Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification of Therapeutic Drug Target of Stenotrophomonas maltophilia Through Subtractive Genomic Approach and in-silico Screening Based on 2D Similarity Filtration and Molecular Dynamic Simulation

Author(s): Rahul Chandela, Dhananjay Jade, Surender Mohan, Ridhi Sharma and Shobana Sugumar *

Volume 25, Issue 1, 2022

Published on: 22 November, 2020

Page: [123 - 138] Pages: 16

DOI: 10.2174/1871520620666201123094330

Price: $65

Abstract

Background: Stenotrophomonas maltophilia is a multi-drug resistant, gram-negative bacterium that causes opportunistic infections and is associated with high morbidity and mortality in severely immunocompromised individuals.

Aim: The study aimed to find out the drug target and a novel inhibitor for Stenotrophomonas maltophilia.

Objectives: The current study focused on identifying specific drug targets by subtractive genomes analysis to determine the novel inhibitor for the specified target protein by virtual screening, molecular docking, and molecular simulation approach.

Materials and Methods: In this study, we performed a subtractive genomics approach to identify the novel drug target for S.maltophilia. After obtaining the specific target, the next step was to identify inhibitors that include calculating 2D similarity search, molecular docking, and molecular simulation for drug development for S.maltophilia.

Results: With an efficient subtractive genomic approach, out of 4386 proteins, five unique targets were found, in which UDP-D-acetylmuramic (murF) was the most remarkable target. Further virtual screening, docking, and dynamics analyses resulted in the identification of seven novel inhibitors.

Conclusion: Further, in vitro and in vivo bioassay of the identified novel inhibitors could facilitate effective drug use against S.maltophilia.

Keywords: Stenotrophomonas maltophilia, subtractive genomics approach, in silico, homology modeling, docking, molecular dynamic simulation.

Graphical Abstract
[1]
Batra, P.; Mathur, P.; Misra, M.C. Clinical characteristics and prognostic factors of patients with Stenotrophomonas maltophilia infections. J. Lab. Physicians, 2017, 9(2), 132-135.
[http://dx.doi.org/10.4103/0974-2727.199639] [PMID: 28367030]
[2]
Brooke, J.S. Stenotrophomonas maltophilia: An emerging global opportunistic pathogen. Clin. Microbiol. Rev., 2012, 25(1), 2-41.
[http://dx.doi.org/10.1128/CMR.00019-11] [PMID: 22232370]
[3]
Lira, F.; Berg, G.; Martínez, J.L. Double-face meets the bacterial world: the opportunistic pathogen Stenotrophomonas maltophilia. Front. Microbiol., 2017, 8(2190), 2190.
[http://dx.doi.org/10.3389/fmicb.2017.02190] [PMID: 29170656]
[4]
Ryan, R.P.; Fouhy, Y.; Garcia, B.F.; Watt, S.A.; Niehaus, K.; Yang, L.; Tolker-Nielsen, T.; Dow, J.M. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol. Microbiol., 2008, 68(1), 75-86.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06132.x] [PMID: 18312265]
[5]
Wei, C.; Ni, W.; Cai, X.; Zhao, J.; Cui, J. Evaluation of Trimethoprim/Sulfamethoxazole (SXT), minocycline, tigecycline, moxifloxacin, and ceftazidime alone and in combinations for SXT-Susceptible and SXT-resistant Stenotrophomonas maltophilia by in vitro time-kill experiments. PLoS One, 2016, 11(3), e0152132.
[http://dx.doi.org/10.1371/journal.pone.0152132] [PMID: 26999818]
[6]
Wattal, C.; Khanna, S.; Goel, N.; Oberoi, J.K.; Rao, B.K. Antimicrobial prescribing patterns of surgical speciality in a tertiary care hospital in India: Role of persuasive intervention for changing antibiotic prescription behaviour. Indian J. Med. Microbiol., 2017, 35(3), 369-375.
[http://dx.doi.org/10.4103/ijmm.IJMM_17_273] [PMID: 29063881]
[7]
Lai, C.H.; Chi, C.Y.; Chen, H.P.; Chen, T.L.; Lai, C.J.; Fung, C.P.; Yu, K.W.; Wong, W.W.; Liu, C.Y. Clinical characteristics and prognostic factors of patients with Stenotrophomonas maltophilia bacteremia. J. Microbiol. Immunol. Infect., 2004, 37(6), 350-358.
[8]
Gupta, S.; Sarita, S.; Gupta, M.; Pant, K.; Seth, P. Definition of potential targets in Mycoplasma pneumoniae through subtractive genome analysis. J. Antivir. Antiretrovir., 2010, 2(2), 38-41.
[9]
Madagi, S.; Patil, V.M.; Sadegh, S.; Singh, A.K.; Garwal, B.; Banerjee, A.; Talambedu, U.; Bhattacharjee, B. Identification of membrane associated drug targets in Borrelia burgdorferi ZS7- subtractive genomics approach. Bioinformation, 2011, 6(9), 356-359.
[http://dx.doi.org/10.6026/97320630006356] [PMID: 21814395]
[10]
Rathi, B.; Sarangi, A.N.; Trivedi, N. Genome subtraction for novel target definition in Salmonella typhi. Bioinformation, 2009, 4(4), 143-150.
[http://dx.doi.org/10.6026/97320630004143] [PMID: 20198190]
[11]
Hogg, H.D.J.; Siah, W.F.; Okonkwo, A.; Narayanan, M.; Figueiredo, F.C. Stenotrophomonas maltophilia-A case series of a rare keratitis affecting patients with bandage contact lens. Eye Contact Lens, 2019, 45(1), e1-e4.
[http://dx.doi.org/10.1097/ICL.0000000000000479] [PMID: 29369229]
[12]
Baum, E.Z.; Crespo-Carbone, S.M.; Klinger, A.; Foleno, B.D.; Turchi, I.; Macielag, M.; Bush, K. A MurF inhibitor that disrupts cell wall biosynthesis in Escherichia coli. Antimicrob. Agents Chemother., 2007, 51(12), 4420-4426.
[http://dx.doi.org/10.1128/AAC.00845-07] [PMID: 17908943]
[13]
Brooke, J.S.; Di Bonaventura, G.; Berg, G.; Martinez, J-L. A multidisciplinary look at Stenotrophomonas maltophilia: An emerging multi-drug-resistant global opportunistic pathogen. Front. Microbiol., 2017, 8, 1511.
[http://dx.doi.org/10.3389/fmicb.2017.01511] [PMID: 28912755]
[14]
Ferrer-Navarro, M.; Torrent, G.; Mongiardini, E.; Conchillo-Solé, O.; Gibert, I.; Daura, X. Proteomic analysis of outer membrane proteins and vesicles of a clinical isolate and a collection strain of Stenotrophomonas maltophilia. J. Proteomics, 2016, 142, 122-129.
[http://dx.doi.org/10.1016/j.jprot.2016.05.001] [PMID: 27185551]
[15]
Gawade, P.; Ghosh, P. Genomics driven approach for identification of novel therapeutic targets in Salmonella enterica. Gene, 2018, 668, 211-220.
[http://dx.doi.org/10.1016/j.gene.2018.05.058] [PMID: 29778427]
[16]
Hrast, M.; Turk, S.; Sosič, I.; Knez, D.; Randall, C.P.; Barreteau, H.; Contreras-Martel, C.; Dessen, A.; O’Neill, A.J.; Mengin-Lecreulx, D.; Blanot, D.; Gobec, S. Structure-activity relationships of new cyanothiophene inhibitors of the essential peptidoglycan biosynthesis enzyme MurF. Eur. J. Med. Chem., 2013, 66, 32-45.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.013] [PMID: 23786712]
[17]
Sangshetti, J.N.; Joshi, S.S.; Patil, R.H.; Moloney, M.G.; Shinde, D.B. Mur ligase inhibitors as anti-bacterials: A comprehensive review. Curr. Pharm. Des., 2017, 23(21), 3164-3196.
[http://dx.doi.org/10.2174/1381612823666170214115048] [PMID: 28201974]
[18]
Soto, S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 2013, 4(3), 223-229.
[http://dx.doi.org/10.4161/viru.23724] [PMID: 23380871]
[19]
Wen, X.; Wang, J-S.; Backman, J.T.; Laitila, J.; Neuvonen, P.J. Trimethoprim and sulfamethoxazole are selective inhibitors of CYP2C8 and CYP2C9, respectively. Drug Metab. Dispos., 2002, 30(6), 631-635.
[http://dx.doi.org/10.1124/dmd.30.6.631] [PMID: 12019187]
[20]
Khan, M.T.; Mahmud, A.; Iqbal, M.A.; Hasan, M. Subtractive genomic analysis for identification of novel drug targets and vaccine candidates against Bartonella bacilliformis subsp. Ver097. bioRxiv, 2019., 731570.
[21]
Mahmud, A.; Khan, M.T.; Iqbal, A. Identification of novel drug targets for humans and potential vaccine targets for cattle by subtractive genomic analysis of Brucella abortus strain 2308. Microb. Pathog., 2019, 137, 103731.
[http://dx.doi.org/10.1016/j.micpath.2019.103731] [PMID: 31509762]
[22]
Oany, A.R.; Mia, M.; Pervin, T.; Hasan, M.N.; Hirashima, A. Identification of potential drug targets and inhibitor of the pathogenic bacteria Shigella flexneri 2a through the subtractive genomic approach. In Silico Pharmacol., 2018, 6(1), 11.
[http://dx.doi.org/10.1007/s40203-018-0048-2] [PMID: 30607324]
[23]
Xu, G.; Tang, X.; Shang, X.; Li, Y.; Wang, J.; Yue, J.; Li, Y. Identification of immunogenic outer membrane proteins and evaluation of their protective efficacy against Stenotrophomonas maltophilia. BMC Infect. Dis., 2018, 18(1), 347.
[http://dx.doi.org/10.1186/s12879-018-3258-7] [PMID: 30053835]
[24]
Naveed, M. Chaudhry, Z.; Bukhari, S.A.; Meer, B.; Ashraf, H. Antibiotics and Antimicrobial Resistance Genes in the Environment; Elsevier, 2020, pp. 292-312.
[http://dx.doi.org/10.1016/B978-0-12-818882-8.00019-X]
[25]
Bhardwaj, T.; Haque, S.; Somvanshi, P. Comparative assessment of the therapeutic drug targets of C. botulinum ATCC 3502 and C. difficile str. 630 using in silico subtractive proteomics approach. J. Cell. Biochem., 2019, 120(9), 16160-16184.
[http://dx.doi.org/10.1002/jcb.28897] [PMID: 31081164]
[26]
de Sarom, A.; Kumar Jaiswal, A.; Tiwari, S.; de Castro Oliveira, L.; Barh, D.; Azevedo, V.; Jose Oliveira, C.; de Castro Soares, S. Putative vaccine candidates and drug targets identified by reverse vaccinology and subtractive genomics approaches to control Haemophilus ducreyi, the causative agent of chancroid. J. R. Soc. Interface, 2018, 15(142), 20180032.
[http://dx.doi.org/10.1098/rsif.2018.0032] [PMID: 29792307]
[27]
Georrge, J.J.; Umrania, V.V. Subtractive genomics approach to identify putative drug targets and identification of drug-like molecules for beta subunit of DNA polymerase III in Streptococcus species. Appl. Biochem. Biotechnol., 2012, 167(5), 1377-1395.
[http://dx.doi.org/10.1007/s12010-012-9620-0] [PMID: 22415782]
[28]
Hosen, M.I.; Tanmoy, A.M.; Mahbuba, D-A.; Salma, U.; Nazim, M.; Islam, M.T.; Akhteruzzaman, S. Application of a subtractive genomics approach for in silico identification and characterization of novel drug targets in Mycobacterium tuberculosis F11. Interdiscip. Sci., 2014, 6(1), 48-56.
[http://dx.doi.org/10.1007/s12539-014-0188-y] [PMID: 24464704]
[29]
Hossain, M.; Mosnaz, A.; Sajib, A.M.; Roy, P.K.; Shakil, S.K.; Ullah, S.; Prodhan, S.H. Identification of putative drug targets of Listeria monocytogenes F2365 by subtractive genomics approach. J. Biosci. Biotechnol., 2013, 2(1), 1314-6246.
[30]
Sarangi, A.N.; Aggarwal, R.; Rahman, Q.; Trivedi, N. Subtractive genomics approach for in silico identification and characterization of novel drug targets in Neisseria Meningitides Serogroup B. J. Comput. Sci. Syst. Biol., 2009, 2(5), 255-258.
[http://dx.doi.org/10.4172/jcsb.1000038]
[31]
Saravanan, S.; Shylaja, G. Genome subtraction to identify the novel therapeutic targets in Mycobacterium tuberculosis. Drug Invention Today, 2019, 12(8), 1620-1624.
[32]
Uddin, R.; Masood, F.; Azam, S.S.; Wadood, A. Identification of putative non-host essential genes and novel drug targets against Acinetobacter baumannii by in silico comparative genome analysis. Microb. Pathog., 2019, 128, 28-35.
[http://dx.doi.org/10.1016/j.micpath.2018.12.015] [PMID: 30550846]
[33]
Vilela Rodrigues, T.C.; Jaiswal, A.K.; de Sarom, A.; de Castro Oliveira, L.; Freire Oliveira, C.J.; Ghosh, P.; Tiwari, S.; Miranda, F.M.; de Jesus Benevides, L.; Ariston de Carvalho Azevedo, V.; de Castro Soares, S. Reverse vaccinology and subtractive genomics reveal new therapeutic targets against Mycoplasma pneumoniae: a causative agent of pneumonia. R. Soc. Open Sci., 2019, 6(7), 190907.
[http://dx.doi.org/10.1098/rsos.190907] [PMID: 31417766]
[34]
Consortium, U. The universal protein resource (UniProt). Nucleic acids research., 2007, 36(1), 190-195.
[35]
von Mering, C.; Huynen, M.; Jaeggi, D.; Schmidt, S.; Bork, P.; Snel, B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res., 2003, 31(1), 258-261.
[http://dx.doi.org/10.1093/nar/gkg034] [PMID: 12519996]
[36]
Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Sahinalp, S.C.; Ester, M.; Foster, L.J.; Brinkman, F.S. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics, 2010, 26(13), 1608-1615.
[http://dx.doi.org/10.1093/bioinformatics/btq249] [PMID: 20472543]
[37]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. The proteomics protocols handbook; Springer, 2005, pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[38]
Consortium, U. UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res., 2019, 47(D1), D506-D515.
[http://dx.doi.org/10.1093/nar/gky1049] [PMID: 30395287]
[39]
Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics, 2016, 54(1), 5.6.1-5.6.37.
[40]
Colovos, C.; Yeates, T.O. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci., 1993, 2(9), 1511-1519.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[41]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[42]
Huang, B. MetaPocket: a meta approach to improve protein ligand binding site prediction. OMICS, 2009, 13(4), 325-330.
[http://dx.doi.org/10.1089/omi.2009.0045] [PMID: 19645590]
[43]
Sterling, T.; Irwin, J.J. ZINC 15--Ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337.
[http://dx.doi.org/10.1021/acs.jcim.5b00559] [PMID: 26479676]
[44]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res., 2019, 47(D1), D1102-D1109.
[http://dx.doi.org/10.1093/nar/gky1033] [PMID: 30371825]
[45]
Dobi, K.; Hajdú, I.; Flachner, B.; Fabó, G.; Szaszkó, M.; Bognár, M.; Magyar, C.; Simon, I.; Szisz, D.; Lőrincz, Z.; Cseh, S.; Dormán, G. Combination of 2D/3D ligand-based similarity search in rapid virtual screening from multimillion compound repositories. Selection and biological evaluation of potential PDE4 and PDE5 inhibitors. Molecules, 2014, 19(6), 7008-7039.
[http://dx.doi.org/10.3390/molecules19067008] [PMID: 24879613]
[46]
Weber, L. Royal Soc Chemistry Thomas Graham House, Science Park. Milton Rd, Cambridge, 2008, 5, 65-66.
[47]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[48]
Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res., 2015, 43(W1), W443-7.
[http://dx.doi.org/10.1093/nar/gkv315] [PMID: 25873628]
[49]
Baell, J.B.; Nissink, J.W.M. Seven Year Itch: Pan-Assay Interference Compounds (PAINS) in 2017-Utility and Limitations. ACS Chem. Biol., 2018, 13(1), 36-44.
[http://dx.doi.org/10.1021/acschembio.7b00903] [PMID: 29202222]
[50]
Barnard, J.M.; Downs, G.M. Chemical fragment generation and clustering software. J. Chem. Inf. Comput. Sci., 1997, 37(1), 141-142.
[http://dx.doi.org/10.1021/ci960090k]
[51]
Jarvis, R.A.; Patrick, E.A. Clustering using a similarity measure based on shared near neighbors. IEEE Trans. Comput., 1973, 100(11), 1025-1034.
[http://dx.doi.org/10.1109/T-C.1973.223640]
[52]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[53]
Schüttelkopf, A.W.; van Aalten, D.M. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[54]
Kumari, R.; Kumar, R.; Lynn, A.; Lynn, A. Open Source Drug Discovery Consortium. g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy