Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways

Author(s): Denise Coutinho de Miranda*, Gabriela de Oliveira Faria*, Milla Marques Hermidorff, Fernanda Cacilda dos Santos Silva, Leonardo Vinícius Monteiro de Assis and Mauro César Isoldi

Volume 19, Issue 5, 2021

Published on: 20 November, 2020

Page: [499 - 524] Pages: 26

DOI: 10.2174/1570161119666201120160619

Price: $65

Abstract

Since the discovery of ischemic pre- and post-conditioning, more than 30 years ago, the knowledge about the mechanisms and signaling pathways involved in these processes has significantly increased. In clinical practice, on the other hand, such advancement has yet to be seen. This article provides an overview of ischemic pre-, post-, remote, and pharmacological conditioning related to the heart. In addition, we reviewed the cardioprotective signaling pathways and therapeutic agents involved in the above-mentioned processes, aiming to provide a comprehensive evaluation of the advancements in the field. The advancements made over the last decades cannot be ignored and with the exponential growth in techniques and applications. The future of pre- and post-conditioning is promising.

Keywords: Heart, ischemic pre-conditioning, ischemic post-conditioning, pre-pharmacological conditioning, postpharmacological conditioning, remote pre-conditioning, cardioprotective signaling pathway, cardioprotective drugs.

Graphical Abstract
[1]
Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74(5): 1124-36.
[http://dx.doi.org/10.1161/01.CIR.74.5.1124] [PMID: 3769170]
[2]
WHO Global Status Report on Noncommunicable Diseases 2014.https://www.who.int/nmh/publications/ncd-status-report-2014/en/
[3]
Pedrinelli R, Ballo P, Fiorentini C, et al. Gruppo di Studio Ipertensione e Cuore, Societa’ Italiana di Cardiologia. Hypertension and acute myocardial infarction: an overview. J Cardiovasc Med (Hagerstown) 2012; 13(3): 194-202.
[http://dx.doi.org/10.2459/JCM.0b013e3283511ee2] [PMID: 22317927]
[4]
Ibáñez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 2015; 65(14): 1454-71.
[http://dx.doi.org/10.1016/j.jacc.2015.02.032] [PMID: 25857912]
[5]
Bulluck H, Hausenloy DJ. Ischaemic conditioning: are we there yet? Heart 2015; 101(13): 1067-77.
[http://dx.doi.org/10.1136/heartjnl-2014-306531] [PMID: 25887783]
[6]
Hausenloy DJ, Yellon DM. The second window of preconditioning (SWOP) where are we now? Cardiovasc Drugs Ther 2010; 24(3): 235-54.
[http://dx.doi.org/10.1007/s10557-010-6237-9] [PMID: 20496105]
[7]
Hausenloy DJ, Yellon DM. Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol 2016; 13(4): 193-209.
[http://dx.doi.org/10.1038/nrcardio.2016.5] [PMID: 26843289]
[8]
Hausenloy DJ, Barrabes JA, Bøtker HE, et al. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res Cardiol 2016; 111(6): 70.
[http://dx.doi.org/10.1007/s00395-016-0588-8] [PMID: 27766474]
[9]
Jennings RB, Sebbag L, Schwartz LM, Crago MS, Reimer KA. Metabolism of preconditioned myocardium: effect of loss and reinstatement of cardioprotection. J Mol Cell Cardiol 2001; 33(9): 1571-88.
[http://dx.doi.org/10.1006/jmcc.2001.1425] [PMID: 11549338]
[10]
Murry CE, Jennings RB, Reimer KA. New insights into potential mechanisms of ischemic preconditioning. Circulation 1991; 84(1): 442-5.
[http://dx.doi.org/10.1161/01.CIR.84.1.442] [PMID: 2060119]
[11]
Neely JR, Grotyohann LW. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ Res 1984; 55(6): 816-24.
[http://dx.doi.org/10.1161/01.RES.55.6.816] [PMID: 6499136]
[12]
Asimakis GK. Myocardial glycogen depletion cannot explain the cardioprotective effects of ischemic preconditioning in the rat heart. J Mol Cell Cardiol 1996; 28(3): 563-70.
[http://dx.doi.org/10.1006/jmcc.1996.0052] [PMID: 9011639]
[13]
Wolfe CL, Sievers RE, Visseren FL, Donnelly TJ. Loss of myocardial protection after preconditioning correlates with the time course of glycogen recovery within the preconditioned segment. Circulation 1993; 87(3): 881-92.
[http://dx.doi.org/10.1161/01.CIR.87.3.881] [PMID: 8443909]
[14]
Gourdin M, Dubois P. Impact of Ischemia on cellular metabolism. InTech 2014.
[http://dx.doi.org/10.5772/54509]
[15]
Perrelli MG, Pagliaro P, Penna C. Ischemia/reperfusion injury and cardioprotective mechanisms: Role of mitochondria and reactive oxygen species. World J Cardiol 2011; 3(6): 186-200.
[http://dx.doi.org/10.4330/wjc.v3.i6.186] [PMID: 21772945]
[16]
Schwartz LM, Reimer KA, Crago MS, Jennings RB. Pharmacological preconditioning with diazoxide slows energy metabolism during sustained ischemia. Exp Clin Cardiol 2007; 12(3): 139-47.
[PMID: 18650995]
[17]
Gao Z, Sierra A, Zhu Z, et al. Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury. PLoS One 2016; 11(3): e0151337.
[http://dx.doi.org/10.1371/journal.pone.0151337] [PMID: 26964104]
[18]
Wang Y, Kudo M, Xu M, Ayub A, Ashraf M, Mitochondrial . K(ATP). channel as an end effector of cardioprotection during late preconditioning: triggering role of nitric oxide. J Mol Cell Cardiol 2001; 33(11): 2037-46.
[http://dx.doi.org/10.1006/jmcc.2001.1468] [PMID: 11708847]
[19]
Flagg TP, Enkvetchakul D, Koster JC, Nichols CG. Muscle KATP channels: recent insights to energy sensing and myoprotection. Physiol Rev 2010; 90(3): 799-829.
[http://dx.doi.org/10.1152/physrev.00027.2009] [PMID: 20664073]
[20]
Seino S, Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol 2003; 81(2): 133-76.
[http://dx.doi.org/10.1016/S0079-6107(02)00053-6] [PMID: 12565699]
[21]
Sierra A, Zhu Z, Sapay N, et al. Regulation of cardiac ATP-sensitive potassium channel surface expression by calcium/calmodulin-dependent protein kinase II. J Biol Chem 2013; 288(3): 1568-81.
[http://dx.doi.org/10.1074/jbc.M112.429548] [PMID: 23223335]
[22]
Costa AD, Jakob R, Costa CL, Andrukhiv K, West IC, Garlid KD. The mechanism by which the mitochondrial ATP-sensitive K+ channel opening and H2O2 inhibit the mitochondrial permeability transition. J Biol Chem 2006; 281(30): 20801-8.
[http://dx.doi.org/10.1074/jbc.M600959200] [PMID: 16720572]
[23]
Cohen MV, Downey JM. Signalling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future. Br J Pharmacol 2015; 172(8): 1913-32.
[http://dx.doi.org/10.1111/bph.12903] [PMID: 25205071]
[24]
Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 2015; 116(4): 674-99.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305348] [PMID: 25677517]
[25]
Zaugg M, Lucchinetti E, Garcia C, Pasch T, Spahn DR, Schaub MC. Anaesthetics and cardiac preconditioning. Part II. Clinical implications. Br J Anaesth 2003; 91(4): 566-76.
[http://dx.doi.org/10.1093/bja/aeg206] [PMID: 14504160]
[26]
Schulz R, Post H, Vahlhaus C, Heusch G. Ischemic preconditioning in pigs: a graded phenomenon: its relation to adenosine and bradykinin. Circulation 1998; 98(10): 1022-9.
[http://dx.doi.org/10.1161/01.CIR.98.10.1022] [PMID: 9737523]
[27]
Wallbridge DR, Schulz R, Braun C, Post H, Heusch G. No attenuation of ischaemic preconditioning by the calcium antagonist nisoldipine. J Mol Cell Cardiol 1996; 28(8): 1801-10.
[http://dx.doi.org/10.1006/jmcc.1996.0169] [PMID: 8877789]
[28]
Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R. Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 2010; 105(6): 771-85.
[http://dx.doi.org/10.1007/s00395-010-0124-1] [PMID: 20960209]
[29]
Hadebe N, Cour M, Lecour S. The SAFE pathway for cardioprotection: is this a promising target? Basic Res Cardiol 2018; 113(2): 9.
[http://dx.doi.org/10.1007/s00395-018-0670-5] [PMID: 29335904]
[30]
Leshem-Lev D, Hochhauser E, Chanyshev B, Isak A, Shainberg A. Adenosine A(1) and A (3) receptor agonists reduce hypoxic injury through the involvement of P38 MAPK. Mol Cell Biochem 2010; 345(1-2): 153-60.
[http://dx.doi.org/10.1007/s11010-010-0568-5] [PMID: 20730620]
[31]
Safran N, Shneyvays V, Balas N, Jacobson KA, Nawrath H, Shainberg A. Cardioprotective effects of adenosine A1 and A3 receptor activation during hypoxia in isolated rat cardiac myocytes. Mol Cell Biochem 2001; 217(1-2): 143-52.
[http://dx.doi.org/10.1023/A:1007209321969] [PMID: 11269659]
[32]
Song H, Feng X, Zhang H, et al. METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy 2019; 15(8): 1419-37.
[http://dx.doi.org/10.1080/15548627.2019.1586246] [PMID: 30870073]
[33]
Zhang X, Qin Q, Dai H, Cai S, Zhou C, Guan J. Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression. Braz J Med Biol Res 2019; 52(3): e7994.
[http://dx.doi.org/10.1590/1414-431x20187994] [PMID: 30810622]
[34]
Shi H, Zhang X, He Z, Wu Z, Rao L, Li Y. Metabolites of Hypoxic Cardiomyocytes Induce the Migration of Cardiac Fibroblasts. Cell Physiol Biochem 2017; 41(1): 413-21.
[http://dx.doi.org/10.1159/000456531] [PMID: 28214843]
[35]
Crisostomo PR, Wairiuko GM, Wang M, Tsai BM, Morrell ED, Meldrum DR. Preconditioning versus postconditioning: mechanisms and therapeutic potentials. J Am Coll Surg 2006; 202(5): 797-812.
[http://dx.doi.org/10.1016/j.jamcollsurg.2005.12.002] [PMID: 16648020]
[36]
Donato M, Evelson P, Gelpi RJ. Protecting the heart from ischemia/reperfusion injury: an update on remote ischemic preconditioning and postconditioning. Curr Opin Cardiol 2017; 32(6): 784-90.
[http://dx.doi.org/10.1097/HCO.0000000000000447] [PMID: 28902715]
[37]
Hu L, Wang J, Zhu H, et al. Ischemic postconditioning protects the heart against ischemia-reperfusion injury via neuronal nitric oxide synthase in the sarcoplasmic reticulum and mitochondria Cell Death Dis 2016; 7: e2222.
[http://dx.doi.org/10.1038/cddis.2016.108] [PMID: 27171264]
[38]
Bulluck H, Yellon DM, Hausenloy DJ. Reducing myocardial infarct size: challenges and future opportunities. Heart 2016; 102(5): 341-8.
[http://dx.doi.org/10.1136/heartjnl-2015-307855] [PMID: 26674987]
[39]
Tian YS, Rong TZ, Hong YL, Min L, Jian PG. Pharmacological postconditioning with diazoxide attenuates ischemia/reperfusion-induced injury in rat liver. Exp Ther Med 2013; 5(4): 1169-73.
[http://dx.doi.org/10.3892/etm.2013.941] [PMID: 23596486]
[40]
Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 2003; 285(2): H579-88.
[http://dx.doi.org/10.1152/ajpheart.01064.2002] [PMID: 12860564]
[41]
Fujita M, Asanuma H, Hirata A, et al. Prolonged transient acidosis during early reperfusion contributes to the cardioprotective effects of postconditioning. Am J Physiol Heart Circ Physiol 2007; 292(4): H2004-8.
[http://dx.doi.org/10.1152/ajpheart.01051.2006] [PMID: 17208997]
[42]
Cohen MV, Yang XM, Downey JM. The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 2007; 115(14): 1895-903.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.675710] [PMID: 17389262]
[43]
Miyamoto S, Murphy AN, Brown JH. Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. J Bioenerg Biomembr 2009; 41(2): 169-80.
[http://dx.doi.org/10.1007/s10863-009-9205-y] [PMID: 19377835]
[44]
Epperson SA, Brunton LL, Ramirez-Sanchez I, Villarreal F. Adenosine receptors and second messenger signaling pathways in rat cardiac fibroblasts. Am J Physiol Cell Physiol 2009; 296(5): C1171-7.
[http://dx.doi.org/10.1152/ajpcell.00290.2008] [PMID: 19244482]
[45]
Lacerda L, Somers S, Opie LH, Lecour S. Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res 2009; 84(2): 201-8.
[http://dx.doi.org/10.1093/cvr/cvp274] [PMID: 19666677]
[46]
Huang J, Xu D, Guo Q, et al. Remote ischemic postconditioning improves myocardial dysfunction via the risk and safe pathways in a rat model of severe hemorrhagic shock. Shock 2018; 49(4): 460-5.
[http://dx.doi.org/10.1097/SHK.0000000000000940] [PMID: 28682943]
[47]
Bosnjak ZJ, Ge ZD. The application of remote ischemic conditioning in cardiac surgery. F1000 Res 2017; 6: 928.
[http://dx.doi.org/10.12688/f1000research.11018.1] [PMID: 28690837]
[48]
Bromage DI, Pickard JM, Rossello X, et al. Remote ischaemic conditioning reduces infarct size in animal in vivo models of ischaemia-reperfusion injury: a systematic review and meta-analysis. Cardiovasc Res 2017; 113(3): 288-97.
[http://dx.doi.org/10.1093/cvr/cvw219] [PMID: 28028069]
[49]
Przyklenk K, Whittaker P. Remote ischemic preconditioning: current knowledge, unresolved questions, and future priorities. J Cardiovasc Pharmacol Ther 2011; 16(3-4): 255-9.
[http://dx.doi.org/10.1177/1074248411409040] [PMID: 21821525]
[50]
Hausenloy DJ, Yellon DM. Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res 2008; 79(3): 377-86.
[http://dx.doi.org/10.1093/cvr/cvn114] [PMID: 18456674]
[51]
Rassaf T, Totzeck M, Hendgen-Cotta UB, Shiva S, Heusch G, Kelm M. Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 2014; 114(10): 1601-10.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303822] [PMID: 24643960]
[52]
Ravingerová T, Farkašová V, Griecsová L, et al. Noninvasive approach to mend the broken heart: Is “remote conditioning” a promising strategy for application in humans? Can J Physiol Pharmacol 2017; 95(10): 1204-12.
[http://dx.doi.org/10.1139/cjpp-2017-0200] [PMID: 28683229]
[53]
Serejo FC, Rodrigues LF Jr, da Silva Tavares KC, de Carvalho AC, Nascimento JH. Cardioprotective properties of humoral factors released from rat hearts subject to ischemic preconditioning. J Cardiovasc Pharmacol 2007; 49(4): 214-20.
[http://dx.doi.org/10.1097/FJC.0b013e3180325ad9] [PMID: 17438406]
[54]
Billah M, Ridiandries A, Allahwala U, et al. Circulating mediators of remote ischemic preconditioning: search for the missing link between non-lethal ischemia and cardioprotection. Oncotarget 2019; 10(2): 216-44.
[http://dx.doi.org/10.18632/oncotarget.26537] [PMID: 30719216]
[55]
Donato M, Goyeneche MA, Garces M, et al. Myocardial triggers involved in activation of remote ischaemic preconditioning. Exp Physiol 2016; 101(6): 708-16.
[http://dx.doi.org/10.1113/EP085535] [PMID: 27028009]
[56]
Lim SY, Yellon DM, Hausenloy DJ. The neural and humoral pathways in remote limb ischemic preconditioning. Basic Res Cardiol 2010; 105(5): 651-5.
[http://dx.doi.org/10.1007/s00395-010-0099-y] [PMID: 20449597]
[57]
Breivik L, Helgeland E, Aarnes EK, Mrdalj J, Jonassen AK. Remote postconditioning by humoral factors in effluent from ischemic preconditioned rat hearts is mediated via PI3K/Akt-dependent cell-survival signaling at reperfusion. Basic Res Cardiol 2011; 106(1): 135-45.
[http://dx.doi.org/10.1007/s00395-010-0133-0] [PMID: 21103992]
[58]
Sivaraman V, Yellon DM. Pharmacologic therapy that simulates conditioning for cardiac ischemic/reperfusion injury. J Cardiovasc Pharmacol Ther 2014; 19(1): 83-96.
[http://dx.doi.org/10.1177/1074248413499973] [PMID: 24038018]
[59]
Thuret R, Saint Yves T, Tillou X, et al. Ischemic pre- and post-conditioning: current clinical applications. Prog Urol 2014; 24(Suppl. 1): S56-61.
[http://dx.doi.org/10.1016/S1166-7087(14)70065-X] [PMID: 24950935]
[60]
Li W, Wu N, Shu W, Jia D, Jia P. Pharmacological preconditioning and postconditioning with nicorandil attenuates ischemia/reperfusion-induced myocardial necrosis and apoptosis in hypercholesterolemic rats. Exp Ther Med 2015; 10(6): 2197-205.
[http://dx.doi.org/10.3892/etm.2015.2782] [PMID: 26668616]
[61]
Rosenberg JH, Werner JH, Moulton MJ, Agrawal DK. Current Modalities and Mechanisms Underlying Cardioprotection by Ischemic Conditioning. J Cardiovasc Transl Res 2018; 11(4): 292-307.
[http://dx.doi.org/10.1007/s12265-018-9813-1] [PMID: 29797232]
[62]
Kelle I, Akkoç H, Uyar E, et al. The combined effect of rosuvastatin and ischemic pre- or post-conditioning on myocardial ischemia-reperfusion injury in rat heart. Eur Rev Med Pharmacol Sci 2015; 19(13): 2468-76.
[PMID: 26214784]
[63]
Jonassen AK, Brar BK, Mjøs OD, Sack MN, Latchman DS, Yellon DM. Insulin administered at reoxygenation exerts a cardioprotective effect in myocytes by a possible anti-apoptotic mechanism. J Mol Cell Cardiol 2000; 32(5): 757-64.
[http://dx.doi.org/10.1006/jmcc.2000.1118] [PMID: 10775481]
[64]
Jonassen AK, Sack MN, Mjøs OD, Yellon DM. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 2001; 89(12): 1191-8.
[http://dx.doi.org/10.1161/hh2401.101385] [PMID: 11739285]
[65]
Opie LH, Selker H. Letter by Opie and Selker regarding article, “Reperfusion starts in the ambulance. Circulation 2006; 114(24): e640.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.644179] [PMID: 17159068]
[66]
Apstein CS, Opie LH. A challenge to the metabolic approach to myocardial ischaemia. Eur Heart J 2005; 26(10): 956-9.
[http://dx.doi.org/10.1093/eurheartj/ehi200] [PMID: 15797886]
[67]
Gulati P, Singh N. Pharmacological evidence for connection of nitric oxide-mediated pathways in neuroprotective mechanism of ischemic postconditioning in mice. J Pharm Bioallied Sci 2014; 6(4): 233-40.
[http://dx.doi.org/10.4103/0975-7406.142951] [PMID: 25400405]
[68]
Chai W, Garrelds IM, Arulmani U, Schoemaker RG, Lamers JM, Danser AH. Genomic and nongenomic effects of aldosterone in the rat heart: why is spironolactone cardioprotective? Br J Pharmacol 2005; 145(5): 664-71.
[http://dx.doi.org/10.1038/sj.bjp.0706220] [PMID: 15834444]
[69]
Chai W, Garrelds IM, de Vries R, Batenburg WW, van Kats JP, Danser AH. Nongenomic effects of aldosterone in the human heart: interaction with angiotensin II. Hypertension 2005; 46(4): 701-6.
[http://dx.doi.org/10.1161/01.HYP.0000182661.98259.4f] [PMID: 16144984]
[70]
Hermidorff MM, de Assis LV, Isoldi MC. Genomic and rapid effects of aldosterone: what we know and do not know thus far. Heart Fail Rev 2017; 22(1): 65-89.
[http://dx.doi.org/10.1007/s10741-016-9591-2] [PMID: 27942913]
[71]
Rong R, Xijun X. Erythropoietin pretreatment suppresses inflammation by activating the PI3K/Akt signaling pathway in myocardial ischemia-reperfusion injury. Exp Ther Med 2015; 10(2): 413-8.
[http://dx.doi.org/10.3892/etm.2015.2534] [PMID: 26622330]
[72]
Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 2005; 15(2): 69-75.
[http://dx.doi.org/10.1016/j.tcm.2005.03.001] [PMID: 15885573]
[73]
Potere N, Del Buono MG, Niccoli G, Crea F, Toldo S, Abbate A. Developing LRP1 Agonists into a Therapeutic Strategy in Acute Myocardial Infarction. Int J Mol Sci 2019; 20(3): E544.
[http://dx.doi.org/10.3390/ijms20030544] [PMID: 30696029]
[74]
Brar BK, Jonassen AK, Stephanou A, et al. Urocortin protects against ischemic and reperfusion injury via a MAPK-dependent pathway. J Biol Chem 2000; 275(12): 8508-14.
[http://dx.doi.org/10.1074/jbc.275.12.8508] [PMID: 10722688]
[75]
Schulman D, Latchman DS, Yellon DM. Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol 2002; 283(4): H1481-8.
[http://dx.doi.org/10.1152/ajpheart.01089.2001] [PMID: 12234800]
[76]
Nagoshi T, Matsui T, Aoyama T, et al. PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury. J Clin Invest 2005; 115(8): 2128-38.
[http://dx.doi.org/10.1172/JCI23073] [PMID: 16007268]
[77]
Mensah K, Mocanu MM, Yellon DM. Failure to protect the myocardium against ischemia/reperfusion injury after chronic atorvastatin treatment is recaptured by acute atorvastatin treatment: a potential role for phosphatase and tensin homolog deleted on chromosome ten? J Am Coll Cardiol 2005; 45(8): 1287-91.
[http://dx.doi.org/10.1016/j.jacc.2005.01.021] [PMID: 15837263]
[78]
Rossello X, Yellon DM. The RISK pathway and beyond. Basic Res Cardiol 2017; 113(1): 2.
[http://dx.doi.org/10.1007/s00395-017-0662-x] [PMID: 29143177]
[79]
Rossello X, Yellon DM. A critical review on the translational journey of cardioprotective therapies! Int J Cardiol 2016; 220: 176-84.
[http://dx.doi.org/10.1016/j.ijcard.2016.06.131] [PMID: 27379920]
[80]
Lecour S, Suleman N, Deuchar GA, et al. Pharmacological preconditioning with tumor necrosis factor-alpha activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase). Circulation 2005; 112(25): 3911-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.581058] [PMID: 16344382]
[81]
Lecour S. Multiple protective pathways against reperfusion injury: a SAFE path without Aktion? J Mol Cell Cardiol 2009; 46(5): 607-9.
[http://dx.doi.org/10.1016/j.yjmcc.2009.01.003] [PMID: 19318238]
[82]
Suleman N, Somers S, Smith R, Opie LH, Lecour SC. Dual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning. Cardiovasc Res 2008; 79(1): 127-33.
[http://dx.doi.org/10.1093/cvr/cvn067] [PMID: 18339648]
[83]
Davidson SM, Yellon DM. STAT5 fits the RISK profile for cardioprotection. JAK-STAT 2012; 1(2): 73-6.
[http://dx.doi.org/10.4161/jkst.20072] [PMID: 24058753]
[84]
Heusch G, Musiolik J, Kottenberg E, Peters J, Jakob H, Thielmann M. STAT5 activation and cardioprotection by remote ischemic preconditioning in humans: short communication. Circ Res 2012; 110(1): 111-5.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.259556] [PMID: 22116817]
[85]
Li J, Xiang X, Gong X, Shi Y, Yang J, Xu Z. Cilostazol protects mice against myocardium ischemic/reperfusion injury by activating a PPARγ/JAK2/STAT3 pathway. Biomed Pharmacother 2017; 94: 995-1001.
[http://dx.doi.org/10.1016/j.biopha.2017.07.143] [PMID: 28810537]
[86]
Cohen MV, Downey JM. Cardioprotection: spotlight on PKG. Br J Pharmacol 2007; 152(6): 833-4.
[http://dx.doi.org/10.1038/sj.bjp.0707453] [PMID: 17876305]
[87]
Shvedova M, Anfinogenova Y, Popov SV, Atochin DN. Connexins and Nitric Oxide Inside and Outside Mitochondria: Significance for Cardiac Protection and Adaptation. Front Physiol 2018; 9: 479.
[http://dx.doi.org/10.3389/fphys.2018.00479] [PMID: 29867537]
[88]
Farah C, Reboul C. NO Better Way to Protect the Heart during Ischemia-Reperfusion: To be in the Right Place at the Right Time. Front Pediatr 2015; 3: 6.
[http://dx.doi.org/10.3389/fped.2015.00006] [PMID: 25705614]
[89]
Cohen MV, Yang XM, Liu Y, Solenkova NV, Downey JM. Cardioprotective PKG-independent NO signaling at reperfusion. Am J Physiol Heart Circ Physiol 2010; 299(6): H2028-36.
[http://dx.doi.org/10.1152/ajpheart.00527.2010] [PMID: 20852051]
[90]
Radosinska J, Barancik M, Vrbjar N. Heart failure and role of circulating MMP-2 and MMP-9. Panminerva Med 2017; 59(3): 241-53.
[http://dx.doi.org/10.23736/S0031-0808.17.03321-3] [PMID: 28399617]
[91]
Jun JH, Cho JE, Shim YH, Shim JK, Kwak YL. Effects of propofol on the expression of matric metalloproteinases in rat cardiac fibroblasts after hypoxia and reoxygenation. Br J Anaesth 2011; 106(5): 650-8.
[http://dx.doi.org/10.1093/bja/aer006] [PMID: 21447487]
[92]
Nielsen SH, Mouton AJ, DeLeon-Pennell KY, Genovese F, Karsdal M, Lindsey ML. Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix Biol 2019; 75-76: 43-57.
[http://dx.doi.org/10.1016/j.matbio.2017.12.001] [PMID: 29247693]
[93]
Bell RM, Kunuthur SP, Hendry C, Bruce-Hickman D, Davidson S, Yellon DM. Matrix metalloproteinase inhibition protects CyPD knockout mice independently of RISK/mPTP signalling: a parallel pathway to protection. Basic Res Cardiol 2013; 108(2): 331.
[http://dx.doi.org/10.1007/s00395-013-0331-7] [PMID: 23361433]
[94]
Castoldi RE, Pennella G, Saturno GS, Grossi P, Brughera M, Venturi M. Assessing and managing toxicities induced by kinase inhibitors. Curr Opin Drug Discov Devel 2007; 10(1): 53-7.
[PMID: 17265742]
[95]
Doroszko A, Polewicz D, Sawicka J, Richardson JS, Cheung PY, Sawicki G. Cardiac dysfunction in an animal model of neonatal asphyxia is associated with increased degradation of MLC1 by MMP-2. Basic Res Cardiol 2009; 104(6): 669-79.
[http://dx.doi.org/10.1007/s00395-009-0035-1] [PMID: 19452190]
[96]
Krzywonos-Zawadzka A, Franczak A, Sawicki G, Woźniak M, Bil-Lula I. Multidrug prevention or therapy of ischemia-reperfusion injury of the heart-Mini-review. Environ Toxicol Pharmacol 2017; 55: 55-9.
[http://dx.doi.org/10.1016/j.etap.2017.08.004] [PMID: 28826125]
[97]
Jovanović A. Cardioprotective signalling: Past, present and future. Eur J Pharmacol 2018; 833: 314-9.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.029] [PMID: 29935170]
[98]
Inagaki K, Hahn HS, Dorn GW II, Mochly-Rosen D. Additive protection of the ischemic heart ex vivo by combined treatment with delta-protein kinase C inhibitor and epsilon-protein kinase C activator. Circulation 2003; 108(7): 869-75.
[http://dx.doi.org/10.1161/01.CIR.0000081943.93653.73] [PMID: 12860903]
[99]
Wang Y, Men M, Yang W, Zheng H, Xue S. MiR-31 Downregulation Protects Against Cardiac Ischemia/Reperfusion Injury by Targeting Protein Kinase C Epsilon (PKCε) Directly. Cell Physiol Biochem 2015; 36(1): 179-90.
[http://dx.doi.org/10.1159/000374062] [PMID: 25925791]
[100]
Linsel-Nitschke P, Tall AR. HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat Rev Drug Discov 2005; 4(3): 193-205.
[http://dx.doi.org/10.1038/nrd1658] [PMID: 15738977]
[101]
Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011; 364(2): 127-35.
[http://dx.doi.org/10.1056/NEJMoa1001689] [PMID: 21226578]
[102]
Scipione CA, Koschinsky ML, Boffa MB. Lipoprotein(a) in clinical practice: New perspectives from basic and translational science. Crit Rev Clin Lab Sci 2018; 55(1): 33-54.
[http://dx.doi.org/10.1080/10408363.2017.1415866] [PMID: 29262744]
[103]
Park JS, Cha KS, Lee HW, et al. Predictive and protective role of high-density lipoprotein cholesterol in acute myocardial infarction. Cardiol J 2019; 26(2): 176-85.
[http://dx.doi.org/10.5603/CJ.a2018.0020] [PMID: 29512093]
[104]
Nagao M, Nakajima H, Toh R, Hirata KI, Ishida T. Cardioprotective Effects of High-Density Lipoprotein Beyond its Anti-Atherogenic Action. J Atheroscler Thromb 2018; 25(10): 985-93.
[http://dx.doi.org/10.5551/jat.RV17025] [PMID: 30146614]
[105]
Calabresi L, Rossoni G, Gomaraschi M, Sisto F, Berti F, Franceschini G. High-density lipoproteins protect isolated rat hearts from ischemia-reperfusion injury by reducing cardiac tumor necrosis factor-alpha content and enhancing prostaglandin release. Circ Res 2003; 92(3): 330-7.
[http://dx.doi.org/10.1161/01.RES.0000054201.60308.1A] [PMID: 12595346]
[106]
Imaizumi S, Miura S, Nakamura K, et al. Antiarrhythmogenic effect of reconstituted high-density lipoprotein against ischemia/reperfusion in rats. J Am Coll Cardiol 2008; 51(16): 1604-12.
[http://dx.doi.org/10.1016/j.jacc.2007.12.040] [PMID: 18420105]
[107]
Theilmeier G, Schmidt C, Herrmann J, et al. High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 2006; 114(13): 1403-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.607135] [PMID: 16982942]
[108]
Frias MA, James RW, Gerber-Wicht C, Lang U. Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate. Cardiovasc Res 2009; 82(2): 313-23.
[http://dx.doi.org/10.1093/cvr/cvp024] [PMID: 19151362]
[109]
Frias MA, Lecour S, James RW, Pedretti S. High density lipoprotein/sphingosine-1-phosphate-induced cardioprotection: Role of STAT3 as part of the SAFE pathway. JAK-STAT 2012; 1(2): 92-100.
[http://dx.doi.org/10.4161/jkst.19754] [PMID: 24058758]
[110]
Frias MA, Pedretti S, Hacking D, et al. HDL protects against ischemia reperfusion injury by preserving mitochondrial integrity. Atherosclerosis 2013; 228(1): 110-6.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.02.003] [PMID: 23497785]
[111]
Tao R, Hoover HE, Honbo N, et al. High-density lipoprotein determines adult mouse cardiomyocyte fate after hypoxia-reoxygenation through lipoprotein-associated sphingosine 1-phosphate. Am J Physiol Heart Circ Physiol 2010; 298(3): H1022-8.
[http://dx.doi.org/10.1152/ajpheart.00902.2009] [PMID: 20061542]
[112]
Aisagbonhi O, Rai M, Ryzhov S, Atria N, Feoktistov I, Hatzopoulos AK. Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Model Mech 2011; 4(4): 469-83.
[http://dx.doi.org/10.1242/dmm.006510] [PMID: 21324930]
[113]
Tao H, Yang JJ, Shi KH, Li J. Wnt signaling pathway in cardiac fibrosis: New insights and directions. Metabolism 2016; 65(2): 30-40.
[http://dx.doi.org/10.1016/j.metabol.2015.10.013] [PMID: 26773927]
[114]
Haybar H, Khodadi E, Shahrabi S. Wnt/β-catenin in ischemic myocardium: interactions and signaling pathways as a therapeutic target. Heart Fail Rev 2019; 24(3): 411-9.
[http://dx.doi.org/10.1007/s10741-018-9759-z] [PMID: 30539334]
[115]
van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development 2009; 136(19): 3205-14.
[http://dx.doi.org/10.1242/dev.033910] [PMID: 19736321]
[116]
McCully JD, Wakiyama H, Hsieh YJ, Jones M, Levitsky S. Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2004; 286(5): H1923-35.
[http://dx.doi.org/10.1152/ajpheart.00935.2003] [PMID: 14715509]
[117]
Konstantinidis K, Whelan RS, Kitsis RN. Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol 2012; 32(7): 1552-62.
[http://dx.doi.org/10.1161/ATVBAHA.111.224915] [PMID: 22596221]
[118]
Mocanu MM, Baxter GF, Yellon DM. Caspase inhibition and limitation of myocardial infarct size: protection against lethal reperfusion injury. Br J Pharmacol 2000; 130(2): 197-200.
[http://dx.doi.org/10.1038/sj.bjp.0703336] [PMID: 10807653]
[119]
Smith CC, Yellon DM. Necroptosis, necrostatins and tissue injury. J Cell Mol Med 2011; 15(9): 1797-806.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01341.x] [PMID: 21564515]
[120]
Takahashi M. Role of the inflammasome in myocardial infarction. Trends Cardiovasc Med 2011; 21(2): 37-41.
[http://dx.doi.org/10.1016/j.tcm.2012.02.002] [PMID: 22578238]
[121]
Pickard JM, Davidson SM, Hausenloy DJ, Yellon DM. Co-dependence of the neural and humoral pathways in the mechanism of remote ischemic conditioning. Basic Res Cardiol 2016; 111(4): 50.
[http://dx.doi.org/10.1007/s00395-016-0568-z] [PMID: 27338249]
[122]
Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol 2015; 40: 41-51.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.010] [PMID: 25721812]
[123]
Gedik N, Kottenberg E, Thielmann M, et al. Potential humoral mediators of remote ischemic preconditioning in patients undergoing surgical coronary revascularization. Sci Rep 2017; 7(1): 12660.
[http://dx.doi.org/10.1038/s41598-017-12833-2] [PMID: 28978919]
[124]
Minghua W, Zhijian G, Chahua H, et al. Plasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24. Cell Death Dis 2018; 9(3): 320.
[http://dx.doi.org/10.1038/s41419-018-0274-x] [PMID: 29476052]
[125]
Maciel L, de Oliveira DF, Verissimo da Costa GC, Bisch PM, Nascimento JHM. Cardioprotection by the transfer of coronary effluent from ischaemic preconditioned rat hearts: identification of cardioprotective humoral factors. Basic Res Cardiol 2017; 112(5): 52.
[http://dx.doi.org/10.1007/s00395-017-0641-2] [PMID: 28695353]
[126]
Davidson SM, Andreadou I, Barile L, et al. Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovasc Res 2019; 115(7): 1156-66.
[http://dx.doi.org/10.1093/cvr/cvy314] [PMID: 30590395]
[127]
Xu JY, Chen GH, Yang YJ. Exosomes: A Rising Star in Falling Hearts. Front Physiol 2017; 8: 494.
[http://dx.doi.org/10.3389/fphys.2017.00494] [PMID: 28751864]
[128]
Borosch S, Dahmen E, Beckers C, et al. Characterization of extracellular vesicles derived from cardiac cells in an in vitro model of preconditioning. J Extracell Vesicles 2017; 6(1): 1390391.
[http://dx.doi.org/10.1080/20013078.2017.1390391] [PMID: 29479396]
[129]
Baixauli F, López-Otín C, Mittelbrunn M. Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol 2014; 5: 403.
[http://dx.doi.org/10.3389/fimmu.2014.00403] [PMID: 25191326]
[130]
Beninson LA, Fleshner M. Exosomes: an emerging factor in stress-induced immunomodulation. Semin Immunol 2014; 26(5): 394-401.
[http://dx.doi.org/10.1016/j.smim.2013.12.001] [PMID: 24405946]
[131]
Colpaert RMW, Calore M. MicroRNAs in Cardiac Diseases. Cells 2019; 8(7): 737.
[http://dx.doi.org/10.3390/cells8070737] [PMID: 31323768]
[132]
Melak T, Baynes HW. Circulating microRNAs as possible biomarkers for coronary artery disease: a narrative review. EJIFCC 2019; 30(2): 179-94.
[PMID: 31263392]
[133]
Corsten MF, Dennert R, Jochems S, et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 2010; 3(6): 499-506.
[http://dx.doi.org/10.1161/CIRCGENETICS.110.957415] [PMID: 20921333]
[134]
Zhou SS, Jin JP, Wang JQ, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 2018; 39(7): 1073-84.
[http://dx.doi.org/10.1038/aps.2018.30] [PMID: 29877320]
[135]
Deddens JC, Vrijsen KR, Colijn JM, et al. Circulating Extracellular Vesicles Contain miRNAs and are Released as Early Biomarkers for Cardiac Injury. J Cardiovasc Transl Res 2016; 9(4): 291-301.
[http://dx.doi.org/10.1007/s12265-016-9705-1] [PMID: 27383837]
[136]
Matsumoto S, Sakata Y, Suna S, et al. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res 2013; 113(3): 322-6.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301209] [PMID: 23743335]
[137]
Wendt S, Goetzenich A, Goettsch C, et al. Evaluation of the cardioprotective potential of extracellular vesicles - a systematic review and meta-analysis. Sci Rep 2018; 8(1): 15702.
[http://dx.doi.org/10.1038/s41598-018-33862-5] [PMID: 30356109]
[138]
Bartekova M, Jelemensky M, Dhalla NS. Emerging role of non-coding RNAs and extracellular vesicles in cardioprotection by remote ischemic conditioning of the heart. Rev Cardiovasc Med 2019; 20(2): 59-71.
[http://dx.doi.org/10.31083/j.rcm.2019.02.54] [PMID: 31344998]
[139]
Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res (Amst) 2013; 10(3): 301-12.
[http://dx.doi.org/10.1016/j.scr.2013.01.002] [PMID: 23399448]
[140]
Giricz Z, Varga ZV, Baranyai T, et al. Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J Mol Cell Cardiol 2014; 68: 75-8.
[http://dx.doi.org/10.1016/j.yjmcc.2014.01.004] [PMID: 24440457]
[141]
Yamaguchi T, Izumi Y, Nakamura Y, et al. Repeated remote ischemic conditioning attenuates left ventricular remodeling via exosome-mediated intercellular communication on chronic heart failure after myocardial infarction. Int J Cardiol 2015; 178: 239-46.
[http://dx.doi.org/10.1016/j.ijcard.2014.10.144] [PMID: 25464262]
[142]
Yang Y, Li Y, Chen X, Cheng X, Liao Y, Yu X. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. J Mol Med (Berl) 2016; 94(6): 711-24.
[http://dx.doi.org/10.1007/s00109-016-1387-2] [PMID: 26857375]
[143]
Li J, Rohailla S, Gelber N, et al. MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res Cardiol 2014; 109(5): 423.
[http://dx.doi.org/10.1007/s00395-014-0423-z] [PMID: 25060662]
[144]
Bei Y, Xu T, Lv D, et al. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Res Cardiol 2017; 112(4): 38.
[http://dx.doi.org/10.1007/s00395-017-0628-z] [PMID: 28534118]
[145]
Ge X, Meng Q, Zhuang R, et al. Circular RNA expression alterations in extracellular vesicles isolated from murine heart post ischemia/reperfusion injury. Int J Cardiol 2019; 296: 136-40.
[http://dx.doi.org/10.1016/j.ijcard.2019.08.024] [PMID: 31466885]
[146]
Iliodromitis EK, Zoga A, Vrettou A, et al. The effectiveness of postconditioning and preconditioning on infarct size in hypercholesterolemic and normal anesthetized rabbits. Atherosclerosis 2006; 188(2): 356-62.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.11.023] [PMID: 16376892]
[147]
Kin H, Wang NP, Mykytenko J, et al. Inhibition of myocardial apoptosis by postconditioning is associated with attenuation of oxidative stress-mediated nuclear factor-kappa B translocation and TNF alpha release. Shock 2008; 29(6): 761-8.
[http://dx.doi.org/10.1097/SHK.0b013e31815cfd5a] [PMID: 18496137]
[148]
Vinten-Johansen J. Postconditioning: a mechanical maneuver that triggers biological and molecular cardioprotective responses to reperfusion. Heart Fail Rev 2007; 12(3-4): 235-44.
[http://dx.doi.org/10.1007/s10741-007-9024-3] [PMID: 17520362]
[149]
Xiong J, Wang Q, Xue FS, et al. Comparison of cardioprotective and anti-inflammatory effects of ischemia pre- and postconditioning in rats with myocardial ischemia-reperfusion injury. Inflamm Res 2011; 60(6): 547-54.
[http://dx.doi.org/10.1007/s00011-010-0303-4] [PMID: 21193944]
[150]
Minutoli L, Puzzolo D, Rinaldi M, Irrera N, Marini H, Arcoraci V, et al. ROS-Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis Ischemia/Reperfusion Injury. Oxid Med Cell Longev 2016; 2016. 2183026.
[http://dx.doi.org/10.1155/2016/2183026]
[151]
Mariathasan S, Weiss DS, Newton K, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006; 440(7081): 228-32.
[http://dx.doi.org/10.1038/nature04515] [PMID: 16407890]
[152]
Sánchez-Hernández CD, Torres-Alarcón LA, González-Cortés A, Peón AN. Ischemia/Reperfusion Injury: Pathophysiology, Current Clinical Management, and Potential Preventive Approaches. Mediators Inflamm 2020;.: 20208405370.
[http://dx.doi.org/10.1155/2020/8405370] [PMID: 32410868]
[153]
ter Horst EN, Hakimzadeh N, van der Laan AM, Krijnen PA, Niessen HW, Piek JJ. Modulators of Macrophage Polarization Influence Healing of the Infarcted Myocardium. Int J Mol Sci 2015; 16(12): 29583-91.
[http://dx.doi.org/10.3390/ijms161226187] [PMID: 26690421]
[154]
Valen G, Yan ZQ, Hansson GK. Nuclear factor kappa-B and the heart. J Am Coll Cardiol 2001; 38(2): 307-14.
[http://dx.doi.org/10.1016/S0735-1097(01)01377-8] [PMID: 11499717]
[155]
Toldo S, Mezzaroma E, Mauro AG, Salloum F, Van Tassell BW, Abbate A. The inflammasome in myocardial injury and cardiac remodeling. Antioxid Redox Signal 2015; 22(13): 1146-61.
[http://dx.doi.org/10.1089/ars.2014.5989] [PMID: 25330141]
[156]
Gibbs PE, Maines MD. Biliverdin inhibits activation of NF-kappaB: reversal of inhibition by human biliverdin reductase. Int J Cancer 2007; 121(11): 2567-74.
[http://dx.doi.org/10.1002/ijc.22978] [PMID: 17683071]
[157]
Bellezza I, Tucci A, Galli F, et al. Inhibition of NF-κB nuclear translocation via HO-1 activation underlies α-tocopheryl succinate toxicity. J Nutr Biochem 2012; 23(12): 1583-91.
[http://dx.doi.org/10.1016/j.jnutbio.2011.10.012] [PMID: 22444871]
[158]
Mallick IH, Winslet MC, Seifalian AM. Ischemic preconditioning of small bowel mitigates the late phase of reperfusion injury: heme oxygenase mediates cytoprotection. Am J Surg 2010; 199(2): 223-31.
[http://dx.doi.org/10.1016/j.amjsurg.2009.01.011] [PMID: 19362701]
[159]
Xu B, Gao X, Xu J, et al. Ischemic postconditioning attenuates lung reperfusion injury and reduces systemic proinflammatory cytokine release via heme oxygenase 1. J Surg Res 2011; 166(2): e157-64.
[http://dx.doi.org/10.1016/j.jss.2010.11.902] [PMID: 21227458]
[160]
Zhou W, Chen C, Chen Z, et al. NLRP3: A Novel Mediator in Cardiovascular Disease. J Immunol Res 2018;.: 20185702103.
[http://dx.doi.org/10.1155/2018/5702103] [PMID: 29850631]
[161]
Sutterwala FS, Haasken S, Cassel SL. Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci 2014; 1319: 82-95.
[http://dx.doi.org/10.1111/nyas.12458] [PMID: 24840700]
[162]
Kawaguchi M, Takahashi M, Hata T, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 2011; 123(6): 594-604.
[163]
Toldo S, Mauro AG, Cutter Z, Abbate A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2018; 315(6): H1553-68.
[http://dx.doi.org/10.1152/ajpheart.00158.2018] [PMID: 30168729]
[164]
Toldo S, Marchetti C, Mauro AG, et al. Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischemia-reperfusion in the mouse. Int J Cardiol 2016; 209: 215-20.
[http://dx.doi.org/10.1016/j.ijcard.2016.02.043] [PMID: 26896627]
[165]
van Hout GP, Bosch L, Ellenbroek GH, et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J 2017; 38(11): 828-36.
[166]
Zuurbier CJ. NLRP3 Inflammasome in Cardioprotective Signaling. J Cardiovasc Pharmacol 2019; 74(4): 271-5.
[http://dx.doi.org/10.1097/FJC.0000000000000696] [PMID: 31356546]
[167]
Lecour S, Smith RM, Woodward B, Opie LH, Rochette L, Sack MN. Identification of a novel role for sphingolipid signaling in TNF alpha and ischemic preconditioning mediated cardioprotection. J Mol Cell Cardiol 2002; 34(5): 509-18.
[http://dx.doi.org/10.1006/jmcc.2002.1533] [PMID: 12056855]
[168]
Zuurbier CJ, Jong WM, Eerbeek O, et al. Deletion of the innate immune NLRP3 receptor abolishes cardiac ischemic preconditioning and is associated with decreased Il-6/STAT3 signaling. PLoS One 2012; 7(7): e40643.
[http://dx.doi.org/10.1371/journal.pone.0040643] [PMID: 22848390]
[169]
Ha T, Hu Y, Liu L, et al. TLR2 ligands induce cardioprotection against ischaemia/reperfusion injury through a PI3K/Akt-dependent mechanism. Cardiovasc Res 2010; 87(4): 694-703.
[http://dx.doi.org/10.1093/cvr/cvq116] [PMID: 20421349]
[170]
Kitahara T, Takeishi Y, Harada M, et al. High-mobility group box 1 restores cardiac function after myocardial infarction in transgenic mice. Cardiovasc Res 2008; 80(1): 40-6.
[http://dx.doi.org/10.1093/cvr/cvn163] [PMID: 18558628]
[171]
Zhang D, He Y, Ye X, et al. Activation of autophagy inhibits nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome activation and attenuates myocardial ischemia-reperfusion injury in diabetic rats. J Diabetes Investig 2020.
[http://dx.doi.org/10.1111/jdi.13235] [PMID: 32064785]
[172]
Li Z, Hu S, Huang K, Su T, Cores J, Cheng K. Targeted anti-IL-1beta platelet microparticles for cardiac detoxing and repair. Sci Adv 2020; 6(6) : eaay0589.
[http://dx.doi.org/10.1126/sciadv.aay0589]
[173]
Gawaz M. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc Res 2004; 61(3): 498-511.
[http://dx.doi.org/10.1016/j.cardiores.2003.11.036] [PMID: 14962480]
[174]
Duerschmied D, Bode C, Ahrens I. Immune functions of platelets. Thromb Haemost 2014; 112(4): 678-91.
[http://dx.doi.org/10.1160/TH14-02-0146] [PMID: 25209670]
[175]
Del Conde I, Crúz MA, Zhang H, López JA, Afshar-Kharghan V. Platelet activation leads to activation and propagation of the complement system. J Exp Med 2005; 201(6): 871-9.
[http://dx.doi.org/10.1084/jem.20041497] [PMID: 15781579]
[176]
Zuchtriegel G, Uhl B, Puhr-Westerheide D, et al. Platelets Guide Leukocytes to Their Sites of Extravasation. PLoS Biol 2016; 14(5)e1002459
[http://dx.doi.org/10.1371/journal.pbio.1002459] [PMID: 27152726]
[177]
Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen 2008; 16(5): 585-601.
[http://dx.doi.org/10.1111/j.1524-475X.2008.00410.x] [PMID: 19128254]
[178]
Linder BL, Chernoff A, Kaplan KL, Goodman DS. Release of platelet-derived growth factor from human platelets by arachidonic acid. Proc Natl Acad Sci USA 1979; 76(8): 4107-11.
[http://dx.doi.org/10.1073/pnas.76.8.4107] [PMID: 291068]
[179]
Lo Re S, Lecocq M, Uwambayinema F, et al. Platelet-derived growth factor-producing CD4+ Foxp3+ regulatory T lymphocytes promote lung fibrosis. Am J Respir Crit Care Med 2011; 184(11): 1270-81.
[http://dx.doi.org/10.1164/rccm.201103-0516OC] [PMID: 21868503]
[180]
Zhao ZQ, Vinten-Johansen J. Postconditioning: reduction of reperfusion-induced injury. Cardiovasc Res 2006; 70(2): 200-11.
[http://dx.doi.org/10.1016/j.cardiores.2006.01.024] [PMID: 16545349]
[181]
Qian YX, Dai KS, Zhao LL, Yang XJ. Effects of remote ischemic post-conditioning on platelet activation of AMI patients. Exp Ther Med 2018; 16(2): 1273-7.
[http://dx.doi.org/10.3892/etm.2018.6280] [PMID: 30112058]
[182]
Yun SH, Sim EH, Goh RY, Park JI, Han JY. Platelet Activation: The Mechanisms and Potential Biomarkers. BioMed Res Int 2016.: 20169060143.
[http://dx.doi.org/10.1155/2016/9060143] [PMID: 27403440]
[183]
Gremmel T, Michelson AD, Frelinger AL III, Bhatt DL. Novel aspects of antiplatelet therapy in cardiovascular disease. Res Pract Thromb Haemost 2018; 2(3): 439-49.
[http://dx.doi.org/10.1002/rth2.12115] [PMID: 30046748]
[184]
Zarà M, Guidetti GF, Camera M, et al. Biology and Role of Extracellular Vesicles (EVs) in the Pathogenesis of Thrombosis. International journal of molecular sciences 2019; 20(11) : 2840.
[http://dx.doi.org/10.3390/ijms20112840]
[185]
Michelsen AE, Brodin E, Brosstad F, Hansen JB. Increased level of platelet microparticles in survivors of myocardial infarction. Scand J Clin Lab Invest 2008; 68(5): 386-92.
[http://dx.doi.org/10.1080/00365510701794957] [PMID: 18752144]
[186]
Chiva-Blanch G, Laake K, Myhre P, et al. Platelet-, monocyte-derived and tissue factor-carrying circulating microparticles are related to acute myocardial infarction severity. PLoS One 2017; 12(2): e0172558.
[http://dx.doi.org/10.1371/journal.pone.0172558]
[187]
Ohtsuka M, Sasaki K, Ueno T, Seki R, Nakayoshi T, Koiwaya H, et al. Platelet-derived microparticles augment the adhesion and neovascularization capacities of circulating angiogenic cells obtained from atherosclerotic patients. Atherosclerosis 2013; 227(2): 275-82.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.01.040]
[188]
Neumann FJ, Marx N, Gawaz M, et al. Induction of cytokine expression in leukocytes by binding of thrombin-stimulated platelets. Circulation 1997; 95(10): 2387-94.
[http://dx.doi.org/10.1161/01.CIR.95.10.2387] [PMID: 9170401]
[189]
Habazettl H, Hanusch P, Kupatt C. Effects of endothelium/leukocytes/platelet interaction on myocardial ischemia--reperfusion injury. Z Kardiol 2000; 89(9): 92-5.
[http://dx.doi.org/10.1007/s003920070038]
[190]
Pachel C, Mathes D, Arias-Loza AP, Heitzmann W, Nordbeck P, Deppermann C, et al. Inhibition of Platelet GPVI Protects Against Myocardial Ischemia-Reperfusion Injury. Arterioscler Thromb Vasc Biol 2016; 36(4): 629-35.
[http://dx.doi.org/10.1161/ATVBAHA.115.305873]
[191]
Walsh TG, Poole AW. Do platelets promote cardiac recovery after myocardial infarction: roles beyond occlusive ischemic damage. Am J Physiol Heart Circ Physiol 2018; 314(5): H1043-8.
[http://dx.doi.org/10.1152/ajpheart.00134.2018] [PMID: 29547023]
[192]
Heindl B, Zahler S, Welsch U, Becker BF. Disparate effects of adhesion and degranulation of platelets on myocardial and coronary function in postischaemic hearts. Cardiovasc Res 1998; 38(2): 383-94.
[http://dx.doi.org/10.1016/S0008-6363(98)00032-7] [PMID: 9709399]
[193]
Walsh TG, Poole AW. Platelets Protect Cardiomyocytes from Ischaemic Damage. TH Open 2017; 1(1): e24-32.
[http://dx.doi.org/10.1055/s-0037-1603928]
[194]
Starlinger P, Gruenberger T. Role of platelets in systemic tissue protection after remote ischemic preconditioning. Hepatology 2014; 60(4): 1136-8.
[http://dx.doi.org/10.1002/hep.27146] [PMID: 24668800]
[195]
Lanza GA, Stazi A, Villano A, et al. Effect of Remote Ischemic Preconditioning on Platelet Activation Induced by Coronary Procedures. Am J Cardiol 2016; 117(3): 359-65.
[http://dx.doi.org/10.1016/j.amjcard.2015.10.056] [PMID: 26739396]
[196]
Dost T. Cardioprotective properties of the platelet P2Y12 receptor inhibitor prasugrel on cardiac ischemia/reperfusion injury. Pharmacol Rep 2020; 72(3): 672-9.
[http://dx.doi.org/10.1007/s43440-019-00046-5] [PMID: 32048257]
[197]
Lasley RD. Adenosine Receptor-Mediated Cardioprotection-Current Limitations and Future Directions. Front Pharmacol 2018; 9: 310.
[http://dx.doi.org/10.3389/fphar.2018.00310] [PMID: 29670529]
[198]
Cunha RA. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 2001; 38(2): 107-25.
[http://dx.doi.org/10.1016/S0197-0186(00)00034-6] [PMID: 11137880]
[199]
Berne RM. Metabolic Regulation of Blood Flow. Circ Res 1964; 15(Suppl.): 261-8.
[PMID: 14206313]
[200]
Sollevi A. Cardiovascular effects of adenosine in man; possible clinical implications. Prog Neurobiol 1986; 27(4): 319-49.
[http://dx.doi.org/10.1016/0301-0082(86)90005-5] [PMID: 3538187]
[201]
Rahman A. The role of adenosine in Alzheimer’s disease. Curr Neuropharmacol 2009; 7(3): 207-16.
[http://dx.doi.org/10.2174/157015909789152119] [PMID: 20190962]
[202]
Ely SW, Mentzer RM Jr, Lasley RD, Lee BK, Berne RM. Functional and metabolic evidence of enhanced myocardial tolerance to ischemia and reperfusion with adenosine. J Thorac Cardiovasc Surg 1985; 90(4): 549-56.
[http://dx.doi.org/10.1016/S0022-5223(19)38568-X] [PMID: 4046621]
[203]
Chiu GS, Freund GG. Modulation of neuroimmunity by adenosine and its receptors: metabolism to mental illness. Metabolism 2014; 63(12): 1491-8.
[http://dx.doi.org/10.1016/j.metabol.2014.09.003] [PMID: 25308443]
[204]
Sommerschild HT, Kirkebøen KA. Adenosine and cardioprotection during ischaemia and reperfusion--an overview. Acta Anaesthesiol Scand 2000; 44(9): 1038-55.
[http://dx.doi.org/10.1034/j.1399-6576.2000.440903.x] [PMID: 11028722]
[205]
Jacobson KA, Gao ZG. AdenosineEncyclopedia of Neuroscience. Oxford: Academic Press 2009; pp. 83-95.
[http://dx.doi.org/10.1016/B978-008045046-9.00627-6]
[206]
Zhan E, McIntosh VJ, Lasley RD. Adenosine A2A and A2B receptors are both required for adenosine A1 receptor-mediated cardioprotection. Am J Physiol Heart Circ Physiol 2011; 301(3): H1183-9.
[http://dx.doi.org/10.1152/ajpheart.00264.2011] [PMID: 21743001]
[207]
Xi J, McIntosh R, Shen X, et al. Adenosine A2A and A2B receptors work in concert to induce a strong protection against reperfusion injury in rat hearts. J Mol Cell Cardiol 2009; 47(5): 684-90.
[http://dx.doi.org/10.1016/j.yjmcc.2009.08.009] [PMID: 19695259]
[208]
Martens D, Lohse MJ, Schwabe U. [3H]-8-cyclopentyl-1,3-dipropylxanthine binding to A1 adenosine receptors of intact rat ventricular myocytes. Circ Res 1988; 63(3): 613-20.
[http://dx.doi.org/10.1161/01.RES.63.3.613] [PMID: 2842086]
[209]
Chandrasekera PC, McIntosh VJ, Cao FX, Lasley RD. Differential effects of adenosine A2a and A2b receptors on cardiac contractility. Am J Physiol Heart Circ Physiol 2010; 299(6): H2082-9.
[http://dx.doi.org/10.1152/ajpheart.00511.2010] [PMID: 20935155]
[210]
Jacobson KA. Adenosine A3 receptors: novel ligands and paradoxical effects. Trends Pharmacol Sci 1998; 19(5): 184-91.
[http://dx.doi.org/10.1016/S0165-6147(98)01203-6] [PMID: 9652191]
[211]
Headrick JP, Peart J. A3 adenosine receptor-mediated protection of the ischemic heart. Vascul Pharmacol 2005; 42(5-6): 271-9.
[http://dx.doi.org/10.1016/j.vph.2005.02.009] [PMID: 15922260]
[212]
Peart JN, Headrick JP. Adenosinergic cardioprotection: multiple receptors, multiple pathways. Pharmacol Ther 2007; 114(2): 208-21.
[http://dx.doi.org/10.1016/j.pharmthera.2007.02.004] [PMID: 17408751]
[213]
Hermidorff MM, de Assis LVM, Rodrigues JA, et al. Mineralocorticoid receptor antagonists lead to increased adenosine bioavailability and modulate contractile cardiac parameters. Heart Vessels 2020; 35(5): 719-30.
[http://dx.doi.org/10.1007/s00380-019-01542-7] [PMID: 31820090]
[214]
Fuentes E, Pereira J, Mezzano D, Alarcón M, Caballero J, Palomo I. Inhibition of platelet activation and thrombus formation by adenosine and inosine: studies on their relative contribution and molecular modeling. PLoS One 2014; 9(11): e112741.
[http://dx.doi.org/10.1371/journal.pone.0112741] [PMID: 25393959]
[215]
Auchampach JA, Bolli R. Adenosine receptor subtypes in the heart: therapeutic opportunities and challenges. Am J Physiol 1999; 276(3): H1113-6.
[http://dx.doi.org/10.1152/ajpheart.1999.276.3.H1113] [PMID: 10070100]
[216]
Rivkees SA. The ontogeny of cardiac and neural A1 adenosine receptor expression in rats. Brain Res Dev Brain Res 1995; 89(2): 202-13.
[http://dx.doi.org/10.1016/0165-3806(95)00120-3] [PMID: 8612324]
[217]
Rivkees SA, Chen M, Kulkarni J, Browne J, Zhao Z. Characterization of the murine A1 adenosine receptor promoter, potent regulation by GATA-4 and Nkx2.5. J Biol Chem 1999; 274(20): 14204-9.
[http://dx.doi.org/10.1074/jbc.274.20.14204] [PMID: 10318839]
[218]
Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA. The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 2008; 117(1): 123-40.
[http://dx.doi.org/10.1016/j.pharmthera.2007.09.002] [PMID: 18029023]
[219]
Borea PA, Varani K, Vincenzi F, et al. The A3 adenosine receptor: history and perspectives. Pharmacol Rev 2015; 67(1): 74-102.
[http://dx.doi.org/10.1124/pr.113.008540] [PMID: 25387804]
[220]
Urmaliya VB, Church JE, Coupar IM, Rose’Meyer RB, Pouton CW, White PJ. Cardioprotection induced by adenosine A1 receptor agonists in a cardiac cell ischemia model involves cooperative activation of adenosine A2A and A2B receptors by endogenous adenosine. J Cardiovasc Pharmacol 2009; 53(5): 424-33.
[http://dx.doi.org/10.1097/FJC.0b013e3181a443e2] [PMID: 19333129]
[221]
McIntosh VJ, Lasley RD. Adenosine receptor-mediated cardioprotection: are all 4 subtypes required or redundant? J Cardiovasc Pharmacol Ther 2012; 17(1): 21-33.
[http://dx.doi.org/10.1177/1074248410396877] [PMID: 21335481]
[222]
Hesse J, Alter C, Schrader J. Adenosine Signalling in the Injured HeartThe Adenosine Receptors. Cham: Springer International Publishing 2018; pp. 439-60.
[http://dx.doi.org/10.1007/978-3-319-90808-3_17]
[223]
St Hilaire C, Carroll SH, Chen H, Ravid K. Mechanisms of induction of adenosine receptor genes and its functional significance. J Cell Physiol 2009; 218(1): 35-44.
[http://dx.doi.org/10.1002/jcp.21579] [PMID: 18767039]
[224]
Djerada Z, Feliu C, Richard V, Millart H. Current knowledge on the role of P2Y receptors in cardioprotection against ischemia-reperfusion. Pharmacol Res 2017; 118: 5-18.
[http://dx.doi.org/10.1016/j.phrs.2016.08.009] [PMID: 27520402]
[225]
Wallentin L, Becker RC, Budaj A, et al. PLATO Investigators Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2009; 361(11): 1045-57.
[http://dx.doi.org/10.1056/NEJMoa0904327] [PMID: 19717846]
[226]
Zeymer U, Gitt AK, Jünger C, et al. Acute COronary Syndromes (ACOS) registry investigators. Effect of clopidogrel on 1-year mortality in hospital survivors of acute ST-segment elevation myocardial infarction in clinical practice. Eur Heart J 2006; 27(22): 2661-6.
[http://dx.doi.org/10.1093/eurheartj/ehl317] [PMID: 17043060]
[227]
Cohen MV, Yang XM, White J, Yellon DM, Bell RM, Downey JM. Cangrelor-Mediated Cardioprotection Requires Platelets and Sphingosine Phosphorylation. Cardiovasc Drugs Ther 2016; 30(2): 229-32.
[http://dx.doi.org/10.1007/s10557-015-6633-2] [PMID: 26780906]
[228]
Bell RM, Sivaraman V, Kunuthur SP, Cohen MV, Downey JM, Yellon DM. Cardioprotective Properties of the Platelet P2Y12 Receptor Inhibitor, Cangrelor: Protective in Diabetics and Reliant Upon the Presence of Blood. Cardiovasc Drugs Ther 2015; 29(5): 415-8.
[http://dx.doi.org/10.1007/s10557-015-6609-2] [PMID: 26179955]
[229]
Yang XM, Liu Y, Cui L, et al. Two classes of anti-platelet drugs reduce anatomical infarct size in monkey hearts. Cardiovasc Drugs Ther 2013; 27(2): 109-15.
[http://dx.doi.org/10.1007/s10557-012-6436-7] [PMID: 23318690]
[230]
Yang XM, Liu Y, Cui L, et al. Platelet P2Y12 blockers confer direct postconditioning-like protection in reperfused rabbit hearts. J Cardiovasc Pharmacol Ther 2013; 18(3): 251-62.
[http://dx.doi.org/10.1177/1074248412467692] [PMID: 23233653]
[231]
Ye Y, Birnbaum GD, Perez-Polo JR, Nanhwan MK, Nylander S, Birnbaum Y. Ticagrelor protects the heart against reperfusion injury and improves remodeling after myocardial infarction. Arterioscler Thromb Vasc Biol 2015; 35(8): 1805-14.
[http://dx.doi.org/10.1161/ATVBAHA.115.305655] [PMID: 26044583]
[232]
Cattaneo M, Schulz R, Nylander S. Adenosine-mediated effects of ticagrelor: evidence and potential clinical relevance. J Am Coll Cardiol 2014; 63(23): 2503-9.
[http://dx.doi.org/10.1016/j.jacc.2014.03.031] [PMID: 24768873]
[233]
Nylander S, Schulz R. Effects of P2Y12 receptor antagonists beyond platelet inhibition--comparison of ticagrelor with thienopyridines. Br J Pharmacol 2016; 173(7): 1163-78.
[http://dx.doi.org/10.1111/bph.13429] [PMID: 26758983]
[234]
Bonello L, Laine M, Kipson N, et al. Ticagrelor increases adenosine plasma concentration in patients with an acute coronary syndrome. J Am Coll Cardiol 2014; 63(9): 872-7.
[http://dx.doi.org/10.1016/j.jacc.2013.09.067] [PMID: 24291273]
[235]
Zinman B, Wanner C, Lachin JM, et al. EMPA-REG OUTCOME Investigators Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015; 373(22): 2117-28.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[236]
Neal B, Perkovic V, Mahaffey KW, et al. CANVAS Program Collaborative Group Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017; 377(7): 644-57.
[http://dx.doi.org/10.1056/NEJMoa1611925] [PMID: 28605608]
[237]
Staels B. Cardiovascular Protection by Sodium Glucose Cotransporter 2 Inhibitors: Potential Mechanisms. Am J Med 2017; 130(6S): S30-9.
[http://dx.doi.org/10.1016/j.amjmed.2017.04.009] [PMID: 28526184]
[238]
Uthman L, Baartscheer A, Schumacher CA, et al. Direct Cardiac Actions of Sodium Glucose Cotransporter 2 Inhibitors Target Pathogenic Mechanisms Underlying Heart Failure in Diabetic Patients. Front Physiol 2018; 9: 1575.
[http://dx.doi.org/10.3389/fphys.2018.01575] [PMID: 30519189]
[239]
Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia 2018; 61(10): 2108-17.
[http://dx.doi.org/10.1007/s00125-018-4670-7] [PMID: 30132036]
[240]
Mende CW. Diabetes and kidney disease: the role of sodium-glucose cotransporter-2 (SGLT-2) and SGLT-2 inhibitors in modifying disease outcomes. Curr Med Res Opin 2017; 33(3): 541-51.
[http://dx.doi.org/10.1080/03007995.2016.1271779] [PMID: 27977314]
[241]
Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM. Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 2002; 55(3): 534-43.
[http://dx.doi.org/10.1016/S0008-6363(02)00455-8] [PMID: 12160950]
[242]
Hausenloy DJ, Ong SB, Yellon DM. The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol 2009; 104(2): 189-202.
[http://dx.doi.org/10.1007/s00395-009-0010-x] [PMID: 19242644]
[243]
Ong SB, Dongworth RK, Cabrera-Fuentes HA, Hausenloy DJ. Role of the MPTP in conditioning the heart - translatability and mechanism. Br J Pharmacol 2015; 172(8): 2074-84.
[http://dx.doi.org/10.1111/bph.13013] [PMID: 25393318]
[244]
Ong SB, Samangouei P, Kalkhoran SB, Hausenloy DJ. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol 2015; 78: 23-34.
[http://dx.doi.org/10.1016/j.yjmcc.2014.11.005] [PMID: 25446182]
[245]
Belosludtsev KN, Dubinin MV, Belosludtseva NV, Mironova GD. Mitochondrial Ca2+ Transport: Mechanisms, Molecular Structures, and Role in Cells. Biochemistry (Mosc) 2019; 84(6): 593-607.
[http://dx.doi.org/10.1134/S0006297919060026] [PMID: 31238859]
[246]
Mewton N, Croisille P, Gahide G, et al. Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. J Am Coll Cardiol 2010; 55(12): 1200-5.
[http://dx.doi.org/10.1016/j.jacc.2009.10.052] [PMID: 20298926]
[247]
Piot C, Croisille P, Staat P, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 2008; 359(5): 473-81.
[http://dx.doi.org/10.1056/NEJMoa071142] [PMID: 18669426]
[248]
Ottani F, Latini R, Staszewsky L, et al. CYCLE Investigators Cyclosporine A in Reperfused Myocardial Infarction: The Multicenter, Controlled, Open-Label CYCLE Trial. J Am Coll Cardiol 2016; 67(4): 365-74.
[http://dx.doi.org/10.1016/j.jacc.2015.10.081] [PMID: 26821623]
[249]
Cung TT, Morel O, Cayla G, et al. Cyclosporine before PCI in Patients with Acute Myocardial Infarction. N Engl J Med 2015; 373(11): 1021-31.
[http://dx.doi.org/10.1056/NEJMoa1505489] [PMID: 26321103]
[250]
Gallego-Colon E, Wojakowski W, Francuz T. Incretin drugs as modulators of atherosclerosis. Atherosclerosis 2018; 278: 29-38.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.09.011] [PMID: 30248550]
[251]
Hausenloy DJ, Yellon DM. GLP-1 therapy: beyond glucose control. Circ Heart Fail 2008; 1(3): 147-9.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.108.810887] [PMID: 19808284]
[252]
Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87(4): 1409-39.
[http://dx.doi.org/10.1152/physrev.00034.2006] [PMID: 17928588]
[253]
Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 2008; 117(18): 2340-50.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.739938] [PMID: 18427132]
[254]
Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 2005; 54(1): 146-51.
[http://dx.doi.org/10.2337/diabetes.54.1.146] [PMID: 15616022]
[255]
Bose AK, Mocanu MM, Carr RD, Yellon DM. Glucagon like peptide-1 is protective against myocardial ischemia/reperfusion injury when given either as a preconditioning mimetic or at reperfusion in an isolated rat heart model. Cardiovasc Drugs Ther 2005; 19(1): 9-11.
[http://dx.doi.org/10.1007/s10557-005-6892-4] [PMID: 15883751]
[256]
Hausenloy DJ, Whittington HJ, Wynne AM, et al. Dipeptidyl peptidase-4 inhibitors and GLP-1 reduce myocardial infarct size in a glucose-dependent manner. Cardiovasc Diabetol 2013; 12: 154.
[http://dx.doi.org/10.1186/1475-2840-12-154] [PMID: 24148218]
[257]
Treiman M, Elvekjaer M, Engstrøm T, Jensen JS. Glucagon-like peptide 1--a cardiologic dimension. Trends Cardiovasc Med 2010; 20(1): 8-12.
[http://dx.doi.org/10.1016/j.tcm.2010.02.012] [PMID: 20685571]
[258]
Timmers L, Henriques JP, de Kleijn DP, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 2009; 53(6): 501-10.
[http://dx.doi.org/10.1016/j.jacc.2008.10.033] [PMID: 19195607]
[259]
Sonne DP, Engstrøm T, Treiman M. Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) amide against ischemia-reperfusion injury in rat heart. Regul Pept 2008; 146(1-3): 243-9.
[http://dx.doi.org/10.1016/j.regpep.2007.10.001] [PMID: 17976835]
[260]
Lønborg J, Kelbæk H, Vejlstrup N, et al. Exenatide reduces final infarct size in patients with ST-segment-elevation myocardial infarction and short-duration of ischemia. Circ Cardiovasc Interv 2012; 5(2): 288-95.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.112.968388] [PMID: 22496084]
[261]
Lønborg J, Vejlstrup N, Kelbæk H, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J 2012; 33(12): 1491-9.
[http://dx.doi.org/10.1093/eurheartj/ehr309] [PMID: 21920963]
[262]
Woo JS, Kim W, Ha SJ, et al. Cardioprotective effects of exenatide in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of exenatide myocardial protection in revascularization study. Arterioscler Thromb Vasc Biol 2013; 33(9): 2252-60.
[http://dx.doi.org/10.1161/ATVBAHA.113.301586] [PMID: 23868944]
[263]
Bethel MA, Patel RA, Merrill P, et al. EXSCEL Study Group Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol 2018; 6(2): 105-13.
[http://dx.doi.org/10.1016/S2213-8587(17)30412-6] [PMID: 29221659]
[264]
Drucker DJ. The Cardiovascular Biology of Glucagon-like Peptide-1. Cell Metab 2016; 24(1): 15-30.
[http://dx.doi.org/10.1016/j.cmet.2016.06.009] [PMID: 27345422]
[265]
Liu J, Khalil RA. Chapter Ten - Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological DisordersProgress in Molecular Biology and Translational Science. Academic Press 2017; pp. 355-420.
[266]
Spaulding K, Takaba K, Collins A, et al. Short term doxycycline treatment induces sustained improvement in myocardial infarction border zone contractility. PLoS One 2018; 13(2): e0192720.
[http://dx.doi.org/10.1371/journal.pone.0192720] [PMID: 29432443]
[267]
Cerisano G, Buonamici P, Valenti R, et al. Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur Heart J 2014; 35(3): 184-91.
[http://dx.doi.org/10.1093/eurheartj/eht420] [PMID: 24104875]
[268]
Cerisano G, Buonamici P, Gori AM, et al. Matrix metalloproteinases and their tissue inhibitor after reperfused ST-elevation myocardial infarction treated with doxycycline. Insights from the TIPTOP trial. Int J Cardiol 2015; 197: 147-53.
[http://dx.doi.org/10.1016/j.ijcard.2015.06.024] [PMID: 26134371]
[269]
Ibanez B, Prat-González S, Speidl WS, et al. Early metoprolol administration before coronary reperfusion results in increased myocardial salvage: analysis of ischemic myocardium at risk using cardiac magnetic resonance. Circulation 2007; 115(23): 2909-16.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.679639] [PMID: 17515460]
[270]
Ibanez B, Macaya C, Sánchez-Brunete V, et al. Effect of early metoprolol on infarct size in ST-segment-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: the Effect of Metoprolol in Cardioprotection During an Acute Myocardial Infarction (METOCARD-CNIC) trial. Circulation 2013; 128(14): 1495-503.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.003653] [PMID: 24002794]
[271]
Pizarro G, Fernández-Friera L, Fuster V, et al. Long-term benefit of early pre-reperfusion metoprolol administration in patients with acute myocardial infarction: results from the METOCARD-CNIC trial (Effect of Metoprolol in Cardioprotection During an Acute Myocardial Infarction). J Am Coll Cardiol 2014; 63(22): 2356-62.
[http://dx.doi.org/10.1016/j.jacc.2014.03.014] [PMID: 24694530]
[272]
Roolvink V, Ibáñez B, Ottervanger JP, et al. EARLY-BAMI Investigators Early Intravenous Beta-Blockers in Patients With ST-Segment Elevation Myocardial Infarction Before Primary Percutaneous Coronary Intervention. J Am Coll Cardiol 2016; 67(23): 2705-15.
[http://dx.doi.org/10.1016/j.jacc.2016.03.522] [PMID: 27050189]
[273]
García-Ruiz JM, Fernández-Jiménez R, García-Alvarez A, et al. Impact of the Timing of Metoprolol Administration During STEMI on Infarct Size and Ventricular Function. J Am Coll Cardiol 2016; 67(18): 2093-104.
[http://dx.doi.org/10.1016/j.jacc.2016.02.050] [PMID: 27052688]
[274]
Dondo TB, Hall M, West RM, et al. β-Blockers and Mortality After Acute Myocardial Infarction in Patients Without Heart Failure or Ventricular Dysfunction. J Am Coll Cardiol 2017; 69(22): 2710-20.
[http://dx.doi.org/10.1016/j.jacc.2017.03.578] [PMID: 28571635]
[275]
Noble S, Roffi M. Routine beta-blocker administration following acute myocardial infarction: why still an unsolved issue? J Thorac Dis 2017; 9(11): 4191-4.
[http://dx.doi.org/10.21037/jtd.2017.10.25] [PMID: 29268468]
[276]
Park KL, Goldberg RJ, Anderson FA, et al. Global Registry of Acute Coronary Events Investigators Beta-blocker use in ST-segment elevation myocardial infarction in the reperfusion era (GRACE). Am J Med 2014; 127(6): 503-11.
[http://dx.doi.org/10.1016/j.amjmed.2014.02.009] [PMID: 24561113]
[277]
Lin TT, Arnold Chan K, Chen HM, Lai CL, Lai MS. Class effect of beta-blockers in survivors of ST-elevation myocardial infarction: A nationwide cohort study using an insurance claims database. Sci Rep 2015; 5: 13692.
[http://dx.doi.org/10.1038/srep13692] [PMID: 26328923]
[278]
Hirohata A, Yamamoto K, Hirose E, et al. Nicorandil prevents microvascular dysfunction resulting from PCI in patients with stable angina pectoris: a randomised study. EuroIntervention 2014; 9(9): 1050-6.
[http://dx.doi.org/10.4244/EIJV9I9A178] [PMID: 24457276]
[279]
Lee TM, Lin MS, Chang NC. Effect of ATP-sensitive potassium channel agonists on ventricular remodeling in healed rat infarcts. J Am Coll Cardiol 2008; 51(13): 1309-18.
[http://dx.doi.org/10.1016/j.jacc.2007.11.067] [PMID: 18371564]
[280]
Yoshihisa A, Sato Y, Watanabe S, et al. Decreased cardiac mortality with nicorandil in patients with ischemic heart failure. BMC Cardiovasc Disord 2017; 17(1): 141.
[http://dx.doi.org/10.1186/s12872-017-0577-3] [PMID: 28569214]
[281]
Tarkin JM, Kaski JC. Nicorandil and Long-acting Nitrates: Vasodilator Therapies for the Management of Chronic Stable Angina Pectoris. Eur Cardiol 2018; 13(1): 23-8.
[http://dx.doi.org/10.15420/ecr.2018.9.2] [PMID: 30310466]
[282]
Taniyama Y, Ito H, Iwakura K, et al. Beneficial effect of intracoronary verapamil on microvascular and myocardial salvage in patients with acute myocardial infarction. J Am Coll Cardiol 1997; 30(5): 1193-9.
[http://dx.doi.org/10.1016/S0735-1097(97)00277-5] [PMID: 9350914]
[283]
Amit G, Cafri C, Yaroslavtsev S, et al. Intracoronary nitroprusside for the prevention of the no-reflow phenomenon after primary percutaneous coronary intervention in acute myocardial infarction. A randomized, double-blind, placebo-controlled clinical trial. Am Heart J 2006; 152(5): 887.
[http://dx.doi.org/10.1016/j.ahj.2006.05.010]
[284]
Olafsson B, Forman MB, Puett DW, et al. Reduction of reperfusion injury in the canine preparation by intracoronary adenosine: importance of the endothelium and the no-reflow phenomenon. Circulation 1987; 76(5): 1135-45.
[http://dx.doi.org/10.1161/01.CIR.76.5.1135] [PMID: 3664998]
[285]
Kawai Y, Hisamatsu K, Matsubara H, et al. Intravenous administration of nicorandil immediately before percutaneous coronary intervention can prevent slow coronary flow phenomenon. Eur Heart J 2009; 30(7): 765-72.
[http://dx.doi.org/10.1093/eurheartj/ehp077] [PMID: 19276198]
[286]
Adamczyk S, Robin E, Simerabet M, et al. Sevoflurane pre- and post-conditioning protect the brain via the mitochondrial K ATP channel. Br J Anaesth 2010; 104(2): 191-200.
[http://dx.doi.org/10.1093/bja/aep365] [PMID: 20086064]
[287]
Jakobsen CJ, Berg H, Hindsholm KB, Faddy N, Sloth E. The influence of propofol versus sevoflurane anesthesia on outcome in 10,535 cardiac surgical procedures. J Cardiothorac Vasc Anesth 2007; 21(5): 664-71.
[http://dx.doi.org/10.1053/j.jvca.2007.03.002] [PMID: 17905271]
[288]
Landoni G, Zangrillo A, Fochi O, et al. Cardiac protection with volatile anesthetics in stenting procedures. J Cardiothorac Vasc Anesth 2008; 22(4): 543-7.
[http://dx.doi.org/10.1053/j.jvca.2008.02.020] [PMID: 18662628]
[289]
Hemmerling T, Olivier JF, Le N, Prieto I, Bracco D. Myocardial protection by isoflurane vs. sevoflurane in ultra-fast-track anaesthesia for off-pump aortocoronary bypass grafting. Eur J Anaesthesiol 2008; 25(3): 230-6.
[http://dx.doi.org/10.1017/S0265021507002608] [PMID: 17894911]
[290]
Dong J, Xu M, Zhang W, Che X. Effects of Sevoflurane Pretreatment on Myocardial Ischemia-Reperfusion Injury Through the Akt/Hypoxia-Inducible Factor 1-alpha (HIF-1α)/Vascular Endothelial Growth Factor (VEGF) Signaling Pathway. Med Sci Monit 2019; 25: 3100-7.
[http://dx.doi.org/10.12659/MSM.914265] [PMID: 31028241]
[291]
Guerrero-Orriach JL, Escalona Belmonte JJ, Ramirez Fernandez A, Ramirez Aliaga M, Rubio Navarro M, Cruz Mañas J. Cardioprotection with halogenated gases: how does it occur? Drug Des Devel Ther 2017; 11: 837-49.
[http://dx.doi.org/10.2147/DDDT.S127916] [PMID: 28352158]
[292]
Lemoine S, Zhu L, Gérard JL, Hanouz JL. Sevoflurane-induced cardioprotection in coronary artery bypass graft surgery: Randomised trial with clinical and ex-vivo endpoints. Anaesth Crit Care Pain Med 2018; 37(3): 217-23.
[http://dx.doi.org/10.1016/j.accpm.2017.05.009] [PMID: 28870848]
[293]
Liuni A, Luca MC, Gori T, Parker JD. Rosuvastatin prevents conduit artery endothelial dysfunction induced by ischemia and reperfusion by a cyclooxygenase-2-dependent mechanism. J Am Coll Cardiol 2010; 55(10): 1002-6.
[http://dx.doi.org/10.1016/j.jacc.2009.11.046] [PMID: 20202516]
[294]
Hausenloy DJ, Chilian W, Crea F, et al. The coronary circulation in acute myocardial ischaemia/reperfusion injury: a target for cardioprotection. Cardiovasc Res 2019; 115(7): 1143-55.
[http://dx.doi.org/10.1093/cvr/cvy286] [PMID: 30428011]
[295]
Pitt B, Remme W, Zannad F, et al. Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study Investigators Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003; 348(14): 1309-21.
[http://dx.doi.org/10.1056/NEJMoa030207] [PMID: 12668699]
[296]
Pitt B, Zannad F, Remme WJ, et al. Randomized Aldactone Evaluation Study Investigators The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 1999; 341(10): 709-17.
[http://dx.doi.org/10.1056/NEJM199909023411001] [PMID: 10471456]
[297]
Li Y, Xie N, Liang M. Aldosterone Antagonists Reduce the Risk of Cardiovascular Mortality in Dialysis Patients: A Meta-Analysis. Evid Based Complement Alternat Med 2019.20191925243
[http://dx.doi.org/10.1155/2019/1925243] [PMID: 30941188]
[298]
Yang P, Shen W, Chen X, et al. Comparative efficacy and safety of mineralocorticoid receptor antagonists in heart failure: a network meta-analysis of randomized controlled trials. Heart Fail Rev 2019; 24(5): 637-46.
[http://dx.doi.org/10.1007/s10741-019-09790-5] [PMID: 31030322]
[299]
Bossard M, Binbraik Y, Beygui F, et al. Mineralocorticoid receptor antagonists in patients with acute myocardial infarction - A systematic review and meta-analysis of randomized trials. Am Heart J 2018; 195: 60-9.
[http://dx.doi.org/10.1016/j.ahj.2017.09.010] [PMID: 29224647]
[300]
Löfman I, Szummer K, Olsson H, Carrero JJ, Lund LH, Jernberg T. Association Between Mineralocorticoid Receptor Antagonist Use and Outcome in Myocardial Infarction Patients With Heart Failure. J Am Heart Assoc 2018; 7(14): e009359.
[http://dx.doi.org/10.1161/JAHA.118.009359] [PMID: 29980521]
[301]
Qin W, Rudolph AE, Bond BR, et al. Transgenic model of aldosterone-driven cardiac hypertrophy and heart failure. Circ Res 2003; 93(1): 69-76.
[http://dx.doi.org/10.1161/01.RES.0000080521.15238.E5] [PMID: 12791709]
[302]
Hayashi H, Kobara M, Abe M, et al. Aldosterone nongenomically produces NADPH oxidase-dependent reactive oxygen species and induces myocyte apoptosis. Hypertens Res 2008; 31(2): 363-75.
[http://dx.doi.org/10.1291/hypres.31.363] [PMID: 18360057]
[303]
Rudolph AE, Rocha R, McMahon EG. Aldosterone target organ protection by eplerenone. Mol Cell Endocrinol 2004; 217(1-2): 229-38.
[http://dx.doi.org/10.1016/j.mce.2003.10.047] [PMID: 15134822]
[304]
Ferreira JP, Rossello X, Pitt B, Rossignol P, Zannad F. Eplerenone in patients with myocardial infarction and “mid-range” ejection fraction: An analysis from the EPHESUS trial. Clin Cardiol 2019; 42(11): 1106-12.
[http://dx.doi.org/10.1002/clc.23261] [PMID: 31482613]
[305]
Fraccarollo D, Galuppo P, Hildemann S, Christ M, Ertl G, Bauersachs J. Additive improvement of left ventricular remodeling and neurohormonal activation by aldosterone receptor blockade with eplerenone and ACE inhibition in rats with myocardial infarction. J Am Coll Cardiol 2003; 42(9): 1666-73.
[http://dx.doi.org/10.1016/j.jacc.2003.05.003] [PMID: 14607457]
[306]
Schäfer A, Fraccarollo D, Hildemann SK, Tas P, Ertl G, Bauersachs J. Addition of the selective aldosterone receptor antagonist eplerenone to ACE inhibition in heart failure: effect on endothelial dysfunction. Cardiovasc Res 2003; 58(3): 655-62.
[http://dx.doi.org/10.1016/S0008-6363(03)00333-X] [PMID: 12798439]
[307]
Chen B, Geng J, Gao SX, Yue WW, Liu Q. Eplerenone Modulates Interleukin-33/sST2 Signaling and IL-1β in Left Ventricular Systolic Dysfunction After Acute Myocardial Infarction. J Interferon Cytokine Res 2018; 38(3): 137-44.
[http://dx.doi.org/10.1089/jir.2017.0067] [PMID: 29565745]
[308]
Schmidt K, Tissier R, Ghaleh B, Drogies T, Felix SB, Krieg T. Cardioprotective effects of mineralocorticoid receptor antagonists at reperfusion. Eur Heart J 2010; 31(13): 1655-62.
[http://dx.doi.org/10.1093/eurheartj/ehp555] [PMID: 20028693]
[309]
Davidson SM, Ferdinandy P, Andreadou I, et al. CARDIOPROTECTION COST Action (CA16225). Multitarget Strategies to Reduce Myocardial Ischemia/Reperfusion Injury: JACC Review Topic of the Week. J Am Coll Cardiol 2019; 73(1): 89-99.
[http://dx.doi.org/10.1016/j.jacc.2018.09.086] [PMID: 30621955]
[310]
Alburquerque-Béjar JJ, Barba I, Inserte J, et al. Combination therapy with remote ischaemic conditioning and insulin or exenatide enhances infarct size limitation in pigs. Cardiovasc Res 2015; 107(2): 246-54.
[http://dx.doi.org/10.1093/cvr/cvv171] [PMID: 26045476]
[311]
Cohen MV, Downey JM. The impact of irreproducibility and competing protection from P2Y12 antagonists on the discovery of cardioprotective interventions. Basic Res Cardiol 2017; 112(6): 64.
[http://dx.doi.org/10.1007/s00395-017-0653-y] [PMID: 28952016]
[312]
Audia JP, Yang XM, Crockett ES, et al. Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res Cardiol 2018; 113(5): 32.
[http://dx.doi.org/10.1007/s00395-018-0692-z] [PMID: 29992382]
[313]
Koshinuma S, Miyamae M, Kaneda K, Kotani J, Figueredo VM. Combination of necroptosis and apoptosis inhibition enhances cardioprotection against myocardial ischemia-reperfusion injury. J Anesth 2014; 28(2): 235-41.
[http://dx.doi.org/10.1007/s00540-013-1716-3] [PMID: 24113863]
[314]
Yang XM, Cui L, Alhammouri A, Downey JM, Cohen MV. Triple therapy greatly increases myocardial salvage during ischemia/reperfusion in the in situ rat heart. Cardiovasc Drugs Ther 2013; 27(5): 403-12.
[http://dx.doi.org/10.1007/s10557-013-6474-9] [PMID: 23832692]
[315]
Tratsiakovich Y, Gonon AT, Kiss A, et al. Myocardial protection by co-administration of L-arginine and tetrahydrobiopterin during ischemia and reperfusion. Int J Cardiol 2013; 169(1): 83-8.
[http://dx.doi.org/10.1016/j.ijcard.2013.08.075] [PMID: 24067598]
[316]
Fischer-Rasokat U, Beyersdorf F, Doenst T. Insulin addition after ischemia improves recovery of function equal to ischemic preconditioning in rat heart. Basic Res Cardiol 2003; 98(5): 329-36.
[http://dx.doi.org/10.1007/s00395-003-0414-y] [PMID: 12955406]
[317]
Helgeland E, Wergeland A, Sandøy RM, et al. Insulin and GSK3β-inhibition abrogates the infarct sparing-effect of ischemic postconditioning in ex vivo rat hearts. Scand Cardiovasc J 2017; 51(3): 159-66.
[http://dx.doi.org/10.1080/14017431.2017.1288920] [PMID: 28276718]
[318]
Eitel I, Stiermaier T, Rommel KP, et al. Cardioprotection by combined intrahospital remote ischaemic perconditioning and postconditioning in ST-elevation myocardial infarction: the randomized LIPSIA CONDITIONING trial. Eur Heart J 2015; 36(44): 3049-57.
[http://dx.doi.org/10.1093/eurheartj/ehv463] [PMID: 26385956]
[319]
Varga ZV, Giricz Z, Bencsik P, et al. Functional Genomics of Cardioprotection by Ischemic Conditioning and the Influence of Comorbid Conditions: Implications in Target Identification. Curr Drug Targets 2015; 16(8): 904-11.
[http://dx.doi.org/10.2174/1389450116666150427154203] [PMID: 25915487]
[320]
Hausenloy DJ, Garcia-Dorado D, Bøtker HE, et al. Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res 2017; 113(6): 564-85.
[http://dx.doi.org/10.1093/cvr/cvx049] [PMID: 28453734]
[321]
McCafferty K, Forbes S, Thiemermann C, Yaqoob MM. The challenge of translating ischemic conditioning from animal models to humans: the role of comorbidities. Dis Model Mech 2014; 7(12): 1321-33.
[http://dx.doi.org/10.1242/dmm.016741] [PMID: 25481012]
[322]
Speechly-Dick ME, Baxter GF, Yellon DM. Ischaemic preconditioning protects hypertrophied myocardium. Cardiovasc Res 1994; 28(7): 1025-9.
[http://dx.doi.org/10.1093/cvr/28.7.1025] [PMID: 7954588]
[323]
Hernández-Reséndiz S, Roldán FJ, Correa F, et al. Postconditioning protects against reperfusion injury in hypertensive dilated cardiomyopathy by activating MEK/ERK1/2 signaling. J Card Fail 2013; 19(2): 135-46.
[http://dx.doi.org/10.1016/j.cardfail.2013.01.003] [PMID: 23384639]
[324]
Penna C, Tullio F, Moro F, Folino A, Merlino A, Pagliaro P. Effects of a protocol of ischemic postconditioning and/or captopril in hearts of normotensive and hypertensive rats. Basic Res Cardiol 2010; 105(2): 181-92.
[http://dx.doi.org/10.1007/s00395-009-0075-6] [PMID: 20012872]
[325]
Wagner C, Ebner B, Tillack D, Strasser RH, Weinbrenner C. Cardioprotection by ischemic postconditioning is abrogated in hypertrophied myocardium of spontaneously hypertensive rats. J Cardiovasc Pharmacol 2013; 61(1): 35-41.
[http://dx.doi.org/10.1097/FJC.0b013e3182760c4d] [PMID: 23052031]
[326]
Moolman JA, Genade S, Tromp E, Opie LH, Lochner A. Ischaemic preconditioning does not protect hypertrophied myocardium against ischaemia. S Afr Med J 1997; 87(Suppl. 3): C151-6.
[PMID: 9254766]
[327]
Lorgis L, Gudjoncik A, Richard C, et al. Pre-infarction angina and outcomes in non-ST-segment elevation myocardial infarction: data from the RICO survey. PLoS One 2012; 7(12): e48513.
[http://dx.doi.org/10.1371/journal.pone.0048513] [PMID: 23272043]
[328]
Tang XL, Takano H, Xuan YT, et al. Hypercholesterolemia abrogates late preconditioning via a tetrahydrobiopterin-dependent mechanism in conscious rabbits. Circulation 2005; 112(14): 2149-56.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.566190] [PMID: 16186416]
[329]
Kupai K, Csonka C, Fekete V, et al. Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am J Physiol Heart Circ Physiol 2009; 297(5): H1729-35.
[http://dx.doi.org/10.1152/ajpheart.00484.2009] [PMID: 19734363]
[330]
Csont T, Balogh G, Csonka C, et al. Hyperlipidemia induced by high cholesterol diet inhibits heat shock response in rat hearts. Biochem Biophys Res Commun 2002; 290(5): 1535-8.
[http://dx.doi.org/10.1006/bbrc.2002.6377] [PMID: 11820796]
[331]
Wang TD, Chen WJ, Su SS, Lo SC, Lin WW, Lee YT. Increased cardiomyocyte apoptosis following ischemia and reperfusion in diet-induced hypercholesterolemia: relation to Bcl-2 and Bax proteins and caspase-3 activity. Lipids 2002; 37(4): 385-94.
[http://dx.doi.org/10.1007/s1145-002-0906-2] [PMID: 12030319]
[332]
Ungi I, Ungi T, Ruzsa Z, et al. Hypercholesterolemia attenuates the anti-ischemic effect of preconditioning during coronary angioplasty. Chest 2005; 128(3): 1623-8.
[http://dx.doi.org/10.1378/chest.128.3.1623] [PMID: 16162767]
[333]
Jung JH, Tantry US, Gurbel PA, Jeong YH. Current antiplatelet treatment strategy in patients with diabetes mellitus. Diabetes Metab J 2015; 39(2): 95-113.
[http://dx.doi.org/10.4093/dmj.2015.39.2.95] [PMID: 25922803]
[334]
Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 2014; 66(4): 1142-74.
[http://dx.doi.org/10.1124/pr.113.008300] [PMID: 25261534]
[335]
Russo I, Femminò S, Barale C, et al. Cardioprotective Properties of Human Platelets Are Lost in Uncontrolled Diabetes Mellitus: A Study in Isolated Rat Hearts. Front Physiol 2018; 9: 875.
[http://dx.doi.org/10.3389/fphys.2018.00875] [PMID: 30042694]
[336]
Means CK, Xiao CY, Li Z, et al. Sphingosine 1-phosphate S1P2 and S1P3 receptor-mediated Akt activation protects against in vivo myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2007; 292(6): H2944-51.
[http://dx.doi.org/10.1152/ajpheart.01331.2006] [PMID: 17293497]
[337]
Barrabés JA, Inserte J, Mirabet M, et al. Antagonism of P2Y12 or GPIIb/IIIa receptors reduces platelet-mediated myocardial injury after ischaemia and reperfusion in isolated rat hearts. Thromb Haemost 2010; 104(1): 128-35.
[http://dx.doi.org/10.1160/TH09-07-0440] [PMID: 20431845]
[338]
Tani M, Sano T, Ito M, Igarashi Y. Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. J Lipid Res 2005; 46(11): 2458-67.
[http://dx.doi.org/10.1194/jlr.M500268-JLR200] [PMID: 16061940]
[339]
Oikawa M, Yaoita H, Watanabe K, Maruyama Y. Attenuation of cardioprotective effect by postconditioning in coronary stenosed rat heart and its restoration by carvedilol. Circ J 2008; 72(12): 2081-6.
[http://dx.doi.org/10.1253/circj.CJ-08-0098] [PMID: 18946174]
[340]
Morales-Villegas EC, Di Sciascio G, Briguori C. Statins: cardiovascular risk reduction in percutaneous coronary intervention-basic and clinical evidence of hyperacute use of statins. Int J Hypertens 2011.: 2011904742.
[http://dx.doi.org/10.4061/2011/904742] [PMID: 21461336]
[341]
Cleveland JC Jr, Meldrum DR, Cain BS, Banerjee A, Harken AH. Oral sulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium. Two paradoxes revisited. Circulation 1997; 96(1): 29-32.
[http://dx.doi.org/10.1161/01.CIR.96.1.29] [PMID: 9236412]
[342]
Government U. Assessing the Efficacy and Safety of Medical Technologies: Congress of the United States. Office of Technology Assessment 1978.

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy