Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Formic Acid as an Inexpensive and Convenient Reagent

Author(s): Xiao-Hua Cai*, Su-qian Cai and Bing Xie

Volume 25 , Issue 2 , 2021

Published on: 23 November, 2020

Page: [223 - 247] Pages: 25

DOI: 10.2174/1385272824999201123195457

Price: $65

Abstract

Formic acid (HCOOH) as an inexpensive and versatile reagent has gained broad attention in the field of green synthesis and chemical industry. Formic acid acts not only as a convenient and less toxic CO surrogate, but also as an excellent formylative reagent, C1 source and hydrogen donor in organic reactions. Over the past decades, many exciting contributions have been made which have helped chemists to understand the mechanisms of these reactions. The review will examine recent advances in the utilization of formic acid as an economical, practical and multipurpose reactant in synthetic transformations.

Keywords: Formic acid, N-formylation and reduction, CO surrogate, formylative agent, C1 source, hydrogen donor.

Graphical Abstract
[1]
Vögtle, F.; Stoddart, J.F.; Shibasaki, M. Stimulating Concepts in Chemistry; John Wiley & Sons, 2000.
[http://dx.doi.org/10.1002/3527605746]
[2]
Nicolaou, K.C.; Hale, C.R.; Nilewski, C.; Ioannidou, H.A. Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance. Chem. Soc. Rev., 2012, 41(15), 5185-5238.
[http://dx.doi.org/10.1039/c2cs35116a] [PMID: 22743704]
[3]
Shi, M.; Lu, J-M.; Wei, Y.; Shao, L-X. Rapid generation of molecular complexity in the Lewis or Brønsted acid-mediated reactions of methylenecyclopropanes. Acc. Chem. Res., 2012, 45(4), 641-652.
[http://dx.doi.org/10.1021/ar200237z] [PMID: 22166122]
[4]
Valentini, F.; Kozell, V.; Petrucci, C.; Marrocchi, A.; Gu, Y.; Gelman, D.; Vaccaro, L. Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy Environ. Sci., 2019, 12, 2646-2664.
[http://dx.doi.org/10.1039/C9EE01747J]
[5]
Niu, M.G.; Hou, Y.C.; Ren, S.H.; Wu, W.Z. Catalytic oxidation of biomass to formic acid in aqueous solutions using vanadium-containing catalysts. Chin. Sci. Bull., 2015, 60, 1434-1442.
[http://dx.doi.org/10.1360/N972014-01247]
[6]
Li, J.; Ding, D.J.; Deng, L.; Guo, Q.X.; Fu, Y. Catalytic air oxidation of biomass-derived carbohydrates to formic acid. ChemSusChem, 2012, 5(7), 1313-1318.
[http://dx.doi.org/10.1002/cssc.201100466] [PMID: 22499553]
[7]
Zhang, J.Z.; Sun, M.; Liu, X.; Han, Y. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields. Catal. Today, 2014, 233, 77-82.
[http://dx.doi.org/10.1016/j.cattod.2013.12.010]
[8]
Reutemann, W.; Kieczka, H. Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons, 2005.
[9]
Gautam, P.; Upadhyay, P.R.; Srivastava, V. Selective hydrogenation of CO2 to formic acid over alumina-supported Ru nanoparticles with multifunctional ionic liquid. Catal. Lett., 2019, 149, 1464-1475.
[http://dx.doi.org/10.1007/s10562-019-02773-z]
[10]
Wu, C.; Faisal, I.; Luo, M.W.; Zhao, Y.J.; Ma, X.B.; Wang, S.P. Ruthenium complexes immobilized on an azolium based metal organic framework for highly efficient conversion of CO2 into formic acid. ChemCatChem, 2019, 11, 1256-1263.
[http://dx.doi.org/10.1002/cctc.201801701]
[11]
Corral-Pérez, J.J.; Billings, A.; Stoian, D.; Urakawa, A. Continuous hydrogenation of carbon dioxide to formic acid and methyl formate by a molecular iridium complex stably heterogenized on a covalent triazine framework. ChemCatChem, 2019, 11, 4725-4730.
[http://dx.doi.org/10.1002/cctc.201901179]
[12]
Sinha, R.; Bisht, A.; Rarotra, S.; Mandal, T.K. Continuous semi-micro reactor prototype for the electrochemical reduction of CO2 into formic acid. Ind. Eng. Chem. Res., 2020, 59, 1737-1745.
[http://dx.doi.org/10.1021/acs.iecr.9b03304]
[13]
Weilhard, A.; Salzmann, K.; Navarro, M.; Dupont, J.; Albrecht, M.; Sans, V. Catalyst design for highly efficient carbon dioxide hydrogenation to formic acid under buffering conditions. J. Catal., 2020, 385, 1-9.
[http://dx.doi.org/10.1016/j.jcat.2020.02.027]
[14]
Grasemann, M.; Laurenczy, G. Formic acid as a hydrogen source-recent developments and future trends. Energy Environ. Sci., 2012, 5, 8171-8181.
[http://dx.doi.org/10.1039/c2ee21928j]
[15]
Reichert, J.; Brunner, B.; Jess, A.; Wasserscheid, P.; Albert, J. Biomass oxidation to formic acid in aqueous media using polyoxometalate catalysts-boosting FA selectivity by in-situ extraction. Energy Environ. Sci., 2015, 8, 2985-2990.
[http://dx.doi.org/10.1039/C5EE01706H]
[16]
Wang, J.; Jin, H.; Wang, W-H.; Zhao, Y.; Li, Y.; Bao, M.; Jin, H.; Wang, J.; Wang, W-H. Ultrasmall Ni-ZnO/SiO2 synergistic catalyst for highly efficient hydrogenation of NaHCO3 to formic acid. ACS Appl. Mater. Interfaces, 2020, 12(17), 19581-19586.
[http://dx.doi.org/10.1021/acsami.0c03037] [PMID: 32255603]
[17]
De-Souza, M.G.; Monteiro, M.E.; Leonardo, B.; Favilla, B.G. Theoretical investigation of the formic acid decomposition kinetics. Int. J. Chem. Kinet., 2020, 52, 188-196.
[http://dx.doi.org/10.1002/kin.21341]
[18]
Irfan, R.M.; Wang, T.; Jiang, D.; Yue, Q.; Zhang, L.; Cao, H.; Pan, Y.; Du, P.W. Homogeneous molecular iron catalysts for direct photocatalytic conversion of formic acid to syngas (CO+H2) at room temperature by visible light. Angew. Chem. Int. Ed., 2020, 59(35), 14818-14824.
[http://dx.doi.org/10.1002/anie.202002757]
[19]
Zhou, W.; Wei, Z.; Spannenberg, A.; Jiao, H.; Junge, K.; Junge, H.; Beller, M. Cobalt‐catalyzed aqueous dehydrogenation of formic acid. Chemistry, 2019, 25(36), 8459-8464.
[http://dx.doi.org/10.1002/chem.201805612] [PMID: 30938464]
[20]
Wang, X.; Meng, Q.; Gao, L.; Jin, Z.; Ge, J.; Liu, C.; Xing, W. Recent progress in hydrogen production from formic acid decomposition. Int. J. Hydrogen Energy, 2018, 43, 7055-7071.
[http://dx.doi.org/10.1016/j.ijhydene.2018.02.146]
[21]
Yu, J.; Savage, P.E. Decomposition of formic acid under hydrothermal conditions. Ind. Eng. Chem. Res., 1998, 37, 2-10.
[http://dx.doi.org/10.1021/ie970182e]
[22]
Óhair, R.A.J.; Mravak, A.; Krstić, M.; Bonačić-Kouteck, V. Models facilitating the design of a new metal‐organic framework catalyst for the selective decomposition of formic acid into hydrogen and carbon dioxide. ChemCatChem, 2019, 11, 2443-2448.
[http://dx.doi.org/10.1002/cctc.201900346]
[23]
Long, B.; Cheng, J-R.; Tan, X-F.; Zhang, W-J. Theoretical study on the detailed reaction mechanisms of carbonyl oxide with formic acid. J. Mol. Struct. Theochem, 2009, 916, 159-167.
[http://dx.doi.org/10.1016/j.theochem.2009.09.028]
[24]
Nasrollahzadeh, M.; Motahharifar, N.; Aghbolagh, A.M.; Sajjadi, M.M. shokouhimehr and Varma, R.S. Recent advances in N-formylation of amines and nitroarenes using efficient (nano)catalysts in eco-friendly media. Green Chem., 2019, 21, 5144-5167.
[http://dx.doi.org/10.1039/C9GC01822K]
[25]
Wang, Y.; Yu, Z-X. Rhodium-catalyzed [5 + 2 + 1] cycloaddition of ene-vinylcyclopropanes and CO: reaction design, development, application in natural product synthesis, and inspiration for developing new reactions for synthesis of eight-membered carbocycles. Acc. Chem. Res., 2015, 48(8), 2288-2296.
[http://dx.doi.org/10.1021/acs.accounts.5b00037] [PMID: 26227886]
[26]
Wu, X-F.; Fang, X.; Wu, L.; Jackstell, R.; Neumann, H.; Beller, M. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account. Acc. Chem. Res., 2014, 47(4), 1041-1053.
[http://dx.doi.org/10.1021/ar400222k] [PMID: 24564478]
[27]
Pospech, J.; Fleischer, I.; Franke, R.; Buchholz, S.; Beller, M. Alternative metals for homogeneous catalyzed hydroformylation reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(10), 2852-2872.
[http://dx.doi.org/10.1002/anie.201208330] [PMID: 23436281]
[28]
Wu, X-F.; Neumann, H.; Beller, M. Synthesis of heterocycles via palladium-catalyzed carbonylations. Chem. Rev., 2013, 113(1), 1-35.
[http://dx.doi.org/10.1021/cr300100s] [PMID: 23039127]
[29]
Franke, R.; Selent, D.; Börner, A. Applied hydroformylation. Chem. Rev., 2012, 112(11), 5675-5732.
[http://dx.doi.org/10.1021/cr3001803] [PMID: 22937803]
[30]
Wu, X-F.; Neumann, H.; Beller, M. Palladium-catalyzed carbonylative coupling reactions between Ar-X and carbon nucleophiles. Chem. Soc. Rev., 2011, 40(10), 4986-5009.
[http://dx.doi.org/10.1039/c1cs15109f] [PMID: 21792459]
[31]
Omae, I. Transition metal-catalyzed cyclocarbonylation in organic synthesis. Coord. Chem. Rev., 2011, 255, 139-160.
[http://dx.doi.org/10.1016/j.ccr.2010.08.001]
[32]
Peng, J-B.; Qi, X.; Wu, X-F. Visible light-induced carbonylation reactions with organic dyes as the photosensitizers. ChemSusChem, 2016, 9(17), 2279-2283.
[http://dx.doi.org/10.1002/cssc.201600625] [PMID: 27488198]
[33]
Wu, X-F. Acylation of (hetero)arenes through C-H activation with aroyl surrogates. Chemistry, 2015, 21(35), 12252-12265.
[http://dx.doi.org/10.1002/chem.201501548] [PMID: 26133491]
[34]
Cao, Z-J.; Zheng, Z.; Xu, L-W. Transition-metal-catalyzed transfer carbonylation with HCOOH or HCHO as a non-gaseous C1 source. Coord. Chem. Rev., 2017, 336, 43-53.
[http://dx.doi.org/10.1016/j.ccr.2017.01.005]
[35]
Qi, X.; Jiang, L-B.; Li, C-L.; Li, R.; Wu, X-F. Palladium-catalyzed one-pot carbonylative Sonogashira reaction employing formic acid as the CO source. Chem. Asian J., 2015, 10(9), 1870-1873.
[http://dx.doi.org/10.1002/asia.201500518] [PMID: 26097102]
[36]
Qi, X.; Jiang, L-B.; Li, H-P.; Wu, X-F. A convenient palladium-catalyzed carbonylative suzuki coupling of aryl halides with formic acid as the carbon monoxide source. Chemistry, 2015, 21(49), 17650-17656.
[http://dx.doi.org/10.1002/chem.201502943] [PMID: 26486227]
[37]
You, S.Y.; Yan, C.Y.; Zhang, R.L.; Cai, M.Z. A convenient and practical heterogeneous palladium catalyzed carbonylative Suzuki coupling of aryl iodides with formic acid as carbon monoxide source. Appl. Organomet. Chem., 2019, 33e4650
[38]
Losch, P.; Felten, A-S.; Pale, P. Easy, green and safe carbonylation reactions through zeolite-catalyzed carbon monoxide production from formic acid. Adv. Synth. Catal., 2015, 357, 2931-2938.
[http://dx.doi.org/10.1002/adsc.201500384]
[39]
Qi, X.; Li, C-L.; Wu, X-F. A convenient palladium-catalyzed reductive carbonylation of aryl iodides with dual role of formic acid. Chemistry, 2016, 22(17), 5835-5838.
[http://dx.doi.org/10.1002/chem.201600387] [PMID: 26934464]
[40]
Sun, G.; Lv, X.; Zhang, Y.; Lei, M.; Hu, L. Palladium-catalyzed formylation of aryl iodides with HCOOH as CO source. Org. Lett., 2017, 19(16), 4235-4238.
[http://dx.doi.org/10.1021/acs.orglett.7b01882] [PMID: 28782963]
[41]
Wu, F-P.; Peng, J-B.; Qi, X.; Wu, X-F. Palladium-catalyzed carbonylative transformation of organic halides with formic acid as the coupling partner and CO source: synthesis of carboxylic acids. J. Org. Chem., 2017, 82(18), 9710-9714.
[http://dx.doi.org/10.1021/acs.joc.7b01808] [PMID: 28817931]
[42]
Wu, F-P.; Peng, J-B.; Qi, X.X.; Wu, X-F. Palladium-catalyzed carbonylative Homo-coupling of aryl iodides for the synthesis of symmetrical diaryl ketones with formic acid. ChemCatChem, 2018, 10, 173-177.
[http://dx.doi.org/10.1002/cctc.201701185]
[43]
Qi, X.X.; Ai, H-J.; Zhang, N.; Peng, J-B.; Ying, J.; Wu, X-F. Palladium-catalyzed carbonylative bis(indolyl)methanes synthesis with TFBen as the CO source. J. Catal., 2018, 362, 74-77.
[http://dx.doi.org/10.1016/j.jcat.2018.03.028]
[44]
Qi, X.; Li, H-P.; Wu, X-F. A convenient palladium-catalyzed carbonylative synthesis of benzofuran-2(3H)-ones with formic acid as the CO source. Chem. Asian J., 2016, 11(17), 2453-2457.
[http://dx.doi.org/10.1002/asia.201600873] [PMID: 27539230]
[45]
Li, H-P.; Ai, H-J.; Qi, X.; Peng, J-B.; Wu, X-F. Palladium-catalyzed carbonylative synthesis of benzofuran-2(3H)-ones from 2-hydroxybenzyl alcohols using formic acid as the CO source. Org. Biomol. Chem., 2017, 15(6), 1343-1345.
[http://dx.doi.org/10.1039/C6OB02782B] [PMID: 28116404]
[46]
Sang, R.; Kucmierczyk, P.; Dong, K.; Franke, R.; Neumann, H.; Jackstell, R.; Beller, M. Palladium-catalyzed selective generation of CO from formic acid for carbonylation of alkenes. J. Am. Chem. Soc., 2018, 140(15), 5217-5223.
[http://dx.doi.org/10.1021/jacs.8b01123] [PMID: 29528637]
[47]
Wang, Y.Y.; Zhou, Y.; Lei, M.; Hou, J.J.; Jin, Q.H.; Guo, D.; Wu, W.Y. PPh3/I2/HCOOH: an efficient CO source for the synthesis of phthalimides. Tetrahedron, 2019, 75, 1180-1185.
[http://dx.doi.org/10.1016/j.tet.2019.01.023]
[48]
Chang, W.J.; Dai, J.; Li, J.F.; Shi, Y.; Ren, W.L.; Shi, Y. A facile approach to ketones via Pd-catalyzed sequential carbonylation of olefins with formic acid. Org. Chem. Front., 2017, 4, 1074-1078.
[http://dx.doi.org/10.1039/C7QO00111H]
[49]
Gu, N.; Sun, S.; Cheng, J. Palladium-catalyzed cyclizative carbonylation of azobenzenes toward 3H-indazol-3-ones using formic acid as CO source. Tetrahedron Lett., 2018, 59, 1069-1072.
[http://dx.doi.org/10.1016/j.tetlet.2018.02.006]
[50]
Lang, X-D.; You, F.; He, X.; Yu, Y-C.; He, L-N. Rhodium(I)-catalyzed Pauson-Khand-type reaction using formic acid as a CO surrogate: an alternative approach for indirect CO2 utilization. Green Chem., 2019, 21, 509-514.
[http://dx.doi.org/10.1039/C8GC03933J]
[51]
Ahmed, A.; Hussain, N.; Bhardwaj, M.; Chhalodi, A.K.; Kumarb, A.; Mukherjee, D. Palladium catalysed carbonylation of 2-iodoglycals for the synthesis of C-2 carboxylic acids and aldehydes taking formic acid as a carbonyl source. RSC Adv, 2019, 9, 22227-22231.
[http://dx.doi.org/10.1039/C9RA03626A]
[52]
Ansari, M.I.; Hussain, M.K.; Yadav, N.; Gupta, P.K.; Hajela, K. Silica supported perchloric acid catalyzed rapid N-formylation under solvent-free conditions. Tetrahedron Lett., 2012, 53, 2063-2065.
[http://dx.doi.org/10.1016/j.tetlet.2012.02.027]
[53]
Pathare, S.P.; Sawant, R.V.; Akamanchi, K.G. Sulfated tungstate catalyzed highly accelerated N-formylation. Tetrahedron Lett., 2012, 53, 3259-3263.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.058]
[54]
Yang, X.J.; Zhang, Y.S. Res. Melamine trisulfonic acid-catalyzed N-formylation of amines under solvent-free conditions. Chem. Intermed., 2013, 39, 2843-2848.
[http://dx.doi.org/10.1007/s11164-012-0803-7]
[55]
Karami, B.; Farahi, M.; Pam, F. A green protocol for the N-formylation of amines using molybdate sulfuric acid as a reusable solid catalyst. Tetrahedron Lett., 2014, 55, 6292-6296.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.114]
[56]
Habibi, D.; Nasrollahzadeh, M.; Sahebekhtiari, H. Green synthesis of formamides using the Natrolite zeolite as a natural, efficient and recyclable catalyst. J. Mol. Catal. Chem., 2013, 378, 148-155.
[http://dx.doi.org/10.1016/j.molcata.2013.04.001]
[57]
Tajbakhsh, M.; Alinezhad, H.; Nasrollahzadeh, M.; Kamali, T.A. Preparation, characterization and application of nanosized CuO/HZSM-5 as an efficient and heterogeneous catalyst for the N-formylation of amines at room temperature. J. Colloid Interface Sci., 2016, 471, 37-47.
[http://dx.doi.org/10.1016/j.jcis.2016.02.062] [PMID: 26971067]
[58]
Ma’mani, L.; Sheykhan, M.; Heydari, A.; Faraji, M.; Yamini, Y. Sulfonic acid supported on hydroxyapatite-encapsulated-γ-Fe2O3 nanocrystallites as a magnetically brønsted acid for N-formylation of amines. Appl. Catal. A Gen., 2010, 377, 64-69.
[http://dx.doi.org/10.1016/j.apcata.2010.01.020]
[59]
Kooti, M.; Nasiri, E. Phosphotungstic acid supported on silica-coated CoFe2O4 nanoparticles: an efficient and magnetically-recoverable catalyst for N-formylation of amines under solvent-free conditions. J. Mol. Catal. Chem., 2015, 406, 168-177.
[http://dx.doi.org/10.1016/j.molcata.2015.05.009]
[60]
Habibi, D.; Heydari, S.; Afsharfarnia, M. A capable cobalt nano-catalyst for the N-formylation of various amines and its biological activity studies. Appl. Organomet. Chem., 2017, 31(12)e3874
[http://dx.doi.org/10.1002/aoc.3874]
[61]
Marjani, P.A.; Hosseini, S.A.; Shokri, Z.; Maleki, N. Co3O4 nanoparticles prepared by oxidative precipitation method: an efficient and reusable heterogeneous catalyst for N-formylation of amines. Res. Chem. Intermed., 2017, 43, 413-422.
[http://dx.doi.org/10.1007/s11164-016-2631-7]
[62]
Hosseini-Sarvari, M.; Safary Jarrahpour, E.A.; Heiran, R.C.R. Synthesis of N-formylated β-lactams using nano-sulfated TiO2 as catalyst under solvent-free conditions. C. R. Chim., 2012, 15, 980-987.
[http://dx.doi.org/10.1016/j.crci.2012.09.014]
[63]
Patil, U.B.; Singh, A.S.; Nagarkar, J.M. Nanoceria-catalyzed highly efficient procedure for N-formylation of amines at room temperature under solvent-free conditions. Chem. Lett., 2013, 42, 524-526.
[http://dx.doi.org/10.1246/cl.130025]
[64]
Das, V.K.; Devi, R.R.; Kumar, R.P.; Thakur, A.J. Nano rod-shaped and reusable basic Al2O3 catalyst for N-formylation of amines under solvent-free conditions: a novel, practical and convenient ‘NOSE’ approach. Green Chem., 2012, 14, 847-854.
[http://dx.doi.org/10.1039/c2gc16020j]
[65]
Wang, Z-G.; Lu, M. Highly efficient N-formylation of amines with ammonium formate catalyzed by nano-Fe3O4 in PEG-400. RSC Adv, 2014, 4, 1234-1240.
[http://dx.doi.org/10.1039/C3RA43273D]
[66]
Shirini, F.; Seddighi, M.; Mamaghani, M. Brönsted acidic ionic liquid supported on rice husk ash (RHA–[pmim]HSO4): a highly efficient and reusable catalyst for the formylation of amines and alcohols. RSC Advances, 2014, 4, 50631-50638.
[http://dx.doi.org/10.1039/C4RA08282F]
[67]
Patre, R.E.; Mal, S.; Nilkanth, P.R.; Ghorai, S.K.; Deshpande, S.H.; El Qacemi, M.; Smejkal, T.; Pal, S.; Manjunath, B.N. First report on bio-catalytic N-formylation of amines using ethyl formate. Chem. Commun. (Camb.), 2017, 53(15), 2382-2385.
[http://dx.doi.org/10.1039/C6CC07679C] [PMID: 28174765]
[68]
Kandula, V.; Gudipati, R.; Chatterjee, A.; Yennam, S.; Beher, M. An efficient method for the preparation of N-formamides using propylphosphonic anhydride (T3P®). SynOpen, 2018, 2, 176-179.
[http://dx.doi.org/10.1055/s-0036-1591584]
[69]
Amin, R.; Ardeshir, K.; Heidar Ali, A-N.; Zahra, T-R. Formylation of alcohol with formic acid under solvent-free and neutral conditions catalyzed by free I2 or I2 generated in situ from Fe(NO3)3•9H2O/NaI. Chin. J. Catal., 2011, 32, 60-64.
[http://dx.doi.org/10.1016/S1872-2067(10)60160-X]
[70]
Léval, A.; Agapova, A.; Steinlechner, C.; Alberico, E.; Junge, H.; Matthias, B. Hydrogen production from formic acid catalyzed by a phosphine free manganese complex: investigation and mechanistic insights. Green Chem., 2020, 22, 913-920.
[http://dx.doi.org/10.1039/C9GC02453K]
[71]
Wang, T.; Xue, W.; Wang, Y-J. Review on heterogeneous catalysts for hydrogen generation via liquid-phase formic acid decomposition. J. Chem. Eng. Chin. Univ., 2019, 33, 1-9.
[http://dx.doi.org/10.3969/j.issn.1003-9015.2019.01.001 ]
[72]
Onishi, N.; Iguchi, M.; Yang, X.C.; Kanega, R.; Kawanami, H.; Xu, Q.; Himeda, Y. Hydrogen storage technology: development of effective catalysts for hydrogen storage technology using formic acid. Adv. Energy Mater., 2019, 91801312
[http://dx.doi.org/10.1002/aenm.201801275]
[73]
Wang, J.Y.; Zhang, G.Y.; Liu, M.Y.; Xia, Q.; Yu, X.; Zhang, W.X.; Shen, J.; Yang, C.H.; Xin, J. Lattice distorted MnCo oxide materials as efficient catalysts for transfer hydrogenation of levulinic acid using formic acid as H-donor. Chem. Eng. Sci., 2020, 222115721
[http://dx.doi.org/10.1016/j.ces.2020.115721]
[74]
Pérez-Zúñigaa, C.; Negrete-Vergarac, C.; Guerchaisb, V.; Le Bozecb, H.; Moyaa, S.A.; Aguirrec, P. Hydrogenation of N-benzylideneaniline by palladium (II) catalysts with phosphorus-nitrogen ligands using formic acid as a renewable hydrogen source. Mol. Catal., 2019, 462, 126-131.
[http://dx.doi.org/10.1016/j.mcat.2018.07.020]
[75]
Yu, Z.; Lu, X.; Xiong, J.; Li, X.; Bai, H.; Ji, N. Heterogeneous catalytic hydrogenation of levulinic acid to γ-valerolactone with formic acid as internal hydrogen source: key issues and their effects. ChemSusChem, 2020, 13(11), 2916-2930.
[http://dx.doi.org/10.1002/cssc.202000175] [PMID: 32153131]
[76]
Al-Naji, M.; Popova, M.; Chen, Z.H.; Wilde, N.; Gläser, R. Aqueous-phase hydrogenation of levulinic acid using formic acid as a sustainable reducing agent over Pt catalysts supported on mesoporous zirconia. ACS Sustain. Chem.& Eng., 2020, 8, 393-402.
[http://dx.doi.org/10.1021/acssuschemeng.9b05546]
[77]
Yang, W.S.; Li, X.; Du, X.; Deng, Y.L.; Dai, H.Q. Effective low-temperature hydrogenolysis of lignin using carbon-supported ruthenium and formic acid as reducing agent. Catal. Commun., 2019, 126, 30-34.
[http://dx.doi.org/10.1016/j.catcom.2019.04.025]
[78]
Wang, S.D.; Huang, H.Y.; Bruneau, C.; Fischmeister, C. Formic acid as a hydrogen source for the iridium catalyzed reductive amination of levulinic acid and 2-formylbenzoic acid. Catal. Sci. Technol., 2019, 9, 4077-4082.
[http://dx.doi.org/10.1039/C9CY01019J]
[79]
Mishra, K.; Kim, S.H.; Lee, Y.R. Band-gap narrowing of highly stable heterogeneous ZrO2-ZnO nanocomposites for the reductive amination of carbonyl compounds with HCO2H/Et3N. ChemSusChem, 2019, 12, 881-889.
[PMID: 30548808]
[80]
Cooze, C.; Dada, R.; Lundgren, R.J. Formic acid mediated direct Z-selective reductive coupling of dienes and aldehydes. Angew. Chem. Int. Ed. Engl., 2019, 58(35), 12246-12251.
[http://dx.doi.org/10.1002/anie.201905540] [PMID: 31215135]
[81]
Butt, M.; Zhao, Y.H.; Feng, X.J.; Lu, Y.; Jin, T.N.; Yamamoto, Y.; Bao, M. Unsupported nanoporous gold-catalyzed chemoselective reduction of quinolines using formic acid as a hydrogen source. ChemistrySelect, 2019, 4, 6572-6577.
[http://dx.doi.org/10.1002/slct.201901309]
[82]
Liu, L.; Gao, H.; Yang, S-Q.; Chen, X-C.; Lu, Y.; Liu, Y.; Xia, F. Ir-catalyzed tandem hydroformylation-transfer hydrogenation of olefins with (trans-/cis-)formic acid as hydrogen source in presence of 1,10-phenanthroline. J. Catal., 2020, 385, 183-193.
[http://dx.doi.org/10.1016/j.jcat.2020.03.008]
[83]
Fiorio, J.L.; Araújo, T.P.; Barbosa, E.C.M.; Quiroz, J.; Camargo, P.H.C.; Rudolph, M.; Hashmi, A.S.K.; Rossia, L.M. Gold-amine cooperative catalysis for reductions and reductive aminations using formic acid as hydrogen source. Appl. Catal. B, 2020, 267118728
[http://dx.doi.org/10.1016/j.apcatb.2020.118728]
[84]
Sapkota, K.; Huang, F.Q. Selective protection of secondary alcohols by using formic acid as a mild and efficient deprotection reagent for primary tert-butyldimethylsilyl ethers. Synlett, 2019, 30, 1895-1898.
[http://dx.doi.org/10.1055/s-0037-1611757]
[85]
Xiong, J.; Ma, Y. Catalytic hydrodechlorination of chlorophenols in a continuous flow Pd/CNT-Ni foam micro reactor using formic acid as a hydrogen source. Catalysts, 2019, 9, 77.
[http://dx.doi.org/10.3390/catal9010077]
[86]
Li, J.F.; Liu, L.; Ai, Y.J.; Hu, Z.N.; Liu, Z.B.; Guo, R.X.; Zhang, C.; Tian, H.M.; Wu, J.J. Moderate activity from trace palladium alloyed with copper for the chemoselective hydrogenation of -CN and -NO2 with HCOOH. Chemselect, 2019, 4, 7346-7350.
[http://dx.doi.org/10.1002/slct.201902057]
[87]
Tomar, P.; Nozoe, Y.; Ozawa, N.; Nishimura, S.; Ebitani, K. Formic acid as a hydrogen source for the additive-free reduction of aromatic carbonyl and nitrile compounds at reusable supported Pd catalysts. Catalysts, 2020, 10, 875.
[http://dx.doi.org/10.3390/catal10080875]
[88]
Sorribes, I.; Junge, K.; Beller, M. General catalytic methylation of amines with formic acid under mild reaction conditions. Chemistry, 2014, 20(26), 7878-7883.
[http://dx.doi.org/10.1002/chem.201402124] [PMID: 24889122]
[89]
Zhu, L.; Wang, L-S.; Li, B.j.; Li, W.; Fu, B.Q. Methylation of aromatic amines and imines using formic acid over heterogeneous Pt/C catalyst. Catal. Sci. Technol., 2016, 6, 6172-6176.
[http://dx.doi.org/10.1039/C6CY00674D]
[90]
Qiao, C.; Liu, X-F.; Liu, X.; He, L-N. Copper(II)-catalyzed selective reductive methylation of amines with formic acid: an option for indirect utilization of CO2. Org. Lett., 2017, 19(6), 1490-1493.
[http://dx.doi.org/10.1021/acs.orglett.7b00551] [PMID: 28263072]
[91]
Pedrajas, E.; Sorribes, I.; Guillamón, E.; Junge, K.; Beller, M.; Llusar, R. Efficient and selective N-methylation of nitroarenes under mild reaction conditions. Chemistry, 2017, 23(53), 13205-13212.
[http://dx.doi.org/10.1002/chem.201702783] [PMID: 28767165]
[92]
Huang, Y.; Deng, W.; Lin, B-L. Air-tolerant direct reductive N-methylation of amines using formic acid via simple inorganic base catalysis. Chin. Chem. Lett., 2020, 31, 111-114.
[http://dx.doi.org/10.1016/j.cclet.2019.04.064]
[93]
Han, H.; Fang, L.; Chen, J.; Yang, S-D.; Xia, J-B. Tetramethylguanidine (TMG)-catalyzed reductive spirocyclization of tryptamine derivatives with formic acid as a C1 synthon. Tetrahedron Lett., 2019, 60, 1487-1489.
[http://dx.doi.org/10.1016/j.tetlet.2019.04.048]
[94]
Beydoun, K.; Thenert, K.; Wiesenthal, J.; Hoppe, C.; Klankermayer, J. Utilization of formic acid as C1 building block for the ruthenium-catalyzed synthesis of formaldehyde surrogates. ChemCatChem, 2020, 12, 1944-1947.
[http://dx.doi.org/10.1002/cctc.201902332]
[95]
Pratap, T.V.; Baskaran, S. Direct conversion of aryl nitro compounds to formanilides under catalytic transfer hydrogenation conditions. Tetrahedron Lett., 2001, 42, 1983-1985.
[http://dx.doi.org/10.1016/S0040-4039(01)00049-1]
[96]
Reddy, P.G.; Baskaran, S. A chemoselective method for the reductive N-formylation of aryl azides under catalytic transfer hydrogenation conditions. Tetrahedron Lett., 2002, 43, 1919-1922.
[http://dx.doi.org/10.1016/S0040-4039(02)00143-0]
[97]
Lou, X-B.; He, L.; Qian, Y.; Liu, Y-M.; Cao, Y.; Fan, K-N. Highly chemo- and regioselective transfer reduction of aromatic nitro compounds using ammonium formate catalyzed by supported gold nanoparticles. Adv. Synth. Catal., 2011, 353, 281-286.
[http://dx.doi.org/10.1002/adsc.201000621]
[98]
Karimi, B.; Mansouri, F.; Vali, H. A highly water-dispersible/magnetically separable palladium catalyst: selective transfer hydrogenation or direct reductive N-formylation of nitroarenes in water. ChemPlusChem, 2015, 80(12), 1750-1759.
[http://dx.doi.org/10.1002/cplu.201500302] [PMID: 31973323]
[99]
Garkoti, C.; Shabir, J.; Mozumdar, S. An imidazolium based ionic liquid supported on Fe3O4@SiO2 nanoparticle as an efficient heterogeneous catalyst for N-formylation of amines. New J. Chem., 2017, 41, 9291-9298.
[http://dx.doi.org/10.1039/C6NJ03985E]
[100]
Li, J.L.; Li, C.Y.; Feng, S.Q.; Zhao, Z.; Zhu, H.J.; Ding, Y.J. Atomically dispersed Zn-Nx sites in N-doped carbon for reductive N-formylation of nitroarenes with formic acid. ChemCatChem, 2020, 12, 1546-1550.
[http://dx.doi.org/10.1002/cctc.201902109]
[101]
Zhang, Y.C.; Cao, P.W.; Zhang, H-Y.; Yin, G.H.; Zhao, J.Q. Cobalt nanoparticles anchoring on nitrogen doped carbon with excellent performances for transfer hydrogenation of nitrocompounds to primary amines and N-substituted formamides with formic acid. Catal. Commun., 2019, 129105747
[http://dx.doi.org/10.1016/j.catcom.2019.105747]
[102]
Kulkarni, A.; Gianatassio, R.; Török, B. Pd/C-catalyzed reductive formylation of indoles and quinolines using formic acid. Synthesis, 2011, 2011(8), 1227-1232.
[http://dx.doi.org/10.1055/s-0030-1259978 ]
[103]
Tao, L.; Zhang, Q.; Li, S-S.; Liu, X.; Liu, Y-M.; Cao, Y. Heterogeneous gold-catalyzed selective reductive transformation of quinolines with formic acid. Adv. Synth. Catal., 2015, 357, 753-760.
[http://dx.doi.org/10.1002/adsc.201400721]
[104]
Kar, A.K.; Srivastava, R. Solvent-dependent, formic acid-mediated, selective reduction and reductive N-formylation of N-heterocyclic arenes with sustainable cobalt-embedded N-doped porous carbon catalyst. ACS Sustain. Chem.& Eng., 2019, 7, 13136-13147.
[http://dx.doi.org/10.1021/acssuschemeng.9b02307]
[105]
Leng, Y.; Du, S.; Feng, G.; Sang, X.; Jiang, P.; Li, H.; Wang, D. Cobalt-polypyrrole/melamine-derived Co-N@NC catalysts for efficient base-free formic acid dehydrogenation and formylation of quinolines through transfer hydrogenation. ACS Appl. Mater. Interfaces, 2020, 12(1), 474-483.
[http://dx.doi.org/10.1021/acsami.9b14839] [PMID: 31802662]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy