Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

抑制性分子的T细胞活化的同时表达预测食管鳞状细胞癌患者的生存率较差。

卷 21, 期 3, 2021

发表于: 20 November, 2020

页: [244 - 253] 页: 10

弟呕挨: 10.2174/1568009620666201120152333

价格: $65

摘要

背景:食管鳞状细胞癌(ESCC)是食管癌的主要亚型。 ESCC的五年生存率很低,并且用于ESCC治疗和预后评估的分子靶标非常有限。 T细胞对于清除癌细胞至关重要,而抑制T细胞活化的共抑制分子已成为治疗癌症患者的有前途的疗法。然而,在ESCC患者中,调控T细胞活化的共抑制分子的文献报道很少。 目的:我们旨在评估T细胞中抑制性检查点分子的存在如何影响患者的生存。 方法:我们对2014年2月至2015年12月接受食管癌切除的161例患者进行了随访研究,方法是对6种抑制T细胞活化的共抑制分子,即PD-1,CTLA-4,TIM-3进行免疫组织化学染色。 LAG-3,BTLA和A2AR。通过Kaplan-Meier生存分析分析了六个共抑制分子中每一个的表达与患者生存的相关性。我们还应用Kaplan-Meier分析来评估共抑制分子的伴随表达及其与患者生存率的相关性。 结果:我们发现PD-1,TIM-3和BTLA的水平可以用作ESCC患者总体生存的独立预后因素。更重要的是,我们的研究发现PD-1和TIM-3,PD-1和BTLA,TIM-3和BTLA的共表达显着降低了食管鳞癌患者的生存率(P <0.05)。 结论:因此,我们的结果表明在ESCC患者的免疫治疗中评估肿瘤组织中共抑制分子和靶向共表达分子的必要性。

关键词: ESCC,T细胞,PD-1,TIM-3,BTLA,存活率。

图形摘要
[1]
Castro, C.; Bosetti, C.; Malvezzi, M.; Bertuccio, P.; Levi, F.; Negri, E.; La Vecchia, C.; Lunet, N. Patterns and trends in esophageal cancer mortality and incidence in Europe (1980-2011) and predictions to 2015. Ann. Oncol., 2014, 25(1), 283-290.
[http://dx.doi.org/10.1093/annonc/mdt486] [PMID: 24356640]
[2]
Abbas, G.; Krasna, M. Overview of esophageal cancer. Ann. Cardiothorac. Surg., 2017, 6(2), 131-136.
[http://dx.doi.org/10.21037/acs.2017.03.03] [PMID: 28447001]
[3]
Arnold, M.; Laversanne, M.; Brown, L.M.; Devesa, S.S.; Bray, F. Predicting the future burden of esophageal cancer by histological subtype: international trends in incidence up to 2030. Am. J. Gastroenterol., 2017, 112(8), 1247-1255.
[http://dx.doi.org/10.1038/ajg.2017.155] [PMID: 28585555]
[4]
Pakzad, R.; Mohammadian-Hafshejani, A.; Khosravi, B.; Soltani, S.; Pakzad, I.; Mohammadian, M.; Salehiniya, H.; Momenimovahed, Z. The incidence and mortality of esophageal cancer and their relationship to development in Asia. Ann. Transl. Med., 2016, 4(2), 29.
[PMID: 26889482]
[5]
Chen, R.; Zheng, R.S.; Zhang, S.W.; Zeng, H.M.; Wang, S.M.; Sun, K.X.; Gu, X.Y.; Wei, W.W.; He, J. Analysis of incidence and mortality of esophageal cancer in China, 2015. Zhonghua Yu Fang Yi Xue Za Zhi, 2019, 53(11), 1094-1097.
[PMID: 31683393]
[6]
Liang, H.; Fan, J.H.; Qiao, Y.L. Epidemiology, etiology, and prevention of esophageal squamous cell carcinoma in China. Cancer Biol. Med., 2017, 14(1), 33-41.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0093] [PMID: 28443201]
[7]
Lin, Y.; Totsuka, Y.; Shan, B.; Wang, C.; Wei, W.; Qiao, Y.; Kikuchi, S.; Inoue, M.; Tanaka, H.; He, Y. Esophageal cancer in high-risk areas of China: research progress and challenges. Ann. Epidemiol., 2017, 27(3), 215-221.
[http://dx.doi.org/10.1016/j.annepidem.2016.11.004] [PMID: 28007352]
[8]
Nagami, Y.; Ominami, M.; Shiba, M.; Minamino, H.; Fukunaga, S.; Kameda, N.; Sugimori, S.; Machida, H.; Tanigawa, T.; Yamagami, H.; Watanabe, T.; Tominaga, K.; Fujiwara, Y.; Arakawa, T. The five-year survival rate after endoscopic submucosal dissection for superficial esophageal squamous cell neoplasia. Dig. Liver Dis., 2017, 49(4), 427-433.
[http://dx.doi.org/10.1016/j.dld.2016.12.009] [PMID: 28096057]
[9]
Napier, K.J.; Scheerer, M.; Misra, S. Esophageal cancer: A Review of epidemiology, pathogenesis, staging workup and treatment modalities. World J. Gastrointest. Oncol., 2014, 6(5), 112-120.
[http://dx.doi.org/10.4251/wjgo.v6.i5.112] [PMID: 24834141]
[10]
Nassri, A.; Zhu, H.; Muftah, M.; Ramzan, Z. Epidemiology and survival of esophageal cancer patients in an american cohort. Cureus, 2018, 10(4)
[http://dx.doi.org/10.7759/cureus.2507] [PMID: 29930885]
[11]
Shin, A.; Won, Y.J.; Jung, H.K.; Kong, H.J.; Jung, K.W.; Oh, C.M.; Choe, S.; Lee, J. Trends in incidence and survival of esophageal cancer in Korea: Analysis of the Korea Central Cancer Registry Database. J. Gastroenterol. Hepatol., 2018, 33(12), 1961-1968.
[http://dx.doi.org/10.1111/jgh.14289] [PMID: 29802647]
[12]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[13]
Simeone, E.; Ascierto, P.A. Immunomodulating antibodies in the treatment of metastatic melanoma: the experience with anti-CTLA-4, anti-CD137, and anti-PD1. J. Immunotoxicol., 2012, 9(3), 241-247.
[http://dx.doi.org/10.3109/1547691X.2012.678021] [PMID: 22524673]
[14]
Merelli, B.; Massi, D.; Cattaneo, L.; Mandalà, M. Targeting the PD1/PD-L1 axis in melanoma: biological rationale, clinical challenges and opportunities. Crit. Rev. Oncol. Hematol., 2014, 89(1), 140-165.
[http://dx.doi.org/10.1016/j.critrevonc.2013.08.002] [PMID: 24029602]
[15]
Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; O’Brien, M.; Rao, S.; Hotta, K.; Leiby, M.A.; Lubiniecki, G.M.; Shentu, Y.; Rangwala, R.; Brahmer, J.R.; Investigators, K. KEYNOTE-024 investigators. pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med., 2016, 375(19), 1823-1833.
[http://dx.doi.org/10.1056/NEJMoa1606774] [PMID: 27718847]
[16]
Preusser, M.; Lim, M.; Hafler, D.A.; Reardon, D.A.; Sampson, J.H. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat. Rev. Neurol., 2015, 11(9), 504-514.
[http://dx.doi.org/10.1038/nrneurol.2015.139] [PMID: 26260659]
[17]
Kononen, J.; Bubendorf, L.; Kallioniemi, A.; Bärlund, M.; Schraml, P.; Leighton, S.; Torhorst, J.; Mihatsch, M.J.; Sauter, G.; Kallioniemi, O.P. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med., 1998, 4(7), 844-847.
[http://dx.doi.org/10.1038/nm0798-844] [PMID: 9662379]
[18]
Wang, J.C.; Xu, Y.; Huang, Z.M.; Lu, X.J. T cell exhaustion in cancer: Mechanisms and clinical implications. J. Cell. Biochem., 2018, 119(6), 4279-4286.
[http://dx.doi.org/10.1002/jcb.26645] [PMID: 29274296]
[19]
Sadelain, M.; Rivière, I.; Riddell, S. Therapeutic T cell engineering. Nature, 2017, 545(7655), 423-431.
[http://dx.doi.org/10.1038/nature22395] [PMID: 28541315]
[20]
Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front. Pharmacol., 2017, 8, 561.
[http://dx.doi.org/10.3389/fphar.2017.00561] [PMID: 28878676]
[21]
Wang, X.; Yang, X.; Zhang, C.; Wang, Y.; Cheng, T.; Duan, L.; Tong, Z.; Tan, S.; Zhang, H.; Saw, P.E.; Gu, Y.; Wang, J.; Zhang, Y.; Shang, L.; Liu, Y.; Jiang, S.; Yan, B.; Li, R.; Yang, Y.; Yu, J.; Chen, Y.; Gao, G.F.; Ye, Q.; Gao, S. Tumor cell-intrinsic PD-1 receptor is a tumor suppressor and mediates resistance to PD-1 blockade therapy. Proc. Natl. Acad. Sci. USA, 2020, 117(12), 6640-6650.
[http://dx.doi.org/10.1073/pnas.1921445117] [PMID: 32161124]
[22]
Taube, J.M.; Klein, A.; Brahmer, J.R.; Xu, H.; Pan, X.; Kim, J.H.; Chen, L.; Pardoll, D.M.; Topalian, S.L.; Anders, R.A. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res., 2014, 20(19), 5064-5074.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3271] [PMID: 24714771]
[23]
Stathopoulou, C.; Gangaplara, A.; Mallett, G.; Flomerfelt, F. A.; Liniany, L. P.; Knight, D.; Samsel, L. A.; Berlinguer-Palmini, R.; Yim, J. J.; Felizardo, T. C.; Eckhaus, M. A.; Edgington-Mitchell, L.; Martinez-Fabregas, J.; Zhu, J.; Fowler, D. H.; van Kasteren, S. I.; Laurence, A.; Bogyo, M.; Watts, C.; Shevach, E. M.; Amarnath, S. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity, 2018, 49(2), 247-263.
[24]
Boutros, C.; Tarhini, A.; Routier, E.; Lambotte, O.; Ladurie, F.L.; Carbonnel, F.; Izzeddine, H.; Marabelle, A.; Champiat, S.; Berdelou, A.; Lanoy, E.; Texier, M.; Libenciuc, C.; Eggermont, A.M.; Soria, J.C.; Mateus, C.; Robert, C. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol., 2016, 13(8), 473-486.
[http://dx.doi.org/10.1038/nrclinonc.2016.58] [PMID: 27141885]
[25]
Gunturi, A.; McDermott, D.F. Potential of new therapies like anti-PD1 in kidney cancer. Curr. Treat. Options Oncol., 2014, 15(1), 137-146.
[http://dx.doi.org/10.1007/s11864-013-0268-y] [PMID: 24504486]
[26]
Gong, J.; Chehrazi-Raffle, A.; Reddi, S.; Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J. Immunother. Cancer, 2018, 6(1), 8.
[http://dx.doi.org/10.1186/s40425-018-0316-z] [PMID: 29357948]
[27]
Fujii, T.; Hirakata, T.; Kurozumi, S.; Tokuda, S.; Nakazawa, Y.; Obayashi, S.; Yajima, R.; Oyama, T.; Shirabe, K. VEGF-A Is Associated With the Degree of TILs and PD-L1 Expression in Primary Breast Cancer. In Vivo, 2020, 34(5), 2641-2646.
[http://dx.doi.org/10.21873/invivo.12082] [PMID: 32871794]
[28]
Shin, S.J.; Jeon, Y.K.; Kim, P.J.; Cho, Y.M.; Koh, J.; Chung, D.H.; Go, H. Clinicopathologic Analysis of PD-L1 and PD-L2 Expression in Renal Cell Carcinoma: Association with Oncogenic Proteins Status. Ann. Surg. Oncol., 2016, 23(2), 694-702.
[http://dx.doi.org/10.1245/s10434-015-4903-7] [PMID: 26464193]
[29]
Schmittnaegel, M.; Rigamonti, N.; Kadioglu, E.; Cassará, A.; Wyser Rmili, C.; Kiialainen, A.; Kienast, Y.; Mueller, H.J.; Ooi, C.H.; Laoui, D.; De Palma, M. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl. Med., 2017, 9(385)
[http://dx.doi.org/10.1126/scitranslmed.aak9670] [PMID: 28404865]
[30]
Xue, S.; Hu, M.; Li, P.; Ma, J.; Xie, L.; Teng, F.; Zhu, Y.; Fan, B.; Mu, D.; Yu, J. Relationship between expression of PD-L1 and tumor angiogenesis, proliferation, and invasion in glioma. Oncotarget, 2017, 8(30), 49702-49712.
[http://dx.doi.org/10.18632/oncotarget.17922] [PMID: 28591697]
[31]
Allen, E.; Jabouille, A.; Rivera, L.B.; Lodewijckx, I.; Missiaen, R.; Steri, V.; Feyen, K.; Tawney, J.; Hanahan, D.; Michael, I.P.; Bergers, G. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med., 2017, 9(385)
[http://dx.doi.org/10.1126/scitranslmed.aak9679] [PMID: 28404866]
[32]
Schoenfeld, J.; Jinushi, M.; Nakazaki, Y.; Wiener, D.; Park, J.; Soiffer, R.; Neuberg, D.; Mihm, M.; Hodi, F.S.; Dranoff, G. Active immunotherapy induces antibody responses that target tumor angiogenesis. Cancer Res., 2010, 70(24), 10150-10160.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1852] [PMID: 21159637]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy