Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Novel Mitochondria-targeted Drugs for Cancer Therapy

Author(s): Jindriska Leischner Fialova, Martina Raudenska, Milan Jakubek, Zdenek Kejik, Pavel Martasek, Petr Babula, Adam Matkowski, Petr Filipensky and Michal Masarik*

Volume 21, Issue 7, 2021

Published on: 18 November, 2020

Page: [816 - 832] Pages: 17

DOI: 10.2174/1389557520666201118153242

Price: $65

conference banner
Abstract

The search for mitochondria-targeted drugs has dramatically risen over the last decade. Mitochondria are essential organelles serving not only as a powerhouse of the cell but also as a key player in cell proliferation and cell death. Their central role in the energetic metabolism, calcium homeostasis and apoptosis makes them an intriguing field of interest for cancer pharmacology. In cancer cells, many mitochondrial signaling and metabolic pathways are altered. These changes contribute to cancer development and progression. Due to changes in mitochondrial metabolism and changes in membrane potential, cancer cells are more susceptible to mitochondria-targeted therapy. The loss of functional mitochondria leads to the arrest of cancer progression and/or a cancer cell death. Identification of mitochondrial changes specific for tumor growth and progression, rational development of new mitochondria-targeted drugs and research on delivery agents led to the advance of this promising area. This review will highlight the current findings in mitochondrial biology, which are important for cancer initiation, progression and resistance, and discuss approaches of cancer pharmacology with a special focus on the anti-cancer drugs referred to as ‘mitocans’.

Keywords: Mitochondria, targeting, metabolism, cancer, treatment, inhibitors, hexokinase, tricarboxylic acid cycle, respiratory chain, electron transport chain.

Graphical Abstract
[1]
Tzagoloff, A.; Myers, A.M. Genetics of mitochondrial biogenesis. Annu. Rev. Biochem., 1986, 55(1), 249-285.
[http://dx.doi.org/10.1146/annurev.bi.55.070186.001341] [PMID: 2427014]
[2]
Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.L.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; Schreier, P.H.; Smith, A.J.H.; Staden, R.; Young, I.G. Sequence and organization of the human mitochondrial genome. Nature, 1981, 290(5806), 457-465.
[http://dx.doi.org/10.1038/290457a0] [PMID: 7219534]
[3]
Gray, M.W.; Burger, G.; Lang, B.F. Mitochondrial evolution. Science, 1999, 283(5407), 1476-1481.
[http://dx.doi.org/10.1126/science.283.5407.1476] [PMID: 10066161]
[4]
Hashimoto, Y.; Niikura, T.; Tajima, H.; Yasukawa, T.; Sudo, H.; Ito, Y.; Kita, Y.; Kawasumi, M.; Kouyama, K.; Doyu, M.; Sobue, G.; Koide, T.; Tsuji, S.; Lang, J.; Kurokawa, K.; Nishimoto, I. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc. Natl. Acad. Sci. USA, 2001, 98(11), 6336-6341.
[http://dx.doi.org/10.1073/pnas.101133498] [PMID: 11371646]
[5]
Chatterjee, A.; Mambo, E.; Sidransky, D. Mitochondrial DNA mutations in human cancer. Oncogene, 2006, 25(34), 4663-4674.
[http://dx.doi.org/10.1038/sj.onc.1209604] [PMID: 16892080]
[6]
Taylor, R.W.; Turnbull, D.M. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet., 2005, 6(5), 389-402.
[http://dx.doi.org/10.1038/nrg1606] [PMID: 15861210]
[7]
Warburg, O.; Wind, F.; Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol., 1927, 8(6), 519-530.
[http://dx.doi.org/10.1085/jgp.8.6.519] [PMID: 19872213]
[8]
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
[http://dx.doi.org/10.1126/science.123.3191.309] [PMID: 13298683]
[9]
Wenner, C.E.; Spirtes, M.A.; Weinhouse, S. Metabolism of neoplastic tissue. II. A survey of enzymes of the citric acid cycle in transplanted tumors. Cancer Res., 1952, 12(1), 44-49.
[PMID: 14886961]
[10]
Weinhouse, S.; Millington, R.H.; Wenner, C.E. Metabolism of neoplastic tissue. I. The oxidation of carbohydrate and fatty acids in transplanted tumors. Cancer Res., 1951, 11(11), 845-850.
[PMID: 14886933]
[11]
Fantin, V.R.; St-Pierre, J.; Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 2006, 9(6), 425-434.
[http://dx.doi.org/10.1016/j.ccr.2006.04.023] [PMID: 16766262]
[12]
Müller, M.; Siems, W.; Buttgereit, F.; Dumdey, R.; Rapoport, S.M. Quantification of ATP-producing and consuming processes of Ehrlich ascites tumour cells. Eur. J. Biochem., 1986, 161(3), 701-705.
[http://dx.doi.org/10.1111/j.1432-1033.1986.tb10496.x] [PMID: 2947801]
[13]
Griguer, C.E.; Oliva, C.R.; Gillespie, G.Y. Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines. J. Neurooncol., 2005, 74(2), 123-133.
[http://dx.doi.org/10.1007/s11060-004-6404-6] [PMID: 16193382]
[14]
Ward, P.S.; Thompson, C.B. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3), 297-308.
[http://dx.doi.org/10.1016/j.ccr.2012.02.014] [PMID: 22439925]
[15]
Jia, D.; Park, J.H.; Jung, K.H.; Levine, H.; Kaipparettu, B.A. Elucidating the metabolic plasticity of cancer: Mitochondrial reprogramming and hybrid metabolic states. Cells, 2018, 7(3), 21.
[http://dx.doi.org/10.3390/cells7030021] [PMID: 29534029]
[16]
Chen, Y.; Azad, M.B.; Gibson, S.B. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ., 2009, 16(7), 1040-1052.
[http://dx.doi.org/10.1038/cdd.2009.49] [PMID: 19407826]
[17]
Park, J.H.; Vithayathil, S.; Kumar, S.; Sung, P-L.; Dobrolecki, L.E.; Putluri, V.; Bhat, V.B.; Bhowmik, S.K.; Gupta, V.; Arora, K.; Wu, D.; Tsouko, E.; Zhang, Y.; Maity, S.; Donti, T.R.; Graham, B.H.; Frigo, D.E.; Coarfa, C.; Yotnda, P.; Putluri, N.; Sreekumar, A.; Lewis, M.T.; Creighton, C.J.; Wong, L.C.; Kaipparettu, B.A. Fatty acid oxidation-driven Src links mitochondrial energy reprogramming and oncogenic properties in triple-negative breast cancer. Cell Rep., 2016, 14(9), 2154-2165.
[http://dx.doi.org/10.1016/j.celrep.2016.02.004] [PMID: 26923594]
[18]
Rasola, A.; Bernardi, P. Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium, 2011, 50(3), 222-233.
[http://dx.doi.org/10.1016/j.ceca.2011.04.007] [PMID: 21601280]
[19]
Colvin, H.; Nishida, N.; Konno, M.; Haraguchi, N.; Takahashi, H.; Nishimura, J.; Hata, T.; Kawamoto, K.; Asai, A.; Tsunekuni, K.; Koseki, J.; Mizushima, T.; Satoh, T.; Doki, Y.; Mori, M.; Ishii, H. Oncometabolite D-2-hydroxyglurate directly induces epithelial-mesenchymal transition and is associated with distant metastasis in colorectal cancer. Sci. Rep., 2016, 6(1), 36289.
[http://dx.doi.org/10.1038/srep36289] [PMID: 27824159]
[20]
Yang, M.; Soga, T.; Pollard, P.J. Oncometabolites: Linking altered metabolism with cancer. J. Clin. Invest., 2013, 123(9), 3652-3658.
[http://dx.doi.org/10.1172/JCI67228] [PMID: 23999438]
[21]
Pereira, L.; Soares, P.; Máximo, V.; Samuels, D.C. Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: Pathogenicity analysis of reported somatic mtDNA mutations in tumors. BMC Cancer, 2012, 12(1), 53.
[http://dx.doi.org/10.1186/1471-2407-12-53] [PMID: 22299657]
[22]
Chinnery, P.F.; Samuels, D.C.; Elson, J.; Turnbull, D.M. Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: Is there a common mechanism? Lancet, 2002, 360(9342), 1323-1325.
[http://dx.doi.org/10.1016/S0140-6736(02)11310-9] [PMID: 12414225]
[23]
Dong, L-F.; Kovarova, J.; Bajzikova, M.; Bezawork-Geleta, A.; Svec, D.; Endaya, B.; Sachaphibulkij, K.; Coelho, A.R.; Sebkova, N.; Ruzickova, A.; Tan, A.S.; Kluckova, K.; Judasova, K.; Zamecnikova, K.; Rychtarcikova, Z.; Gopalan, V.; Andera, L.; Sobol, M.; Yan, B.; Pattnaik, B.; Bhatraju, N.; Truksa, J.; Stopka, P.; Hozak, P.; Lam, A.K.; Sedlacek, R.; Oliveira, P.J.; Kubista, M.; Agrawal, A.; Dvorakova-Hortova, K.; Rohlena, J.; Berridge, M.V.; Neuzil, J. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. eLife, 2017, 6e22187
[http://dx.doi.org/10.7554/eLife.22187] [PMID: 28195532]
[24]
Tan, A.S.; Baty, J.W.; Dong, L-F.; Bezawork-Geleta, A.; Endaya, B.; Goodwin, J.; Bajzikova, M.; Kovarova, J.; Peterka, M.; Yan, B.; Pesdar, E.A.; Sobol, M.; Filimonenko, A.; Stuart, S.; Vondrusova, M.; Kluckova, K.; Sachaphibulkij, K.; Rohlena, J.; Hozak, P.; Truksa, J.; Eccles, D.; Haupt, L.M.; Griffiths, L.R.; Neuzil, J.; Berridge, M.V. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab., 2015, 21(1), 81-94.
[http://dx.doi.org/10.1016/j.cmet.2014.12.003] [PMID: 25565207]
[25]
D’Souza, G.G.M.; Wagle, M.A.; Saxena, V.; Shah, A. Approaches for targeting mitochondria in cancer therapy. Biochim. Biophys. Acta, 2011, 1807(6), 689-696.
[http://dx.doi.org/10.1016/j.bbabio.2010.08.008] [PMID: 20732297]
[26]
Szewczyk, A.; Wojtczak, L. Mitochondria as a pharmacological target. Pharmacol. Rev., 2002, 54(1), 101-127.
[http://dx.doi.org/10.1124/pr.54.1.101] [PMID: 11870261]
[27]
Guzman-Villanueva, D.; Weissig, V. Mitochondria-targeted agents: Mitochondriotropics, mitochondriotoxics, and mitocans. Pharmacology of Mitochondria; Singh, H.; Sheu, S-S., Eds.; Springer International Publishing: Cham, 2017, pp. 423-438..
[28]
Zheng, N.; Tsai, H.N.; Zhang, X.; Shedden, K.; Rosania, G.R. The subcellular distribution of small molecules: A meta-analysis. Mol. Pharm., 2011, 8(5), 1611-1618.
[http://dx.doi.org/10.1021/mp200093z] [PMID: 21774504]
[29]
Horobin, R.W.; Trapp, S.; Weissig, V. Mitochondriotropics: A review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J. Control. Release, 2007, 121(3), 125-136.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.040] [PMID: 17658192]
[30]
Stephen, J. Ralph; Pauline Low; Langfeng Dong; Alfons Lawen and Jiri Neuzil. Mitocans: Mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents. Rec. Pat. Anticancer Drug Discov., 2006, 1(3), 327-346.
[http://dx.doi.org/10.2174/157489206778776952]
[31]
Green, D.R.; Kroemer, G. The pathophysiology of mitochondrial cell death. Science, 2004, 305(5684), 626-629.
[http://dx.doi.org/10.1126/science.1099320] [PMID: 15286356]
[32]
Neuzil, J.; Dong, L-F.; Rohlena, J.; Truksa, J.; Ralph, S.J. Classification of mitocans, anti-cancer drugs acting on mitochondria. Mitochondrion, 2013, 13(3), 199-208.
[http://dx.doi.org/10.1016/j.mito.2012.07.112] [PMID: 22846431]
[33]
Han, M.; Vakili, M.R.; Soleymani Abyaneh, H.; Molavi, O.; Lai, R.; Lavasanifar, A. Mitochondrial delivery of doxorubicin via triphenylphosphine modification for overcoming drug resistance in MDA-MB-435/DOX cells. Mol. Pharm., 2014, 11(8), 2640-2649.
[http://dx.doi.org/10.1021/mp500038g] [PMID: 24811541]
[34]
Chamberlain, G.R.; Tulumello, D.V.; Kelley, S.O. Targeted delivery of doxorubicin to mitochondria. ACS Chem. Biol., 2013, 8(7), 1389-1395.
[http://dx.doi.org/10.1021/cb400095v] [PMID: 23590228]
[35]
Wisnovsky, S.P.; Wilson, J.J.; Radford, R.J.; Pereira, M.P.; Chan, M.R.; Laposa, R.R.; Lippard, S.J.; Kelley, S.O. Targeting mitochondrial DNA with a platinum-based anticancer agent. Chem. Biol., 2013, 20(11), 1323-1328.
[http://dx.doi.org/10.1016/j.chembiol.2013.08.010] [PMID: 24183971]
[36]
Agemy, L.; Friedmann-Morvinski, D.; Kotamraju, V.R.; Roth, L.; Sugahara, K.N.; Girard, O.M.; Mattrey, R.F.; Verma, I.M.; Ruoslahti, E. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc. Natl. Acad. Sci. USA, 2011, 108(42), 17450-17455.
[http://dx.doi.org/10.1073/pnas.1114518108] [PMID: 21969599]
[37]
Dong, L-F.; Jameson, V.J.A.; Tilly, D.; Prochazka, L.; Rohlena, J.; Valis, K.; Truksa, J.; Zobalova, R.; Mahdavian, E.; Kluckova, K.; Stantic, M.; Stursa, J.; Freeman, R.; Witting, P.K.; Norberg, E.; Goodwin, J.; Salvatore, B.A.; Novotna, J.; Turanek, J.; Ledvina, M.; Hozak, P.; Zhivotovsky, B.; Coster, M.J.; Ralph, S.J.; Smith, R.A.J.; Neuzil, J. Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: A new paradigm for effective cancer therapy. Free Radic. Biol. Med., 2011, 50(11), 1546-1555.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.02.032] [PMID: 21402148]
[38]
Battogtokh, G.; Cho, Y-Y.; Lee, J.Y.; Lee, H.S.; Kang, H.C. Mitochondrial-targeting anticancer agent conjugates and nanocarrier systems for cancer treatment. Front. Pharmacol., 2018, 9, 922.
[http://dx.doi.org/10.3389/fphar.2018.00922] [PMID: 30174604]
[39]
Dairkee, S.H.; Hackett, A.J. Differential retention of rhodamine 123 by breast carcinoma and normal human mammary tissue. Breast Cancer Res. Treat., 1991, 18(1), 57-61.
[http://dx.doi.org/10.1007/BF01975444] [PMID: 1854980]
[40]
Zielonka, J.; Joseph, J.; Sikora, A.; Hardy, M.; Ouari, O.; Vasquez-Vivar, J.; Cheng, G.; Lopez, M.; Kalyanaraman, B. Mitochondria-targeted triphenylphosphonium-based compounds: Syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev., 2017, 117(15), 10043-10120.
[http://dx.doi.org/10.1021/acs.chemrev.7b00042] [PMID: 28654243]
[41]
Herr, H.W.; Huffman, J.L.; Huryk, R.; Heston, W.D.; Melamed, M.R.; Whitmore, W.F., Jr Anticarcinoma activity of rhodamine 123 against a murine renal adenocarcinoma. Cancer Res., 1988, 48(8), 2061-2063.
[PMID: 3349477]
[42]
Horton, K.L.; Stewart, K.M.; Fonseca, S.B.; Guo, Q.; Kelley, S.O. Mitochondria-penetrating peptides. Chem. Biol., 2008, 15(4), 375-382.
[http://dx.doi.org/10.1016/j.chembiol.2008.03.015] [PMID: 18420144]
[43]
Szeto, H.H. Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J., 2006, 8(2), E277-E283.
[http://dx.doi.org/10.1007/BF02854898] [PMID: 16796378]
[44]
Weissig, V.; Lasch, J.; Erdos, G.; Meyer, H.W.; Rowe, T.C.; Hughes, J. DQAsomes: A novel potential drug and gene delivery system made from Dequalinium. Pharm. Res., 1998, 15(2), 334-337.
[http://dx.doi.org/10.1023/A:1011991307631] [PMID: 9523323]
[45]
Zupančič, Š.; Kocbek, P.; Zariwala, M.G.; Renshaw, D.; Gul, M.O.; Elsaid, Z.; Taylor, K.M.G.; Somavarapu, S. Design and development of novel mitochondrial targeted nanocarriers, DQAsomes for curcumin inhalation. Mol. Pharm., 2014, 11(7), 2334-2345.
[http://dx.doi.org/10.1021/mp500003q] [PMID: 24852198]
[46]
D’Souza, G.G.; Cheng, S-M.; Boddapati, S.V.; Horobin, R.W.; Weissig, V. Nanocarrier-assisted sub-cellular targeting to the site of mitochondria improves the pro-apoptotic activity of paclitaxel. J. Drug Target., 2008, 16(7), 578-585.
[http://dx.doi.org/10.1080/10611860802228855] [PMID: 18686127]
[47]
Eidelman, E.; Twum-Ampofo, J.; Ansari, J.; Siddiqui, M.M. The metabolic phenotype of prostate cancer. Front. Oncol., 2017, 7, 131.
[http://dx.doi.org/10.3389/fonc.2017.00131] [PMID: 28674679]
[48]
Schöder, H.; Gönen, M. Screening for cancer with PET and PET/CT: Potential and limitations. J. Nucl. Med., 2007, 48(1)(Suppl. 1), 4S-18S.
[PMID: 17204716]
[49]
Polakis, P.G.; Wilson, J.E. An intact hydrophobic N-terminal sequence is critical for binding of rat brain hexokinase to mitochondria. Arch. Biochem. Biophys., 1985, 236(1), 328-337.
[http://dx.doi.org/10.1016/0003-9861(85)90633-2] [PMID: 2578271]
[50]
Nakashima, R.A.; Mangan, P.S.; Colombini, M.; Pedersen, P.L. Hexokinase receptor complex in hepatoma mitochondria: Evidence from N,N′-dicyclohexylcarbodiimide-labeling studies for the involvement of the pore-forming protein VDAC. Biochemistry, 1986, 25(5), 1015-1021.
[http://dx.doi.org/10.1021/bi00353a010] [PMID: 3008816]
[51]
Katabi, M.M.; Chan, H.L.B.; Karp, S.E.; Batist, G. Hexokinase type II: A novel tumor-specific promoter for gene-targeted therapy differentially expressed and regulated in human cancer cells. Hum. Gene Ther., 1999, 10(2), 155-164.
[http://dx.doi.org/10.1089/10430349950018959] [PMID: 10022541]
[52]
Mathupala, S.P.; Ko, Y.H.; Pedersen, P.L. Hexokinase-2 bound to mitochondria: Cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin. Cancer Biol., 2009, 19(1), 17-24.
[http://dx.doi.org/10.1016/j.semcancer.2008.11.006] [PMID: 19101634]
[53]
Patra, K.C.; Wang, Q.; Bhaskar, P.T.; Miller, L.; Wang, Z.; Wheaton, W.; Chandel, N.; Laakso, M.; Muller, W.J.; Allen, E.L.; Jha, A.K.; Smolen, G.A.; Clasquin, M.F.; Robey, B.; Hay, N. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell, 2013, 24(2), 213-228.
[http://dx.doi.org/10.1016/j.ccr.2013.06.014] [PMID: 23911236]
[54]
Anderson, M.; Marayati, R.; Moffitt, R.; Yeh, J.J. Hexokinase 2 promotes tumor growth and metastasis by regulating lactate production in pancreatic cancer. Oncotarget, 2016, 8(34), 56081-56094.
[http://dx.doi.org/10.18632/oncotarget.9760] [PMID: 28915575]
[55]
Chen, G.; Zhang, Y.; Liang, J.; Li, W.; Zhu, Y.; Zhang, M.; Wang, C.; Hou, J. Deregulation of hexokinase II is associated with glycolysis, autophagy, and the epithelial-mesenchymal transition in tongue squamous cell carcinoma under hypoxia. BioMed Res. Int., 2018, 20188480762
[http://dx.doi.org/10.1155/2018/8480762] [PMID: 29682563]
[56]
Lin, H.; Zeng, J.; Xie, R.; Schulz, M.J.; Tedesco, R.; Qu, J.; Erhard, K.F.; Mack, J.F.; Raha, K.; Rendina, A.R.; Szewczuk, L.M.; Kratz, P.M.; Jurewicz, A.J.; Cecconie, T.; Martens, S.; McDevitt, P.J.; Martin, J.D.; Chen, S.B.; Jiang, Y.; Nickels, L.; Schwartz, B.J.; Smallwood, A.; Zhao, B.; Campobasso, N.; Qian, Y.; Briand, J.; Rominger, C.M.; Oleykowski, C.; Hardwicke, M.A.; Luengo, J.I. Discovery of a novel 2,6-disubstituted glucosamine series of potent and selective hexokinase 2 inhibitors. ACS Med. Chem. Lett., 2015, 7(3), 217-222.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00214] [PMID: 26985301]
[57]
Chen, Z.; Zhang, H.; Lu, W.; Huang, P. Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochim. Biophys. Acta, 2009, 1787(5), 553-560.
[http://dx.doi.org/10.1016/j.bbabio.2009.03.003] [PMID: 19285479]
[58]
Wang, H.; Wang, L.; Zhang, Y.; Wang, J.; Deng, Y.; Lin, D. Inhibition of glycolytic enzyme hexokinase II (HK2) suppresses lung tumor growth. Cancer Cell Int., 2016, 16(1), 9.
[http://dx.doi.org/10.1186/s12935-016-0280-y] [PMID: 26884725]
[59]
Li, W.; Zheng, M.; Wu, S.; Gao, S.; Yang, M.; Li, Z.; Min, Q.; Sun, W.; Chen, L.; Xiang, G.; Li, H. Benserazide, a dopadecarboxylase inhibitor, suppresses tumor growth by targeting hexokinase 2. J. Exp. Clin. Cancer Res., 2017, 36(1), 58.
[http://dx.doi.org/10.1186/s13046-017-0530-4] [PMID: 28427443]
[60]
Cohen, S.; Flescher, E. Methyl jasmonate: A plant stress hormone as an anti-cancer drug. Phytochemistry, 2009, 70(13-14), 1600-1609.
[http://dx.doi.org/10.1016/j.phytochem.2009.06.007] [PMID: 19660769]
[61]
Wang, T.X.; Shi, X.Y.; Cong, Y.; Zhang, Z.Q.; Liu, Y.H. Prosapogenin A inhibits cell growth of MCF7 via downregulating STAT3 and glycometabolism-related gene. Yao Xue Xue Bao, 2013, 48(9), 1510-1514.
[PMID: 24358789]
[62]
Raimundo, N.; Baysal, B.E.; Shadel, G.S. Revisiting the TCA cycle: Signaling to tumor formation. Trends Mol. Med., 2011, 17(11), 641-649.
[http://dx.doi.org/10.1016/j.molmed.2011.06.001] [PMID: 21764377]
[63]
Wei, M-H.; Toure, O.; Glenn, G.M.; Pithukpakorn, M.; Neckers, L.; Stolle, C.; Choyke, P.; Grubb, R.; Middelton, L.; Turner, M.L.; Walther, M.M.; Merino, M.J.; Zbar, B.; Linehan, W.M.; Toro, J.R. Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer. J. Med. Genet., 2006, 43(1), 18-27.
[http://dx.doi.org/10.1136/jmg.2005.033506] [PMID: 15937070]
[64]
Toro, J.R.; Nickerson, M.L.; Wei, M-H.; Warren, M.B.; Glenn, G.M.; Turner, M.L.; Stewart, L.; Duray, P.; Tourre, O.; Sharma, N.; Choyke, P.; Stratton, P.; Merino, M.; Walther, M.M.; Linehan, W.M.; Schmidt, L.S.; Zbar, B. Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am. J. Hum. Genet., 2003, 73(1), 95-106.
[http://dx.doi.org/10.1086/376435] [PMID: 12772087]
[65]
Isaacs, J.S.; Jung, Y.J.; Mole, D.R.; Lee, S.; Torres-Cabala, C.; Chung, Y-L.; Merino, M.; Trepel, J.; Zbar, B.; Toro, J.; Ratcliffe, P.J.; Linehan, W.M.; Neckers, L. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: Novel role of fumarate in regulation of HIF stability. Cancer Cell, 2005, 8(2), 143-153.
[http://dx.doi.org/10.1016/j.ccr.2005.06.017] [PMID: 16098467]
[66]
Linehan, W.M.; Rouault, T.A. Molecular pathways: Fumarate hydratase-deficient kidney cancer - targeting the Warburg effect in cancer. Clin. Cancer Res., 2013, 19(13), 3345-3352.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0304] [PMID: 23633457]
[67]
Frezza, C.; Zheng, L.; Tennant, D.A.; Papkovsky, D.B.; Hedley, B.A.; Kalna, G.; Watson, D.G.; Gottlieb, E. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival. PLoS One, 2011, 6(9)e24411
[http://dx.doi.org/10.1371/journal.pone.0024411] [PMID: 21912692]
[68]
Frezza, C.; Zheng, L.; Folger, O.; Rajagopalan, K.N.; MacKenzie, E.D.; Jerby, L.; Micaroni, M.; Chaneton, B.; Adam, J.; Hedley, A.; Kalna, G.; Tomlinson, I.P.M.; Pollard, P.J.; Watson, D.G.; Deberardinis, R.J.; Shlomi, T.; Ruppin, E.; Gottlieb, E. Heme oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature, 2011, 477(7363), 225-228.
[http://dx.doi.org/10.1038/nature10363] [PMID: 21849978]
[69]
Yu, H-E.; Wang, F.; Yu, F.; Zeng, Z-L.; Wang, Y.; Lu, Y-X.; Jin, Y.; Wang, D-S.; Qiu, M-Z.; Pu, H-Y.; Kang, T-B.; Xie, D.; Ju, H-Q.; Xu, R-H.; Luo, H-Y. Suppression of fumarate hydratase activity increases the efficacy of cisplatin-mediated chemotherapy in gastric cancer. Cell Death Dis., 2019, 10(6), 413.
[http://dx.doi.org/10.1038/s41419-019-1652-8] [PMID: 31138787]
[70]
Geisbrecht, B.V.; Gould, S.J. The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. J. Biol. Chem., 1999, 274(43), 30527-30533.
[http://dx.doi.org/10.1074/jbc.274.43.30527] [PMID: 10521434]
[71]
Ma, T.; Peng, Y.; Huang, W.; Liu, Y.; Ding, J. The β and γ subunits play distinct functional roles in the α2βγ heterotetramer of human NAD-dependent isocitrate dehydrogenase. Sci. Rep., 2017, 7(1), 41882.
[http://dx.doi.org/10.1038/srep41882] [PMID: 28139779]
[72]
Bergaggio, E.; Piva, R. Wild-type IDH enzymes as actionable targets for cancer therapy. Cancers (Basel), 2019, 11(4)E563
[http://dx.doi.org/10.3390/cancers11040563] [PMID: 31010244]
[73]
Zeng, L.; Morinibu, A.; Kobayashi, M.; Zhu, Y.; Wang, X.; Goto, Y.; Yeom, C.J.; Zhao, T.; Hirota, K.; Shinomiya, K.; Itasaka, S.; Yoshimura, M.; Guo, G.; Hammond, E.M.; Hiraoka, M.; Harada, H. Aberrant IDH3α expression promotes malignant tumor growth by inducing HIF-1-mediated metabolic reprogramming and angiogenesis. Oncogene, 2015, 34(36), 4758-4766.
[http://dx.doi.org/10.1038/onc.2014.411] [PMID: 25531325]
[74]
Yamada, S.; Kotake, Y.; Demizu, Y.; Kurihara, M.; Sekino, Y.; Kanda, Y. NAD-dependent isocitrate dehydrogenase as a novel target of tributyltin in human embryonic carcinoma cells. Sci. Rep., 2014, 4(1), 5952.
[http://dx.doi.org/10.1038/srep05952] [PMID: 25092173]
[75]
Reitman, Z.J.; Yan, H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: Alterations at a crossroads of cellular metabolism. J. Natl. Cancer Inst., 2010, 102(13), 932-941.
[http://dx.doi.org/10.1093/jnci/djq187] [PMID: 20513808]
[76]
Xu, W.; Yang, H.; Liu, Y.; Yang, Y.; Wang, P.; Kim, S-H.; Ito, S.; Yang, C.; Wang, P.; Xiao, M-T.; Liu, L.X.; Jiang, W.Q.; Liu, J.; Zhang, J.Y.; Wang, B.; Frye, S.; Zhang, Y.; Xu, Y.H.; Lei, Q.Y.; Guan, K-L.; Zhao, S.M.; Xiong, Y. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell, 2011, 19(1), 17-30.
[http://dx.doi.org/10.1016/j.ccr.2010.12.014] [PMID: 21251613]
[77]
Wang, L-N.; Tong, S-W.; Hu, H-D.; Ye, F.; Li, S-L.; Ren, H.; Zhang, D-Z.; Xiang, R.; Yang, Y-X. Quantitative proteome analysis of ovarian cancer tissues using a iTRAQ approach. J. Cell. Biochem., 2012, 113(12), 3762-3772.
[http://dx.doi.org/10.1002/jcb.24250] [PMID: 22807371]
[78]
Altenberg, B.; Greulich, K.O. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics, 2004, 84(6), 1014-1020.
[http://dx.doi.org/10.1016/j.ygeno.2004.08.010] [PMID: 15533718]
[79]
Li, J.; He, Y.; Tan, Z.; Lu, J.; Li, L.; Song, X.; Shi, F.; Xie, L.; You, S.; Luo, X.; Li, N.; Li, Y.; Liu, X.; Tang, M.; Weng, X.; Yi, W.; Fan, J.; Zhou, J.; Qiang, G.; Qiu, S.; Wu, W.; Bode, A.M.; Cao, Y. Wild-type IDH2 promotes the Warburg effect and tumor growth through HIF1α in lung cancer. Theranostics, 2018, 8(15), 4050-4061.
[http://dx.doi.org/10.7150/thno.21524] [PMID: 30128035]
[80]
Chen, X.; Xu, W.; Wang, C.; Liu, F.; Guan, S.; Sun, Y.; Wang, X.; An, D.; Wen, Z.; Chen, P.; Cheng, Y. The clinical significance of isocitrate dehydrogenase 2 in esophageal squamous cell carcinoma. Am. J. Cancer Res., 2017, 7(3), 700-714.
[PMID: 28401022]
[81]
Wang, F.; Travins, J.; DeLaBarre, B.; Penard-Lacronique, V.; Schalm, S.; Hansen, E.; Straley, K.; Kernytsky, A.; Liu, W.; Gliser, C.; Yang, H.; Gross, S.; Artin, E.; Saada, V.; Mylonas, E.; Quivoron, C.; Popovici-Muller, J.; Saunders, J.O.; Salituro, F.G.; Yan, S.; Murray, S.; Wei, W.; Gao, Y.; Dang, L.; Dorsch, M.; Agresta, S.; Schenkein, D.P.; Biller, S.A.; Su, S.M.; de Botton, S.; Yen, K.E. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science, 2013, 340(6132), 622-626.
[http://dx.doi.org/10.1126/science.1234769] [PMID: 23558173]
[82]
Chen, J.; Yang, J.; Sun, X.; Wang, Z.; Cheng, X.; Lu, W.; Cai, X.; Hu, C.; Shen, X.; Cao, P. Allosteric inhibitor remotely modulates the conformation of the orthestric pockets in mutant IDH2/R140Q. Sci. Rep., 2017, 7(1), 16458.
[http://dx.doi.org/10.1038/s41598-017-16427-w] [PMID: 29184081]
[83]
Kernytsky, A.; Wang, F.; Hansen, E.; Schalm, S.; Straley, K.; Gliser, C.; Yang, H.; Travins, J.; Murray, S.; Dorsch, M.; Agresta, S.; Schenkein, D.P.; Biller, S.A.; Su, S.M.; Liu, W.; Yen, K.E. IDH2 mutation-induced histone and DNA hypermethylation is progressively reversed by small-molecule inhibition. Blood, 2015, 125(2), 296-303.
[http://dx.doi.org/10.1182/blood-2013-10-533604] [PMID: 25398940]
[84]
Yen, K.; Travins, J.; Wang, F.; David, M.D.; Artin, E.; Straley, K.; Padyana, A.; Gross, S.; DeLaBarre, B.; Tobin, E.; Chen, Y.; Nagaraja, R.; Choe, S.; Jin, L.; Konteatis, Z.; Cianchetta, G.; Saunders, J.O.; Salituro, F.G.; Quivoron, C.; Opolon, P.; Bawa, O.; Saada, V.; Paci, A.; Broutin, S.; Bernard, O.A.; de Botton, S.; Marteyn, B.S.; Pilichowska, M.; Xu, Y.; Fang, C.; Jiang, F.; Wei, W.; Jin, S.; Silverman, L.; Liu, W.; Yang, H.; Dang, L.; Dorsch, M.; Penard-Lacronique, V.; Biller, S.A.; Su, S.M. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. Cancer Discov., 2017, 7(5), 478-493.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1034] [PMID: 28193778]
[85]
Galkin, M.; Jonas, B.A. Enasidenib in the treatment of relapsed/ refractory acute myeloid leukemia: An evidence-based review of its place in therapy.. https://www.dovepress.com/enasidenib-in-the-treatment-of-relapsedrefractory-acute-myeloid-leukem-peer-reviewed-fulltext-article-CE
[86]
Amatangelo, M.D.; Quek, L.; Shih, A.; Stein, E.M.; Roshal, M.; David, M.D.; Marteyn, B.; Farnoud, N.R.; de Botton, S.; Bernard, O.A.; Wu, B.; Yen, K.E.; Tallman, M.S.; Papaemmanuil, E.; Penard-Lacronique, V.; Thakurta, A.; Vyas, P.; Levine, R.L. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood, 2017, 130(6), 732-741.
[http://dx.doi.org/10.1182/blood-2017-04-779447] [PMID: 28588019]
[87]
Tallman, M. S.; Knight, R. D.; Glasmacher, A. G.; Dohner, H. Phase III randomized, open-label study comparing the efficacy and safety of AG-221 vs Conventional Care Regimens (CCR) in older patients with Advanced Acute Myeloid Leukemia (AML) with isocitrate dehydrogenase (IDH)-2 mutations in relapse or refractory to multiple prior treatments: The IDHENTIFY trial. JCO, 2016, 34(15)..
[88]
Amaya, M.L.; Pollyea, D.A. Targeting the IDH2 pathway in acute myeloid leukemia. Clin. Cancer Res., 2018, 24(20), 4931-4936.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0536] [PMID: 29769206]
[89]
Konteatis, Z.; Artin, E.; Nicolay, B.; Straley, K.; Padyana, A.K.; Jin, L.; Chen, Y.; Narayaraswamy, R.; Tong, S.; Wang, F.; Zhou, D.; Cui, D.; Cai, Z.; Luo, Z.; Fang, C.; Tang, H.; Lv, X.; Nagaraja, R.; Yang, H.; Su, S.M.; Sui, Z.; Dang, L.; Yen, K.; Popovici-Muller, J.; Codega, P.; Campos, C.; Mellinghoff, I.K.; Biller, S.A. Vorasidenib (AG-881): A first-in-class, brain-penetrant dual inhibitor of mutant IDH1 and 2 for treatment of glioma. ACS Med. Chem. Lett., 2020, 11(2), 101-107.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00509] [PMID: 32071674]
[90]
Maklashina, E.; Cecchini, G. The quinone-binding and catalytic site of complex II. Biochim. Biophys. Acta, 2010, 1797(12), 1877-1882.
[http://dx.doi.org/10.1016/j.bbabio.2010.02.015] [PMID: 20175986]
[91]
Pasini, B.; Stratakis, C.A. SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. J. Intern. Med., 2009, 266(1), 19-42.
[http://dx.doi.org/10.1111/j.1365-2796.2009.02111.x] [PMID: 19522823]
[92]
King, A.; Selak, M.A.; Gottlieb, E. Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer. Oncogene, 2006, 25(34), 4675-4682.
[http://dx.doi.org/10.1038/sj.onc.1209594] [PMID: 16892081]
[93]
Xiao, M.; Yang, H.; Xu, W.; Ma, S.; Lin, H.; Zhu, H.; Liu, L.; Liu, Y.; Yang, C.; Xu, Y.; Zhao, S.; Ye, D.; Xiong, Y.; Guan, K-L. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev., 2012, 26(12), 1326-1338.
[http://dx.doi.org/10.1101/gad.191056.112] [PMID: 22677546]
[94]
Gomez-Lazaro, M.; Galindo, M.F.; Melero-Fernandez de Mera, R.M.; Fernandez-Gómez, F.J.; Concannon, C.G.; Segura, M.F.; Comella, J.X.; Prehn, J.H.M.; Jordan, J. Reactive oxygen species and p38 mitogen-activated protein kinase activate Bax to induce mitochondrial cytochrome c release and apoptosis in response to malonate. Mol. Pharmacol., 2007, 71(3), 736-743.
[http://dx.doi.org/10.1124/mol.106.030718] [PMID: 17172466]
[95]
Huang, L.S.; Sun, G.; Cobessi, D.; Wang, A.C.; Shen, J.T.; Tung, E.Y.; Anderson, V.E.; Berry, E.A. 3-nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. J. Biol. Chem., 2006, 281(9), 5965-5972.
[http://dx.doi.org/10.1074/jbc.M511270200] [PMID: 16371358]
[96]
Sun, F.; Huo, X.; Zhai, Y.; Wang, A.; Xu, J.; Su, D.; Bartlam, M.; Rao, Z. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell, 2005, 121(7), 1043-1057.
[http://dx.doi.org/10.1016/j.cell.2005.05.025] [PMID: 15989954]
[97]
Bonsi, P.; Cuomo, D.; Martella, G.; Sciamanna, G.; Tolu, M.; Calabresi, P.; Bernardi, G.; Pisani, A. Mitochondrial toxins in basal ganglia disorders: From animal models to therapeutic strategies. Curr. Neuropharmacol., 2006, 4(1), 69-75.
[http://dx.doi.org/10.2174/157015906775203039] [PMID: 18615133]
[98]
Liot, G.; Bossy, B.; Lubitz, S.; Kushnareva, Y.; Sejbuk, N.; Bossy-Wetzel, E.; Complex, I.I. Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway. Cell Death Differ., 2009, 16(6), 899-909.
[http://dx.doi.org/10.1038/cdd.2009.22] [PMID: 19300456]
[99]
Bajzikova, M.; Kovarova, J.; Coelho, A.R.; Boukalova, S.; Oh, S.; Rohlenova, K.; Svec, D.; Hubackova, S.; Endaya, B.; Judasova, K.; Bezawork-Geleta, A.; Kluckova, K.; Chatre, L.; Zobalova, R.; Novakova, A.; Vanova, K.; Ezrova, Z.; Maghzal, G.J.; Magalhaes Novais, S.; Olsinova, M.; Krobova, L.; An, Y.J.; Davidova, E.; Nahacka, Z.; Sobol, M.; Cunha-Oliveira, T.; Sandoval-Acuña, C.; Strnad, H.; Zhang, T.; Huynh, T.; Serafim, T.L.; Hozak, P.; Sardao, V.A.; Koopman, W.J.H.; Ricchetti, M.; Oliveira, P.J.; Kolar, F.; Kubista, M.; Truksa, J.; Dvorakova-Hortova, K.; Pacak, K.; Gurlich, R.; Stocker, R.; Zhou, Y.; Berridge, M.V.; Park, S.; Dong, L.; Rohlena, J.; Neuzil, J. Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab., 2019, 29(2), 399-416.e10.
[http://dx.doi.org/10.1016/j.cmet.2018.10.014] [PMID: 30449682]
[100]
Efremov, R.G.; Baradaran, R.; Sazanov, L.A. The architecture of respiratory complex I. Nature, 2010, 465(7297), 441-445.
[http://dx.doi.org/10.1038/nature09066] [PMID: 20505720]
[101]
Berrisford, J.M.; Sazanov, L.A. Structural basis for the mechanism of respiratory complex I. J. Biol. Chem., 2009, 284(43), 29773-29783.
[http://dx.doi.org/10.1074/jbc.M109.032144] [PMID: 19635800]
[102]
Iommarini, L.; Kurelac, I.; Capristo, M.; Calvaruso, M.A.; Giorgio, V.; Bergamini, C.; Ghelli, A.; Nanni, P.; De Giovanni, C.; Carelli, V.; Fato, R.; Lollini, P.L.; Rugolo, M.; Gasparre, G.; Porcelli, A.M. Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment. Hum. Mol. Genet., 2014, 23(6), 1453-1466.
[http://dx.doi.org/10.1093/hmg/ddt533] [PMID: 24163135]
[103]
Calabrese, C.; Iommarini, L.; Kurelac, I.; Calvaruso, M.A.; Capristo, M.; Lollini, P-L.; Nanni, P.; Bergamini, C.; Nicoletti, G.; Giovanni, C.D.; Ghelli, A.; Giorgio, V.; Caratozzolo, M.F.; Marzano, F.; Manzari, C.; Betts, C.M.; Carelli, V.; Ceccarelli, C.; Attimonelli, M.; Romeo, G.; Fato, R.; Rugolo, M.; Tullo, A.; Gasparre, G.; Porcelli, A.M. Respiratory complex I is essential to induce a Warburg profile in mitochondria-defective tumor cells. Cancer Metab., 2013, 1(1), 11.
[http://dx.doi.org/10.1186/2049-3002-1-11] [PMID: 24280190]
[104]
Li, L-D.; Sun, H-F.; Liu, X-X.; Gao, S-P.; Jiang, H-L.; Hu, X.; Jin, W. Down-regulation of NDUFB9 promotes breast cancer cell proliferation, metastasis by mediating mitochondrial metabolism. PLoS One, 2015, 10(12)e0144441
[http://dx.doi.org/10.1371/journal.pone.0144441] [PMID: 26641458]
[105]
Philley, J.V.; Kannan, A.; Qin, W.; Sauter, E.R.; Ikebe, M.; Hertweck, K.L.; Troyer, D.A.; Semmes, O.J.; Dasgupta, S. Complex-I alteration and enhanced mitochondrial fusion are associated with prostate cancer progression. J. Cell. Physiol., 2016, 231(6), 1364-1374.
[http://dx.doi.org/10.1002/jcp.25240] [PMID: 26530043]
[106]
Yu, Y.; Lv, F.; Lin, H.; Qian, G.; Jiang, Y.S.; Pang, L.X.; Wang, Y.P.; Wang, X.F.; Kang, Y.M.; Li, C.B.; Liu, Q.; Xu, J.Z.; You, W. Mitochondrial ND3 G10398A mutation: A biomarker for breast cancer. Genet. Mol. Res., 2015, 14(4), 17426-17431.
[http://dx.doi.org/10.4238/2015.December.21.12] [PMID: 26782384]
[107]
Su, C-Y.; Chang, Y-C.; Yang, C-J.; Huang, M-S.; Hsiao, M. The opposite prognostic effect of NDUFS1 and NDUFS8 in lung cancer reflects the oncojanus role of mitochondrial complex I. Sci. Rep., 2016, 6(1), 31357.
[http://dx.doi.org/10.1038/srep31357] [PMID: 27516145]
[108]
Kim, H.; Komiyama, T.; Inomoto, C.; Kamiguchi, H.; Kajiwara, H.; Kobayashi, H.; Nakamura, N.; Terachi, T. Mutations in the mitochondrial ND1 gene are associated with postoperative prognosis of localized renal cell carcinoma. Int. J. Mol. Sci., 2016, 17(12), 2049.
[http://dx.doi.org/10.3390/ijms17122049] [PMID: 27941608]
[109]
Horton, T.M.; Petros, J.A.; Heddi, A.; Shoffner, J.; Kaufman, A.E.; Graham, S.D., Jr; Gramlich, T.; Wallace, D.C. Novel mitochondrial DNA deletion found in a renal cell carcinoma. Genes Chromosomes Cancer, 1996, 15(2), 95-101.
[http://dx.doi.org/10.1002/(SICI)1098-2264(199602)15:2<95:AID-GCC3>3.0.CO;2-Z] [PMID: 8834172]
[110]
Gasparre, G.; Porcelli, A.M.; Bonora, E.; Pennisi, L.F.; Toller, M.; Iommarini, L.; Ghelli, A.; Moretti, M.; Betts, C.M.; Martinelli, G.N.; Ceroni, A.R.; Curcio, F.; Carelli, V.; Rugolo, M.; Tallini, G.; Romeo, G. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc. Natl. Acad. Sci. USA, 2007, 104(21), 9001-9006.
[http://dx.doi.org/10.1073/pnas.0703056104] [PMID: 17517629]
[111]
Evangelisti, C.; de Biase, D.; Kurelac, I.; Ceccarelli, C.; Prokisch, H.; Meitinger, T.; Caria, P.; Vanni, R.; Romeo, G.; Tallini, G.; Gasparre, G.; Bonora, E. A mutation screening of oncogenes, tumor suppressor gene TP53 and nuclear encoded mitochondrial complex I genes in oncocytic thyroid tumors. BMC Cancer, 2015, 15(1), 157.
[http://dx.doi.org/10.1186/s12885-015-1122-3] [PMID: 25880213]
[112]
Akouchekian, M.; Houshmand, M.; Akbari, M.H.H.; Kamalidehghan, B.; Dehghan, M. Analysis of mitochondrial ND1 gene in human colorectal cancer. J. Res. Med. Sci., 2011, 16(1), 50-55.
[PMID: 21448383]
[113]
Birsoy, K.; Wang, T.; Chen, W.W.; Freinkman, E.; Abu-Remaileh, M.; Sabatini, D.M. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell, 2015, 162(3), 540-551.
[http://dx.doi.org/10.1016/j.cell.2015.07.016] [PMID: 26232224]
[114]
Sullivan, L.B.; Gui, D.Y.; Hosios, A.M.; Bush, L.N.; Freinkman, E.; Vander Heiden, M.G. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell, 2015, 162(3), 552-563.
[http://dx.doi.org/10.1016/j.cell.2015.07.017] [PMID: 26232225]
[115]
Ahn, C.S.; Metallo, C.M. Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab., 2015, 3(1), 1.
[http://dx.doi.org/10.1186/s40170-015-0128-2] [PMID: 25621173]
[116]
Selak, M.A.; Armour, S.M.; MacKenzie, E.D.; Boulahbel, H.; Watson, D.G.; Mansfield, K.D.; Pan, Y.; Simon, M.C.; Thompson, C.B.; Gottlieb, E. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell, 2005, 7(1), 77-85.
[http://dx.doi.org/10.1016/j.ccr.2004.11.022] [PMID: 15652751]
[117]
Pan-Montojo, F.; Anichtchik, O.; Dening, Y.; Knels, L.; Pursche, S.; Jung, R.; Jackson, S.; Gille, G.; Spillantini, M.G.; Reichmann, H.; Funk, R.H.W. Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One, 2010, 5(1)e8762
[http://dx.doi.org/10.1371/journal.pone.0008762] [PMID: 20098733]
[118]
Drechsel, D.A.; Patel, M. Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radic. Biol. Med., 2008, 44(11), 1873-1886.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.02.008] [PMID: 18342017]
[119]
Bridges, H.R.; Jones, A.J.Y.; Pollak, M.N.; Hirst, J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem. J., 2014, 462(3), 475-487.
[http://dx.doi.org/10.1042/BJ20140620] [PMID: 25017630]
[120]
Thakur, S.; Daley, B.; Gaskins, K.; Vasko, V.V.; Boufraqech, M.; Patel, D.; Sourbier, C.; Reece, J.; Cheng, S-Y.; Kebebew, E.; Agarwal, S.; Klubo-Gwiezdzinska, J. Metformin targets mitochondrial glycerophosphate dehydrogenase to control rate of oxidative phosphorylation and growth of thyroid cancer in vitro and in vivo. Clin. Cancer Res., 2018, 24(16), 4030-4043.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3167] [PMID: 29691295]
[121]
Hodeib, M.; Ogrodzinski, M.P.; Vergnes, L.; Reue, K.; Karlan, B.Y.; Lunt, S.Y.; Aspuria, P.P. Metformin induces distinct bioenergetic and metabolic profiles in sensitive versus resistant high grade serous ovarian cancer and normal fallopian tube secretory epithelial cells. Oncotarget, 2017, 9(3), 4044-4060.
[http://dx.doi.org/10.18632/oncotarget.23661] [PMID: 29423103]
[122]
Gui, D.Y.; Sullivan, L.B.; Luengo, A.; Hosios, A.M.; Bush, L.N.; Gitego, N.; Davidson, S.M.; Freinkman, E.; Thomas, C.J.; Vander Heiden, M.G. Environment dictates dependence on mitochondrial complex I for NAD+ and aspartate production and determines cancer cell sensitivity to metformin. Cell Metab., 2016, 24(5), 716-727.
[http://dx.doi.org/10.1016/j.cmet.2016.09.006] [PMID: 27746050]
[123]
Fendt, S-M.; Bell, E.L.; Keibler, M.A.; Davidson, S.M.; Wirth, G.J.; Fiske, B.; Mayers, J.R.; Schwab, M.; Bellinger, G.; Csibi, A.; Patnaik, A.; Blouin, M.J.; Cantley, L.C.; Guarente, L.; Blenis, J.; Pollak, M.N.; Olumi, A.F.; Vander Heiden, M.G.; Stephanopoulos, G. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res., 2013, 73(14), 4429-4438.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0080] [PMID: 23687346]
[124]
Andrzejewski, S.; Gravel, S-P.; Pollak, M.; St-Pierre, J. Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab., 2014, 2(1), 12.
[http://dx.doi.org/10.1186/2049-3002-2-12] [PMID: 25184038]
[125]
Cheng, G.; Zielonka, J.; Ouari, O.; Lopez, M.; McAllister, D.; Boyle, K.; Barrios, C.S.; Weber, J.J.; Johnson, B.D.; Hardy, M.; Dwinell, M.B.; Kalyanaraman, B. Mitochondria-targeted analogues of metformin exhibit enhanced antiproliferative and radiosensitizing effects in pancreatic cancer cells. Cancer Res., 2016, 76(13), 3904-3915.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2534] [PMID: 27216187]
[126]
Rosand, J.; Friedberg, J.W.; Yang, J.M. Fatal phenformin-associated lactic acidosis. Ann. Intern. Med., 1997, 127(2), 170.
[http://dx.doi.org/10.7326/0003-4819-127-2-199707150-00034] [PMID: 9230023]
[127]
Birsoy, K.; Possemato, R.; Lorbeer, F.K.; Bayraktar, E.C.; Thiru, P.; Yucel, B.; Wang, T.; Chen, W.W.; Clish, C.B.; Sabatini, D.M. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature, 2014, 508(7494), 108-112.
[http://dx.doi.org/10.1038/nature13110] [PMID: 24670634]
[128]
de Mey, S.; Jiang, H.; Corbet, C.; Wang, H.; Dufait, I.; Law, K.; Bastien, E.; Verovski, V.; Gevaert, T.; Feron, O.; De Ridder, M. Antidiabetic biguanides radiosensitize hypoxic colorectal cancer cells through a decrease in oxygen consumption. Front. Pharmacol., 2018, 9, 1073.
[http://dx.doi.org/10.3389/fphar.2018.01073] [PMID: 30337872]
[129]
Villani, L.A.; Smith, B.K.; Marcinko, K.; Ford, R.J.; Broadfield, L.A.; Green, A.E.; Houde, V.P.; Muti, P.; Tsakiridis, T.; Steinberg, G.R. The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration. Mol. Metab., 2016, 5(10), 1048-1056.
[http://dx.doi.org/10.1016/j.molmet.2016.08.014] [PMID: 27689018]
[130]
Schöckel, L.; Glasauer, A.; Basit, F.; Bitschar, K.; Truong, H.; Erdmann, G.; Algire, C.; Hägebarth, A.; Willems, P.H.; Kopitz, C.; Koopman, W.J.; Héroult, M. Targeting mitochondrial complex I using BAY 87-2243 reduces melanoma tumor growth. Cancer Metab., 2015, 3(1), 11.
[http://dx.doi.org/10.1186/s40170-015-0138-0] [PMID: 26500770]
[131]
Wilk, A.; Wyczechowska, D.; Zapata, A.; Dean, M.; Mullinax, J.; Marrero, L.; Parsons, C.; Peruzzi, F.; Culicchia, F.; Ochoa, A.; Grabacka, M.; Reiss, K. Molecular mechanisms of fenofibrate-induced metabolic catastrophe and glioblastoma cell death. Mol. Cell. Biol., 2015, 35(1), 182-198.
[http://dx.doi.org/10.1128/MCB.00562-14] [PMID: 25332241]
[132]
Bastian, A.; Matsuzaki, S.; Humphries, K.M.; Pharaoh, G.A.; Doshi, A.; Zaware, N.; Gangjee, A.; Ihnat, M.A. AG311, a small molecule inhibitor of complex I and hypoxia-induced HIF-1α stabilization. Cancer Lett., 2017, 388, 149-157.
[http://dx.doi.org/10.1016/j.canlet.2016.11.040] [PMID: 27939695]
[133]
Morgan, J.B.; Liu, Y.; Coothankandaswamy, V.; Mahdi, F.; Jekabsons, M.B.; Gerwick, W.H.; Valeriote, F.A.; Zhou, Y-D.; Nagle, D.G. Kalkitoxin inhibits angiogenesis, disrupts cellular hypoxic signaling, and blocks mitochondrial electron transport in tumor cells. Mar. Drugs, 2015, 13(3), 1552-1568.
[http://dx.doi.org/10.3390/md13031552] [PMID: 25803180]
[134]
Moreira, P.I.; Custódio, J.; Moreno, A.; Oliveira, C.R.; Santos, M.S. Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure. J. Biol. Chem., 2006, 281(15), 10143-10152.
[http://dx.doi.org/10.1074/jbc.M510249200] [PMID: 16410252]
[135]
Kallio, A.; Zheng, A.; Dahllund, J.; Heiskanen, K.M.; Härkönen, P. Role of mitochondria in tamoxifen-induced rapid death of MCF-7 breast cancer cells. Apoptosis, 2005, 10(6), 1395-1410.
[http://dx.doi.org/10.1007/s10495-005-2137-z] [PMID: 16215679]
[136]
Rohlenova, K.; Sachaphibulkij, K.; Stursa, J.; Bezawork-Geleta, A.; Blecha, J.; Endaya, B.; Werner, L.; Cerny, J.; Zobalova, R.; Goodwin, J.; Spacek, T.; Alizadeh Pesdar, E.; Yan, B.; Nguyen, M.N.; Vondrusova, M.; Sobol, M.; Jezek, P.; Hozak, P.; Truksa, J.; Rohlena, J.; Dong, L-F.; Neuzil, J. Selective disruption of respiratory supercomplexes as a new strategy to suppress Her2high breast cancer. Antioxid. Redox Signal., 2017, 26(2), 84-103.
[http://dx.doi.org/10.1089/ars.2016.6677] [PMID: 27392540]
[137]
Hubackova, S.; Davidova, E.; Rohlenova, K.; Stursa, J.; Werner, L.; Andera, L.; Dong, L.; Terp, M.G.; Hodny, Z.; Ditzel, H.J.; Rohlena, J.; Neuzil, J. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ., 2019, 26(2), 276-290.
[http://dx.doi.org/10.1038/s41418-018-0118-3] [PMID: 29786070]
[138]
Molina, J.R.; Sun, Y.; Protopopova, M.; Gera, S.; Bandi, M.; Bristow, C.; McAfoos, T.; Morlacchi, P.; Ackroyd, J.; Agip, A.A.; Al-Atrash, G.; Asara, J.; Bardenhagen, J.; Carrillo, C.C.; Carroll, C.; Chang, E.; Ciurea, S.; Cross, J.B.; Czako, B.; Deem, A.; Daver, N.; de Groot, J.F.; Dong, J-W.; Feng, N.; Gao, G.; Gay, J.; Do, M.G.; Greer, J.; Giuliani, V.; Han, J.; Han, L.; Henry, V.K.; Hirst, J.; Huang, S.; Jiang, Y.; Kang, Z.; Khor, T.; Konoplev, S.; Lin, Y-H.; Liu, G.; Lodi, A.; Lofton, T.; Ma, H.; Mahendra, M.; Matre, P.; Mullinax, R.; Peoples, M.; Petrocchi, A.; Rodriguez-Canale, J.; Serreli, R.; Shi, T.; Smith, M.; Tabe, Y.; Theroff, J.; Tiziani, S.; Xu, Q.; Zhang, Q.; Muller, F.; DePinho, R.A.; Toniatti, C.; Draetta, G.F.; Heffernan, T.P.; Konopleva, M.; Jones, P.; Di Francesco, M.E.; Marszalek, J.R. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med., 2018, 24(7), 1036-1046.
[http://dx.doi.org/10.1038/s41591-018-0052-4] [PMID: 29892070]
[139]
Fischer, G.M.; Jalali, A.; Kircher, D.A.; Lee, W-C.; McQuade, J.L.; Haydu, L.E.; Joon, A.Y.; Reuben, A.; de Macedo, M.P.; Carapeto, F.C.L.; Yang, C.; Srivastava, A.; Ambati, C.R.; Sreekumar, A.; Hudgens, C.W.; Knighton, B.; Deng, W.; Ferguson, S.D.; Tawbi, H.A.; Glitza, I.C.; Gershenwald, J.E.; Vashisht Gopal, Y.N.; Hwu, P.; Huse, J.T.; Wargo, J.A.; Futreal, P.A.; Putluri, N.; Lazar, A.J.; DeBerardinis, R.J.; Marszalek, J.R.; Zhang, J.; Holmen, S.L.; Tetzlaff, M.T.; Davies, M.A. Molecular profiling reveals unique immune and metabolic features of melanoma brain metastases. Cancer Discov., 2019, 9(5), 628-645.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1489] [PMID: 30787016]
[140]
Yankovskaya, V.; Horsefield, R.; Törnroth, S.; Luna-Chavez, C.; Miyoshi, H.; Léger, C.; Byrne, B.; Cecchini, G.; Iwata, S. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science, 2003, 299(5607), 700-704.
[http://dx.doi.org/10.1126/science.1079605] [PMID: 12560550]
[141]
Neuzil, J.; Weber, T.; Gellert, N.; Weber, C. Selective cancer cell killing by α-tocopheryl succinate. Br. J. Cancer, 2001, 84(1), 87-89.
[http://dx.doi.org/10.1054/bjoc.2000.1559] [PMID: 11139318]
[142]
Neuzil, J.; Wang, X-F.; Dong, L-F.; Low, P.; Ralph, S.J. Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett., 2006, 580(22), 5125-5129.
[http://dx.doi.org/10.1016/j.febslet.2006.05.072] [PMID: 16979626]
[143]
Weber, T.; Dalen, H.; Andera, L.; Nègre-Salvayre, A.; Augé, N.; Sticha, M.; Lloret, A.; Terman, A.; Witting, P.K.; Higuchi, M.; Plasilova, M.; Zivny, J.; Gellert, N.; Weber, C.; Neuzil, J. Mitochondria play a central role in apoptosis induced by α-tocopheryl succinate, an agent with antineoplastic activity: Comparison with receptor-mediated pro-apoptotic signaling. Biochemistry, 2003, 42(14), 4277-4291.
[http://dx.doi.org/10.1021/bi020527j] [PMID: 12680782]
[144]
Valis, K.; Prochazka, L.; Boura, E.; Chladova, J.; Obsil, T.; Rohlena, J.; Truksa, J.; Dong, L-F.; Ralph, S.J.; Neuzil, J. Hippo/Mst1 stimulates transcription of the proapoptotic mediator NOXA in a FoxO1-dependent manner. Cancer Res., 2011, 71(3), 946-954.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2203] [PMID: 21245099]
[145]
Tomasetti, M.; Rippo, M.R.; Alleva, R.; Moretti, S.; Andera, L.; Neuzil, J.; Procopio, A. α-tocopheryl succinate and TRAIL selectively synergise in induction of apoptosis in human malignant mesothelioma cells. Br. J. Cancer, 2004, 90(8), 1644-1653.
[http://dx.doi.org/10.1038/sj.bjc.6601707] [PMID: 15083198]
[146]
Anderson, K.; Lawson, K.A.; Simmons-Menchaca, M.; Sun, L.; Sanders, B.G.; Kline, K. α-TEA plus cisplatin reduces human cisplatin-resistant ovarian cancer cell tumor burden and metastasis. Exp. Biol. Med. (Maywood), 2004, 229(11), 1169-1176.
[http://dx.doi.org/10.1177/153537020422901112] [PMID: 15564444]
[147]
Kanai, K.; Kikuchi, E.; Mikami, S.; Suzuki, E.; Uchida, Y.; Kodaira, K.; Miyajima, A.; Ohigashi, T.; Nakashima, J.; Oya, M.; Vitamin, E. Vitamin E succinate induced apoptosis and enhanced chemosensitivity to paclitaxel in human bladder cancer cells in vitro and in vivo. Cancer Sci., 2010, 101(1), 216-223.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01362.x] [PMID: 19824995]
[148]
Tiwary, R.; Yu, W.; deGraffenried, L.A.; Sanders, B.G.; Kline, K. Targeting cholesterol-rich microdomains to circumvent tamoxifen-resistant breast cancer. Breast Cancer Res., 2011, 13(6), R120.
[http://dx.doi.org/10.1186/bcr3063] [PMID: 22115051]
[149]
Dong, L-F.; Jameson, V.J.A.; Tilly, D.; Cerny, J.; Mahdavian, E.; Marín-Hernández, A.; Hernández-Esquivel, L.; Rodríguez-Enríquez, S.; Stursa, J.; Witting, P.K.; Stantic, B.; Rohlena, J.; Truksa, J.; Kluckova, K.; Dyason, J.C.; Ledvina, M.; Salvatore, B.A.; Moreno-Sánchez, R.; Coster, M.J.; Ralph, S.J.; Smith, R.A.J.; Neuzil, J. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J. Biol. Chem., 2011, 286(5), 3717-3728.
[http://dx.doi.org/10.1074/jbc.M110.186643] [PMID: 21059645]
[150]
Ashton, T.M.; McKenna, W.G.; Kunz-Schughart, L.A.; Higgins, G.S. Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Res., 2018, 24(11), 2482-2490.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3070] [PMID: 29420223]
[151]
Madak, J.T.; Bankhead, A., III; Cuthbertson, C.R.; Showalter, H.D.; Neamati, N. Revisiting the role of dihydroorotate dehydrogenase as a therapeutic target for cancer. Pharmacol. Ther., 2019, 195, 111-131.
[http://dx.doi.org/10.1016/j.pharmthera.2018.10.012] [PMID: 30347213]
[152]
Rawls, J.; Knecht, W.; Diekert, K.; Lill, R.; Löffler, M. Requirements for the mitochondrial import and localization of dihydroorotate dehydrogenase. Eur. J. Biochem., 2000, 267(7), 2079-2087.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01213.x] [PMID: 10727948]
[153]
Lane, A.N.; Fan, T.W-M. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res., 2015, 43(4), 2466-2485.
[http://dx.doi.org/10.1093/nar/gkv047] [PMID: 25628363]
[154]
Zameitat, E.; Freymark, G.; Dietz, C.D.; Löffler, M.; Bölker, M. Functional expression of human dihydroorotate dehydrogenase (DHODH) in pyr4 mutants of ustilago maydis allows target validation of DHODH inhibitors in vivo. Appl. Environ. Microbiol., 2007, 73(10), 3371-3379.
[http://dx.doi.org/10.1128/AEM.02569-06] [PMID: 17369345]
[155]
Khutornenko, A.A.; Roudko, V.V.; Chernyak, B.V.; Vartapetian, A.B.; Chumakov, P.M.; Evstafieva, A.G. Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway. Proc. Natl. Acad. Sci. USA, 2010, 107(29), 12828-12833.
[http://dx.doi.org/10.1073/pnas.0910885107] [PMID: 20566882]
[156]
Breedveld, F.C.; Dayer, J-M. Leflunomide: Mode of action in the treatment of rheumatoid arthritis. Ann. Rheum. Dis., 2000, 59(11), 841-849.
[http://dx.doi.org/10.1136/ard.59.11.841] [PMID: 11053058]
[157]
Peres, R.S.; Santos, G.B.; Cecilio, N.T.; Jabor, V.A.P.; Niehues, M.; Torres, B.G.S.; Buqui, G.; Silva, C.H.T.P.; Costa, T.D.; Lopes, N.P.; Nonato, M.C.; Ramalho, F.S.; Louzada-Júnior, P.; Cunha, T.M.; Cunha, F.Q.; Emery, F.S.; Alves-Filho, J.C. Lapachol, a compound targeting pyrimidine metabolism, ameliorates experimental autoimmune arthritis. Arthritis Res. Ther., 2017, 19(1), 47.
[http://dx.doi.org/10.1186/s13075-017-1236-x] [PMID: 28270195]
[158]
Brown, K.K.; Spinelli, J.B.; Asara, J.M.; Toker, A. Adaptive reprogramming of de novo pyrimidine synthesis is a metabolic vulnerability in triple-negative breast cancer. Cancer Discov., 2017, 7(4), 391-399.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0611] [PMID: 28255083]
[159]
Christian, S.; Merz, C.; Evans, L.; Gradl, S.; Seidel, H.; Friberg, A.; Eheim, A.; Lejeune, P.; Brzezinka, K.; Zimmermann, K.; Ferrara, S.; Meyer, H.; Lesche, R.; Stoeckigt, D.; Bauser, M.; Haegebarth, A.; Sykes, D.B.; Scadden, D.T.; Losman, J-A.; Janzer, A. The novel dihydroorotate dehydrogenase (DHODH) inhibitor BAY 2402234 triggers differentiation and is effective in the treatment of myeloid malignancies. Leukemia, 2019, 33(10), 2403-2415.
[http://dx.doi.org/10.1038/s41375-019-0461-5] [PMID: 30940908]
[160]
Crofts, A.R. The cytochrome bc1 complex: Function in the context of structure. Annu. Rev. Physiol., 2004, 66(1), 689-733.
[http://dx.doi.org/10.1146/annurev.physiol.66.032102.150251] [PMID: 14977419]
[161]
Larosa, V.; Remacle, C. Insights into the respiratory chain and oxidative stress. Biosci. Rep., 2018, 38(5)BSR20171492
[http://dx.doi.org/10.1042/BSR20171492] [PMID: 30201689]
[162]
Yan, W.; Leung, S.S.; To, K.K. Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine (Lond.), 2020, 15(3), 303-318.
[http://dx.doi.org/10.2217/nnm-2019-0308] [PMID: 31802702]
[163]
Fiorillo, M.; Lamb, R.; Tanowitz, H.B.; Mutti, L.; Krstic-Demonacos, M.; Cappello, A.R.; Martinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. Repurposing atovaquone: Targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget, 2016, 7(23), 34084-34099.
[http://dx.doi.org/10.18632/oncotarget.9122] [PMID: 27136895]
[164]
Ballot, C.; Kluza, J.; Lancel, S.; Martoriati, A.; Hassoun, S.M.; Mortier, L.; Vienne, J-C.; Briand, G.; Formstecher, P.; Bailly, C.; Nevière, R.; Marchetti, P. Inhibition of mitochondrial respiration mediates apoptosis induced by the anti-tumoral alkaloid lamellarin D. Apoptosis, 2010, 15(7), 769-781.
[http://dx.doi.org/10.1007/s10495-010-0471-2] [PMID: 20151196]
[165]
Gallego, M-A.; Ballot, C.; Kluza, J.; Hajji, N.; Martoriati, A.; Castéra, L.; Cuevas, C.; Formstecher, P.; Joseph, B.; Kroemer, G.; Bailly, C.; Marchetti, P. Overcoming chemoresistance of non-small cell lung carcinoma through restoration of an AIF-dependent apoptotic pathway. Oncogene, 2008, 27(14), 1981-1992.
[http://dx.doi.org/10.1038/sj.onc.1210833] [PMID: 17906690]
[166]
Chicherin, I.V.; Dashinimaev, E.; Baleva, M.; Krasheninnikov, I.; Levitskii, S.; Kamenski, P. Cytochrome c oxidase on the crossroads of transcriptional regulation and bioenergetics. Front. Physiol., 2019, 10, 644.
[http://dx.doi.org/10.3389/fphys.2019.00644] [PMID: 31231235]
[167]
Rohlena, J.; Dong, L-F.; Neuzil, J. Targeting the mitochondrial electron transport chain complexes for the induction of apoptosis and cancer treatment. Curr. Pharm. Biotechnol., 2013, 14(3), 377-389.
[http://dx.doi.org/10.2174/1389201011314030011] [PMID: 22201598]
[168]
Fukuda, R.; Zhang, H.; Kim, J.W.; Shimoda, L.; Dang, C.V.; Semenza, G.L. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell, 2007, 129(1), 111-122.
[http://dx.doi.org/10.1016/j.cell.2007.01.047] [PMID: 17418790]
[169]
Moncada, S.; Erusalimsky, J.D. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat. Rev. Mol. Cell Biol., 2002, 3(3), 214-220.
[http://dx.doi.org/10.1038/nrm762] [PMID: 11994742]
[170]
Jordan, B.F.; Sonveaux, P. Targeting tumor perfusion and oxygenation to improve the outcome of anticancer therapy. Front. Pharmacol., 2012, 3, 94.
[http://dx.doi.org/10.3389/fphar.2012.00094] [PMID: 22661950]
[171]
Diepart, C.; Karroum, O.; Magat, J.; Feron, O.; Verrax, J.; Calderon, P.B.; Grégoire, V.; Leveque, P.; Stockis, J.; Dauguet, N.; Jordan, B.F.; Gallez, B. Arsenic trioxide treatment decreases the oxygen consumption rate of tumor cells and radiosensitizes solid tumors. Cancer Res., 2012, 72(2), 482-490.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1755] [PMID: 22139377]
[172]
Crokart, N.; Radermacher, K.; Jordan, B.F.; Baudelet, C.; Cron, G.O.; Grégoire, V.; Beghein, N.; Bouzin, C.; Feron, O.; Gallez, B. Tumor radiosensitization by antiinflammatory drugs: Evidence for a new mechanism involving the oxygen effect. Cancer Res., 2005, 65(17), 7911-7916.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1288] [PMID: 16140962]
[173]
Simon, N.; Jolliet, P.; Morin, C.; Zini, R.; Urien, S.; Tillement, J.P. Glucocorticoids decrease cytochrome c oxidase activity of isolated rat kidney mitochondria. FEBS Lett., 1998, 435(1), 25-28.
[http://dx.doi.org/10.1016/S0014-5793(98)01033-3] [PMID: 9755852]
[174]
Yoshida, M.; Muneyuki, E.; Hisabori, T. ATP synthase--a marvellous rotary engine of the cell. Nat. Rev. Mol. Cell Biol., 2001, 2(9), 669-677.
[http://dx.doi.org/10.1038/35089509] [PMID: 11533724]
[175]
Yastrebova, M.A.; Omelchuk, O.; Lysenkova, L.; Mikhaevich, E.; Scherbakov, A.M.; Shchekotikhin, A. 60P - Sensitization of estrogen receptor-positive breast cancer cells to tamoxifen by novel epi-oligomycin A. Ann. Oncol., 2019, 30, v17.
[http://dx.doi.org/10.1093/annonc/mdz238.058]
[176]
Jones, L.W.; Narayan, K.S.; Shapiro, C.E.; Sweatman, T.W. Rhodamine-123: Therapy for hormone refractory prostate cancer, a phase I clinical trial. J. Chemother., 2005, 17(4), 435-440.
[http://dx.doi.org/10.1179/joc.2005.17.4.435] [PMID: 16167524]
[177]
Britten, C.D.; Rowinsky, E.K.; Baker, S.D.; Weiss, G.R.; Smith, L.; Stephenson, J.; Rothenberg, M.; Smetzer, L.; Cramer, J.; Collins, W.; Von Hoff, D.D.; Eckhardt, S.G. A phase I and pharmacokinetic study of the mitochondrial-specific rhodacyanine dye analog MKT 077. Clin. Cancer Res., 2000, 6(1), 42-49.
[PMID: 10656430]
[178]
Chen, H.; Wang, J.; Feng, X.; Zhu, M.; Hoffmann, S.; Hsu, A.; Qian, K.; Huang, D.; Zhao, F.; Liu, W.; Zhang, H.; Cheng, Z. Mitochondria-targeting fluorescent molecules for high efficiency cancer growth inhibition and imaging. Chem. Sci. (Camb.), 2019, 10(34), 7946-7951.
[http://dx.doi.org/10.1039/C9SC01410A] [PMID: 31853349]
[179]
Nadanaciva, S.; Bernal, A.; Aggeler, R.; Capaldi, R.; Will, Y. Target identification of drug induced mitochondrial toxicity using immunocapture based OXPHOS activity assays. Toxicol. In vitro, 2007, 21(5), 902-911.
[http://dx.doi.org/10.1016/j.tiv.2007.01.011] [PMID: 17346924]
[180]
Esparza-Moltó, P.B.; Cuezva, J.M. The role of mitochondrial H+-ATP synthase in cancer. Front. Oncol., 2018, 8, 53.
[http://dx.doi.org/10.3389/fonc.2018.00053] [PMID: 29564224]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy