, S. Photosynthesized gold nanoparticles from Catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1938-1946.
[http://dx.doi.org/10.1080/21691401.2019.1614017] [PMID: 31099261]
[48]
Zhang, X.; Tan, Z.; Jia, K.; Zhang, W.; Dang, M. Rabdosia rubescens Linn: green synthesis of gold nanoparticles and their anticancer effects against human lung cancer cells A549. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2171-2178.
[http://dx.doi.org/10.1080/21691401.2019.1620249] [PMID: 31159596]
[49]
Rautray, S.; Panikar, S.; Amutha, T.; Rajananthini, A.U. Anticancer activity of Adiantum capillus veneris and Pteris quadriureta L. in human breast cancer cell lines. Mol. Biol. Rep., 2018, 45(6), 1897-1911.
[http://dx.doi.org/10.1007/s11033-018-4337-y] [PMID: 30194562]
[50]
Wu, F.; Zhu, J.; Li, G.; Wang, J.; Veeraraghavan, V.P.; Krishna Mohan, S.; Zhang, Q. Biologically synthesized green gold nanoparticles from Siberian ginseng induce growth-inhibitory effect on melanoma cells (B16). Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3297-3305.
[http://dx.doi.org/10.1080/21691401.2019.1647224] [PMID: 31379212]
[51]
Singh, H.; Du, J.; Singh, P.; Yi, T.H. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(6), 1163-1170.
[http://dx.doi.org/10.1080/21691401.2017.1362417] [PMID: 28784039]
[52]
Elemike, E.E.; Onwudiwe, D.C.; Nundkumar, N. Green synthesis of Ag, Au and Ag-Au bimetallic nanoparticles using Stigmaphyllon ovatum leaf extract and their in vitro anticancer potential. Mater. Lett., 2019, 243, 148-152.
[http://dx.doi.org/10.1016/j.matlet.2019.02.049]
[53]
Li, Y.; Ke, Y.; Zou, H.; Wang, K.; Huang, S.; Rengarajan, T.; Wang, L. Gold nano particles synthesized from Strychni semen and its anticancer activity in cholangiocarcinoma cell (KMCH-1). Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1610-1616.
[http://dx.doi.org/10.1080/21691401.2019.1594860] [PMID: 31072209]
[54]
Wang, L.; Xu, J.; Yan, Y.; Liu, H.; Karunakaran, T.; Li, F. Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC-1). Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1617-1627.
[http://dx.doi.org/10.1080/21691401.2019.1594862] [PMID: 31014134]
[55]
Zhang, P.; Wang, P.; Yan, L.; Liu, L. Synthesis of gold nanoparticles with Solanum xanthocarpum extract and their in vitro anticancer potential on nasopharyngeal carcinoma cells. Int. J. Nanomedicine, 2018, 13, 7047-7059.
[http://dx.doi.org/10.2147/IJN.S180138] [PMID: 30464458]
[56]
Li, L.; Zhang, W.; Desikan Seshadri, V.D.; Cao, G. Synthesis and characterization of gold nanoparticles from Marsdenia tenacissima and its anticancer activity of liver cancer HepG2 cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3029-3036.
[http://dx.doi.org/10.1080/21691401.2019.1642902] [PMID: 31328556]
[57]
Liu, R.; Pei, Q.; Shou, T.; Zhang, W.; Hu, J.; Li, W. Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma A498 cells. Int. J. Nanomedicine, 2019, 14, 4091-4103.
[http://dx.doi.org/10.2147/IJN.S203222] [PMID: 31239669]
[58]
Kumar, G.; Ghosh, M.; Pandey, D.M. Method development for optimised green synthesis of gold nanoparticles from Millettia pinnata and their activity in non-small cell lung cancer cell lines. IET Nanobiotechnol., 2019, 13(6), 626-633.
[http://dx.doi.org/10.1049/iet-nbt.2018.5410] [PMID: 31432797]
[59]
Ghramh, H.A.; Khan, K.A.; Ibrahim, E.H. Biological Activities of Euphorbia peplus Leaves Ethanolic Extract and the Extract Fabricated Gold Nanoparticles (AuNPs). Molecules, 2019, 24(7), 1431.
[http://dx.doi.org/10.3390/molecules24071431] [PMID: 30978998]
[60]
Wu, T.; Duan, X.; Hu, C.; Wu, C.; Chen, X.; Huang, J.; Liu, J.; Cui, S. Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 512-523.
[http://dx.doi.org/10.1080/21691401.2018.1560305] [PMID: 30810403]
[61]
Qian, L.; Su, W.; Wang, Y.; Dang, M.; Zhang, W.; Wang, C. Synthesis and characterization of gold nanoparticles from aqueous leaf extract of Alternanthera sessilis and its anticancer activity on cervical cancer cells (HeLa). Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1173-1180.
[http://dx.doi.org/10.1080/21691401.2018.1549064] [PMID: 30942109]
[62]
Sunderam, V.; Thiyagarajan, D.; Lawrence, A.V.; Mohammed, S.S.S.; Selvaraj, A. In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract. Saudi J. Biol. Sci., 2019, 26(3), 455-459.
[http://dx.doi.org/10.1016/j.sjbs.2018.12.001] [PMID: 30899157]
[63]
Vijayan, R.; Joseph, S.; Mathew, B. Anticancer, antimicrobial, antioxidant, and catalytic activities of green-synthesized silver and gold nanoparticles using Bauhinia purpurea leaf extract. Bioprocess Biosyst. Eng., 2019, 42(2), 305-319.
[http://dx.doi.org/10.1007/s00449-018-2035-8] [PMID: 30421171]
[64]
Valsalam, S.; Agastian, P.; Esmail, G.A.; Ghilan, A.M.; Al-Dhabi, N.A.; Arasu, M.V. Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy. J. Photochem. Photobiol. B, 2019, 201, 111670.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111670] [PMID: 31706087]
[65]
Mukherjee, S.; Sau, S.; Madhuri, D.; Bollu, V.S.; Madhusudana, K.; Sreedhar, B.; Banerjee, R.; Patra, C.R. Green synthesis and characterization of monodispersed gold nanoparticles: Toxicity study, delivery of doxorubicin and its bio-distribution in mouse model. J. Biomed. Nanotechnol., 2016, 12(1), 165-181.
[http://dx.doi.org/10.1166/jbn.2016.2141] [PMID: 27301182]
[66]
Stozhko, N.Yu.; Bukharinova, M.A.; Khamzina, E.I.; Tarasov, A.V.; Vidrevich, M.B.; Brainina, K.Z. The effect of the antioxidant activity of plant Eextracts on the properties of gold nanoparticles. Nanomaterials (Basel), 2019, 9(12), 1655.
[http://dx.doi.org/10.3390/nano9121655] [PMID: 31766367]
[67]
Ahmeda, A.; Zangeneh, A.; Zangeneh, M.M. Green synthesis and chemical characterization of gold nanoparticle synthesized using Camellia sinensis leaf aqueous extract for the treatment of acute myeloid leukemia in comparison to daunorubicin in a leukemic mouse model. Appl. Organomet. Chem., 2020, 34(3), e5290.
[http://dx.doi.org/10.1002/aoc.5290]
[68]
Ramachandran, R.; Krishnaraj, C.; Sivakumar, A.S.; Prasannakumar, P.; Abhay Kumar, V.K.; Shim, K.S.; Song, C.G.; Yun, S.I. Anticancer activity of biologically synthesized silver and gold nanoparticles on mouse myoblast cancer cells and their toxicity against embryonic zebrafish. Mater. Sci. Eng. C, 2017, 73, 674-683.
[http://dx.doi.org/10.1016/j.msec.2016.12.110] [PMID: 28183660]
[69]
M, N.; v N, K.; v, D.R.; A, P. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible gold nanoparticles from Alternanthera bettzickiana. Biotechnol. Rep. (Amst.), 2018, 19, e00268.
[http://dx.doi.org/10.1016/j.btre.2018.e00268] [PMID: 29992102]
[70]
Kumar, L.; Baldi, A.; Verma, S.; Utreja, P. Exploring therapeutic potential of nanocarrier systems against breast cancer. Pharm. Nanotechnol., 2018, 6(2), 94-110.
[http://dx.doi.org/10.2174/2211738506666180604101920] [PMID: 29866028]
[71]
Saifi, M.A.; Khan, W.; Godugu, C. Cytotoxicity of nanomaterials: Using nanotoxicology to address the safety concerns of nanoparticles. Pharm. Nanotechnol., 2018, 6(1), 3-16.
[http://dx.doi.org/10.2174/2211738505666171023152928] [PMID: 29065848]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy