Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Amino Acids and Peptides Organocatalysts: A Brief Overview on Its Evolution and Applications in Organic Asymmetric Synthesis

Author(s): Kantharaju Kamanna*

Volume 8, Issue 1, 2021

Published on: 17 November, 2020

Page: [126 - 146] Pages: 21

DOI: 10.2174/2213337207999201117093848

Price: $65

Abstract

This review highlights the application of biopolymers of natural α-amino acids and its derived wild-type peptides employed as organocatalysts for the asymmetric synthesis of various important compounds published by researchers across the globe. The α-amino acid with L-configuration is available commercially in the pure form and plays a crucial role in enantioselective chiral molecule synthesis. Out of twenty natural amino acids, only one secondary amine-containing proline amino acid exhibited revolution in the field of organocatalysis because of its rigid structure and the formation of an imine like transition state during the reaction, which leads to more stereoselectivity. Hence, it is referred to as a simple enzyme in organocatalyst. Chiral enantioselective organic molecule synthesis has been further discussed by employing oligopeptides derived from the natural amino acids as a robust biocatalyst that replaced enzyme catalysts. The di-, tri, tetra-, penta- and oligopeptide derived from the natural amino acids are demonstrated as a potential organocatalyst, whose catalytic activity and mechanistic pathways are reviewed in the present paper. Several choices of organocatalyst are developed to achieve a facile and efficient stereoselective synthesis of many complex natural products with optically pure isomer. Subsequently, the researcher developed green and sustainable heterogeneous catalytic system containing organocatalyst immobilized onto solid inorganic support or porous material for accelerating reaction rate with asymmetric one isomer product through the heterogeneous phase. Further, researchers developed heterogeneous organocatalysts-Metal-Organic Frameworks (MOFs) that emerged as alternative simple and facile heterogeneous catalysts for the bulk production and flow reactor for enantioselective synthesis. This review compiled many outstanding discoveries in organocatalysts derivative of amino acids, peptides and heterogenized-MOFs employed for many organic transformations in research and industrial applications.

Keywords: Organocatalysts, α-amino acids, oligopeptides, asymmetric synthesis, enantioselectivity, metal-organic framework.

Graphical Abstract
[1]
Sardon, H.; Pascual, A.; Mecerreyes, D.; Taton, D.; Cramail, H.; Hedrick, J.L. Synthesis of polyurethanes using organocatalysis: A perspective. Macromolecules, 2015, 48, 3153-3165.
[http://dx.doi.org/10.1021/acs.macromol.5b00384]
[2]
Atodiresei, I.; Vila, C.; Rueping, M. Asymmetric organocatalysis in continuous flow: opportunities for impacting industrial catalysis. ACS Catal., 2015, 5, 1972-1985.
[http://dx.doi.org/10.1021/acscatal.5b00002]
[3]
Chen, D.F.; Han, Z.Y.; Zhou, X.L.; Gong, L.Z. Asymmetric organocatalysis combined with metal catalysis: concept, proof of concept, and beyond. Acc. Chem. Res., 2014, 47(8), 2365-2377.
[http://dx.doi.org/10.1021/ar500101a] [PMID: 24911184]
[4]
List, B. Introduction: Organocatalysis. Chem. Rev., 2007, 107, 5413-5415.
[http://dx.doi.org/10.1021/cr078412e]
[5]
Mainkar, P.S.; Johny, K.; Rao, T.P.; Chandrasekhar, S. Synthesis of O-spiro-C-aryl glycosides using organocatalysis. J. Org. Chem., 2012, 77(5), 2519-2525.
[http://dx.doi.org/10.1021/jo202353r] [PMID: 22309409]
[6]
Kiesewetter, M.K.; Shin, E.J.; Hedrick, J.L.; Waymouth, R.M. Organocatalysis: opportunities and challenges for polymer synthesis. Macromolecules, 2010, 43, 2093-2107.
[http://dx.doi.org/10.1021/ma9025948]
[7]
Varga, S.; Jakab, G.; Drahos, L.; Holczbauer, T.; Czugler, M.; Soós, T. Double diastereocontrol in bifunctional thiourea organocatalysis: iterative Michael-Michael-Henry sequence regulated by the configuration of chiral catalysts. Org. Lett., 2011, 13(20), 5416-5419.
[http://dx.doi.org/10.1021/ol201559j] [PMID: 21916428]
[8]
Bhadury, P.S.; Song, B.A.; Yang, S.; Hu, D.Y.; Wei, X. Bifunctional chiral organocatalysts in organic transformations. Curr. Org. Synth., 2009, 6, 380-399.
[http://dx.doi.org/10.2174/157017909789108710]
[9]
Tanabe, K.; Holderich, W.F. Industrial application of solid acid-base catalysts. Appl. Catal. A Gen., 1999, 181, 399-434.
[http://dx.doi.org/10.1016/S0926-860X(98)00397-4]
[10]
Heveling, J. Heterogeneous catalytic chemistry by example of industrial applications. J. Chem. Educ., 2012, 89, 1530-1536.
[http://dx.doi.org/10.1021/ed200816g]
[11]
MacMillan, D.W.C. The advent and development of organocatalysis. Nature, 2008, 455(7211), 304-308.
[http://dx.doi.org/10.1038/nature07367] [PMID: 18800128]
[12]
Bertelsen, S.; Jørgensen, K.A. Organocatalysis-after the gold rush. Chem. Soc. Rev., 2009, 38(8), 2178-2189.
[http://dx.doi.org/10.1039/b903816g] [PMID: 19623342]
[13]
Ooi, T.; Maruoka, K. Asymmetric organocatalysis of structurally well-defined chiral quaternary ammonium fluorides. Acc. Chem. Res., 2004, 37(8), 526-533.
[http://dx.doi.org/10.1021/ar030060k] [PMID: 15311951]
[14]
List, B. Proline-catalysed asymmetric reactions. Tetrahedron, 2002, 58, 5573-5590.
[http://dx.doi.org/10.1016/S0040-4020(02)00516-1]
[15]
Roberto, F.; Umberto, P. Oligopeptides as modular organocatalytic scaffolds. In comprehensive enantioselective organocatalysis; Wiley-VCH Verlag GmbH & Co., 2013, pp. 97-116.
[http://dx.doi.org/10.1002/9783527658862.ch5]
[16]
Yeboah, E.M.O.; Yeboah, S.O.; Singh, G.S. Recent applications of cinchona alkaloids and their derivatives as catalysts in metal-free asymmetric synthesis. Tetrahedron, 2011, 67, 1725-1762.
[http://dx.doi.org/10.1016/j.tet.2010.12.050]
[17]
Marcelli, T.; Hiemstra, H. Cinchona alkaloids in asymmetric organocatalysis. Synthesis, 2010, 8, 1229-1279.
[http://dx.doi.org/10.1055/s-0029-1218699]
[18]
Xu, L.W.; Lu, Y. Primary amino acids: privileged catalysts in enantioselective organocatalysis. Org. Biomol. Chem., 2008, 6(12), 2047-2053.
[http://dx.doi.org/10.1039/b803116a] [PMID: 18528563]
[19]
Jarvo, E.R.; Miller, S.J. Amino acids and peptides as asymmetric organocatalysts. Tetrahedron, 2002, 58, 2481-2495.
[http://dx.doi.org/10.1016/S0040-4020(02)00122-9]
[20]
Yang, H.; Wong, M.W. β-Amino acid catalyzed asymmetric Michael additions: design of organocatalysts with catalytic acid/base dyad inspired by serine proteases. J. Org. Chem., 2011, 76(18), 7399-7405.
[http://dx.doi.org/10.1021/jo2011413] [PMID: 21806031]
[21]
Wang, C.; Wang, L.; Zeng, S.; Xu, S.; He, Z. A New BINOL-Derived chiral bifunctional phosphine organocatalyst: Preparation and application in asymmetric (Aza)-Morita-Baylis-Hillman Reactions. Phosphorus Sulfur Silicon Relat. Elem., 2013, 188, 1548-1554.
[http://dx.doi.org/10.1080/10426507.2012.761987]
[22]
Gao, H.; Xu, Q.L.; Keene, C.; Yousufuddin, M.; Ess, D.H.; Kürti, L. Practical organocatalytic synthesis of functionalized non-C2-symmetrical atropisomeric biaryls. Angew. Chem. Int. Ed. Engl., 2016, 55(2), 566-571.
[http://dx.doi.org/10.1002/anie.201508419] [PMID: 26592491]
[23]
Gao, Y.; Liu, B.; Zhou, H.B.; Wang, W.; Dong, C. Recyclable BINOL-quinine-squaramide as a highly efficient organocatalyst for α-Amination of 1,3-Dicarbonyl Compounds and α-Cyanoacetates. RSC Advances, 2015, 5, 24392-24398.
[http://dx.doi.org/10.1039/C4RA13789B]
[24]
Genc, H.N.; Sirit, A. Novel efficient bifunctional calixarene thiourea organocatalysts: Synthesis and application in the direct enantioselective aldol reactions. Tetrahedron Asymmetry, 2016, 27, 201-207.
[http://dx.doi.org/10.1016/j.tetasy.2016.01.011]
[25]
Shubina, T.E.; Freund, M.; Schenker, S.; Clark, T.; Tsogoeva, S.B. Synthesis and evaluation of new guanidine-thiourea organocatalyst for the nitro-Michael reaction: Theoretical studies on mechanism and enantioselectivity. Beilstein J. Org. Chem., 2012, 8, 1485-1498.
[http://dx.doi.org/10.3762/bjoc.8.168] [PMID: 23019483]
[26]
Rios-Lombardia, N.; Porcar, R.; Busto, E.; Alfonso, I.; Montejo-Bernardo, J.; Garcia-Granda, S.; Gotor, V.; Luis, S.V.; Garcia-Verdugo, E.; Gotor-Fernandez, V. Enantiopure triazolium salts: Chemoenzymatic synthesis and applications in organocatalysis. ChemCatChem, 2011, 3, 1921-1928.
[http://dx.doi.org/10.1002/cctc.201100218]
[27]
Bender, J.; Jepkens, D.; Husken, H. Ionic liquids as phase-transfer catalysts: etherification reaction of 1-octanol with 1-chlorobutane. Org. Process Res. Dev., 2010, 14, 716-721.
[http://dx.doi.org/10.1021/op100031u]
[28]
Seayad, J.; List, B. Asymmetric organocatalysis. Org. Biomol. Chem., 2005, 3(5), 719-724.
[http://dx.doi.org/10.1039/b415217b] [PMID: 15731852]
[29]
Klussmann, M.; Iwamura, H.; Mathew, S.P.; Wells, D.H., Jr; Pandya, U.; Armstrong, A.; Blackmond, D.G. Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature, 2006, 441(7093), 621-623.
[http://dx.doi.org/10.1038/nature04780] [PMID: 16738656]
[30]
Jiang, L.; Chen, Y.C. Recent advances in asymmetric catalysis with cinchona alkaloid-based primary amines. Catal. Sci. Technol., 2011, 1, 354-365.
[http://dx.doi.org/10.1039/c0cy00096e]
[31]
Schreiner, P.R.; Wittkopp, A. H-bonding additives act like Lewis acid catalysts. Org. Lett., 2002, 4(2), 217-220.
[http://dx.doi.org/10.1021/ol017117s] [PMID: 11796054]
[32]
Michelle, P.V.H.; Benjamin, K.; Rienk, E. Organocatalysis in aqueous media. Nat. Rev. Chem., 2019, 3, 491-508.
[http://dx.doi.org/10.1038/s41570-019-0116-0]
[33]
Special issue appeared (Wiley Publishers). Adv. Synth. Catal., 2004, 346, 1107-1249.
[34]
Kengo, A. Catalysis by peptides.Edited by Koutsopoulos, S., Peptide Applications in Biomedicine, Biotechnology and Bioengineering (Elsevier Ltd); , 2018, pp. 513-564.
[35]
Nestl, B.M.; Hammer, S.C.; Nebel, B.A.; Hauer, B. New generation of biocatalysts for organic synthesis. Angew. Chem. Int. Ed. Engl., 2014, 53(12), 3070-3095.
[http://dx.doi.org/10.1002/anie.201302195] [PMID: 24520044]
[36]
Erkkilä, A.; Majander, I.; Pihko, P.M. Iminium catalysis. Chem. Rev., 2007, 107(12), 5416-5470.
[http://dx.doi.org/10.1021/cr068388p] [PMID: 18072802]
[37]
Encyclopedia of sustainable technologies; Martin, A., Ed.; Elsevier Publishers, 2007..
[38]
Davie, E.A.C.; Mennen, S.M.; Xu, Y.; Miller, S.J. Asymmetric catalysis mediated by synthetic peptides. Chem. Rev., 2007, 107(12), 5759-5812.
[http://dx.doi.org/10.1021/cr068377w] [PMID: 18072809]
[39]
Anja, F.; Dominik, G.; Svetlana, B.T. Book Chapter 13: Peptides as asymmetric organocatalysts, in sustainable catalysis: Without metals or other endangered elements, 2015, pp. 309-353.
[40]
Evans, J.W.; Fierman, M.B.; Miller, S.J.; Ellman, J.A. Catalytic enantioselective synthesis of sulfinate esters through the dynamic resolution of tert-butanesulfinyl chloride. J. Am. Chem. Soc., 2004, 126(26), 8134-8135.
[http://dx.doi.org/10.1021/ja047845l] [PMID: 15225052]
[41]
Gustafson, J.L.; Lim, D.; Miller, S.J. Dynamic kinetic resolution of biaryl atropisomers via peptide-catalyzed asymmetric bromination. Science, 2010, 328(5983), 1251-1255.
[http://dx.doi.org/10.1126/science.1188403] [PMID: 20522769]
[42]
Barrett, K.T.; Miller, S.J. Enantioselective synthesis of atropisomeric benzamides through peptide-catalyzed bromination. J. Am. Chem. Soc., 2013, 135(8), 2963-2966.
[http://dx.doi.org/10.1021/ja400082x] [PMID: 23410090]
[43]
Miller, S.J.; Copeland, G.T.; Papaioannou, N.; Horstmann, T.E.; Ruel, E.M. Kinetic resolution of alcohols catalyzed by tripeptides containing the N-alkylimidazole substructure. J. Am. Chem. Soc., 1998, 120, 1629-1630.
[http://dx.doi.org/10.1021/ja973892k]
[44]
Copeland, G.T.; Miller, S.J. Selection of enantioselective acyl transfer catalysts from a pooled peptide library through a fluorescence-based activity assay: an approach to kinetic resolution of secondary alcohols of broad structural scope. J. Am. Chem. Soc., 2001, 123(27), 6496-6502.
[http://dx.doi.org/10.1021/ja0108584] [PMID: 11439035]
[45]
Sculimbrene, B.R.; Miller, S.J. Discovery of a catalytic asymmetric phosphorylation through selection of a minimal kinase mimic: a concise total synthesis of D-myo-inositol-1-phosphate. J. Am. Chem. Soc., 2001, 123(41), 10125-10126.
[http://dx.doi.org/10.1021/ja016779+] [PMID: 11592903]
[46]
Marchetti, L.; Levine, M. Biomimetic catalysis. ACS Catal., 2011, 1, 1090-1118.
[http://dx.doi.org/10.1021/cs200171u]
[47]
Goren, K.; Kehat, T.; Portnoy, M. Elucidation of architectural requirements from a spacer in supported proline-based catalysts of enantioselective aldol reaction. Adv. Syn. Cat., 2009, 351, 59-65.
[http://dx.doi.org/10.1002/adsc.200800734]
[48]
Tang, Z.; Jiang, F.; Yu, L-T.; Cui, X.; Gong, L-Z.; Mi, A-Q.; Jiang, Y-Z.; Wu, Y-D. Novel small organic molecules for a highly enantioselective direct aldol reaction. J. Am. Chem. Soc., 2003, 125(18), 5262-5263.
[http://dx.doi.org/10.1021/ja034528q] [PMID: 12720423]
[49]
Tang, Z.; Jiang, F.; Cui, X.; Gong, L-Z.; Mi, A-Q.; Jiang, Y-Z.; Wu, Y-D. Enantioselective direct aldol reactions catalyzed by L-prolinamide derivatives. Proc. Natl. Acad. Sci. USA, 2004, 101(16), 5755-5760.
[http://dx.doi.org/10.1073/pnas.0307176101] [PMID: 15079057]
[50]
Kofoed, J.; Nielsen, J.; Reymond, J-L. Discovery of new peptide-based catalysts for the direct asymmetric aldol reaction. Bioorg. Med. Chem. Lett., 2003, 13(15), 2445-2447.
[http://dx.doi.org/10.1016/S0960-894X(03)00498-0] [PMID: 12852940]
[51]
Juliá, S.; Masana, J.; Vega, J.C. “Synthetic enzymes” highly stereoselective epoxidation of chalcone in a triphasic toluene-waterpoly[(s)-alanine] system. Angew. Chem. Int. Ed. Engl., 1980, 19, 929-931.
[http://dx.doi.org/10.1002/anie.198009291]
[52]
Juliá, S.; Guixer, J.; Masana, J.; Rocas, J.; Colonna, S.; Annuziata, R.; Molinari, H. Synthetic enzymes. Part 2. Catalytic asymmetric epoxidation by means of polyamino-acids in a triphase system. J. Chem. Soc., Perkin Trans. 1, 1982, 1317-1324.
[http://dx.doi.org/10.1039/P19820001317]
[53]
Peris, G.; Jakobsche, C.E.; Miller, S.J. Aspartate-catalyzed asymmetric epoxidation reactions. J. Am. Chem. Soc., 2007, 129(28), 8710-8711.
[http://dx.doi.org/10.1021/ja073055a] [PMID: 17592849]
[54]
Oku, J-I.; Ito, N.; Inoue, S. Asymmetric cyanohydrin synthesis catalyzed by synthetic dipeptides. Macromol. Chem. Phys., 1982, 183, 579-586.
[http://dx.doi.org/10.1002/macp.1982.021830307]
[55]
Oku, J-I.; Inoue, S. Asymmetric cyanohydrin synthesis catalyzed by a synthetic cyclic dipeptide. J. Chem. Soc. Chem. Commun., 1981, 5, 229-230.
[http://dx.doi.org/10.1039/c39810000229]
[56]
Formaggio, F.; Bonchio, M.; Crisma, M.; Peggion, C.; Mezzato, S.; Polese, A.; Barazza, A.; Antonello, S.; Maran, F.; Broxterman, Q.B.; Kaptein, B.; Kamphuis, J.; Vitale, R.M.; Saviano, M.; Benedetti, E.; Toniolo, C. Nitroxyl peptides as catalysts of enantioselective oxidations. Chemistry, 2002, 8(1), 84-93.
[http://dx.doi.org/10.1002/1521-3765(20020104)8:1<84::AID-CHEM84>3.0.CO;2-N] [PMID: 11822466]
[57]
Eder, U.; Sauer, G.; Wiechert, R. New type of asymmetric cyclization to optically active steroid CD partial structures. Angew. Chem. Int. Ed., 1971, 10, 496-497.
[http://dx.doi.org/10.1002/anie.197104961]
[58]
Hajos, Z.G.; Parrish, D.R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J. Org. Chem., 1974, 39, 1615-1621.
[http://dx.doi.org/10.1021/jo00925a003]
[59]
Iyer, M.S.; Gigstad, K.M.; Namdev, N.D.; Lipton, M. Asymmetric catalysis of the Strecker amino acid synthesis by a cyclic dipeptide. Amino Acids, 1996, 11(3-4), 259-268.
[http://dx.doi.org/10.1007/BF00807935] [PMID: 24178715]
[60]
Zuend, S.J.; Coughlin, M.P.; Lalonde, M.P.; Jacobsen, E.N. Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids. Nature, 2009, 461(7266), 968-970.
[http://dx.doi.org/10.1038/nature08484] [PMID: 19829379]
[61]
Sigman, M.S.; Jacobsen, E.N. Schiff base catalysts for the asymmetric Strecker reaction identified and optimized from parallel synthetic Libraries. J. Am. Chem. Soc., 1998, 120, 4901-4902.
[http://dx.doi.org/10.1021/ja980139y]
[62]
Sigman, M.S.; Harper, K.C.; Bess, E.N.; Milo, A. The development of multidimensional analysis tools for asymmetric catalysis and beyond. Acc. Chem. Res., 2016, 49(6), 1292-1301.
[http://dx.doi.org/10.1021/acs.accounts.6b00194] [PMID: 27220055]
[63]
Comprehensive asymmetric catalysis; Jacobsen, E.N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer-Verlag: Heidelberg, 1999..
[http://dx.doi.org/10.1007/978-3-642-58571-5]
[64]
Asymmetric synthesis–The essentials; Christmann, M.; Brase, S., Eds.; 2nd edition; John Wiley & Sons, New York, 2007.
[65]
New Development of Organocatalyst; Shibasaki, M., Ed.; CMC- Shuppan: Tokyo, 2006.
[66]
Dalko, P.I. Enantioselective organocatalysis: Reactions and experimental procedures; Wiley-VCH Verlag GmbH & Co, 2007.
[67]
Enantioselective Organocatalysis. Wiley-VCH: New York, 2007.
[68]
Yamada, S.; Hiroi, K.; Achiwa, K. Asymmetric synthesis with amino acid-I asymmetric induction in the alkylation of keto-enamine. Tetrahedron Lett., 1969, 10, 4233-4236.
[http://dx.doi.org/10.1016/S0040-4039(01)88662-7]
[69]
Yamada, S.; Otani, G. Asymmetric synthesis with amino acid II asymmetric synthesis of optically active 4,4-disubstituted-cyclohexenone. Tetrahedron Lett., 1969, 10, 4237-4240.
[http://dx.doi.org/10.1016/S0040-4039(01)88663-9]
[70]
Wong, C-H.; Whitesides, G.M. Enzymes in synthetic organic chemistry-Vol-12; 1st Ed. Academic Press, 1994.
[71]
Nakagawa, M.; Nakano, H.; Watanabe, K-I. Steric effects of chiral ligands in a new type of aldol condensations catalyzed by Zinc(II) complexes of α-amino acid esters. Chem. Lett., 1985, 14, 391-394.
[http://dx.doi.org/10.1246/cl.1985.391]
[72]
Yamada, Y.M.A.; Yoshikawa, N.; Sasai, H.; Shibasaki, M. Direct catalytic asymmetric aldol reactions of aldehydes with unmodified ketones. Angew. Chem. Int. Ed. Engl., 1997, 36, 1871-1873.
[http://dx.doi.org/10.1002/anie.199718711]
[73]
Yoshikawa, N.; Yamada, Y.M.A.; Das, J.; Sasai, H.; Shibasaki, M. Direct catalytic asymmetric aldol reaction. J. Am. Chem. Soc., 1999, 121, 4168-4178.
[http://dx.doi.org/10.1021/ja990031y] [PMID: 11456913]
[74]
Palomo, C.; Oiarbide, M.; García, J.M. The aldol addition reaction: an old transformation at constant rebirth. Chemistry, 2002, 8(1), 36-44.
[http://dx.doi.org/10.1002/1521-3765(20020104)8:1<36::AID-CHEM36>3.0.CO;2-L] [PMID: 11822463]
[75]
List, B.; Lerner, R.A.; Barbas, C.F., III Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc., 2000, 122, 2395-2396.
[http://dx.doi.org/10.1021/ja994280y]
[76]
Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C.F., III Amino acid catalyzed direct asymmetric aldol reactions: a bioorganic approach to catalytic asymmetric carbon-carbon bond-forming reactions. J. Am. Chem. Soc., 2001, 123(22), 5260-5267.
[http://dx.doi.org/10.1021/ja010037z] [PMID: 11457388]
[77]
Allemann, C.; Gordillo, R.; Clemente, F.R.; Cheong, P.H.; Houk, K.N. Theory of asymmetric organocatalysis of Aldol and related reactions: rationalizations and predictions. Acc. Chem. Res., 2004, 37(8), 558-569.
[http://dx.doi.org/10.1021/ar0300524] [PMID: 15311955]
[78]
Saito, S.; Yamamoto, H. Design of acid-base catalysis for the asymmetric direct Aldol reaction. Acc. Chem. Res., 2004, 37(8), 570-579.
[http://dx.doi.org/10.1021/ar030064p] [PMID: 15311956]
[79]
Notz, W.; Tanaka, F.; Barbas, C.F., III Enamine-based organocatalysis with proline and diamines: the development of direct catalytic asymmetric Aldol, Mannich, Michael, and Diels-alder reactions. Acc. Chem. Res., 2004, 37(8), 580-591.
[http://dx.doi.org/10.1021/ar0300468] [PMID: 15311957]
[80]
Buchschacher, P.; Cassal, J-M.; Furst, A.; Meier, W. Beitrag zur asymmetrischen synthese bicyclischer verbindungen unter katalysemit optisch aktiven aminosäuren. synthese von (S)-2-pyrrolidin-propionsäure und (R)-4-amino-5-phenylvaleriansäure. Helv. Chim. Acta, 1977, 60, 2747-2755.
[http://dx.doi.org/10.1002/hlca.19770600826]
[81]
Danishefsky, S.; Cain, P. Letter: The pyridine route to optically active estrone and 19-norsteroids. J. Am. Chem. Soc., 1975, 97(18), 5282-5284.
[http://dx.doi.org/10.1021/ja00851a046] [PMID: 1165362]
[82]
Shimizu, I.; Naito, Y.; Tsuji, J. Synthesis of optically active (+)-19-nortestosterone by asymmetric bis-annulation reaction. Tetrahedron Lett., 1980, 21, 487-490.
[http://dx.doi.org/10.1016/S0040-4039(00)71440-7]
[83]
Corey, E.J.; Virgil, S.C. Enantioselective total synthesis of a protosterol-3-β-20-dihydroxyprotost-24-ene. J. Am. Chem. Soc., 1990, 112, 6429-6431.
[http://dx.doi.org/10.1021/ja00173a059]
[84]
Hagiwara, H.; Uda, H. Optically pure (4aS)-(+)- or (4aR)-(-)-1,4a-dimethyl-4,4a,7,8-tetrahydronaphthalene-2,5(3H,6H)-dione and its use in the synthesis of an inhibitor of steroid biosynthesis. J. Org. Chem., 1988, 53, 2308-2311.
[http://dx.doi.org/10.1021/jo00245a033]
[85]
Danishefsky, S.J.; Masters, J.J.; Young, W.B.; Link, J.T.; Snyder, L.B.; Magee, T.V.; Di Grandi, M.J. Total synthesis of baccatin III and taxol. J. Am. Chem. Soc., 1996, 118, 2843-2859.
[http://dx.doi.org/10.1021/ja952692a]
[86]
Inomata, K.; Barragué, M.; Paquette, L.A. Diastereoselectivities realized in the amino acid catalyzed aldol cyclizations of triketo acetonides of differing ring size. J. Org. Chem., 2005, 70(2), 533-539.
[http://dx.doi.org/10.1021/jo0486084] [PMID: 15651798]
[87]
Shigehisa, H.; Mizutani, T.; Tosaki, S.; Ohshima, T.; Shibasaki, M. Formal total synthesis of (+)-wortmannin using catalytic asymmetric intramolecular aldol condensation reaction. Tetrahedron, 2005, 61, 5057-5065.
[http://dx.doi.org/10.1016/j.tet.2005.03.038]
[88]
Luo, S.; Zheng, X.; Cheng, J-P. Asymmetric bifunctional primary aminocatalysis on magnetic nanoparticles. Chem. Commun. (Camb.), 2008, 44(44), 5719-5721.
[http://dx.doi.org/10.1039/b812958d] [PMID: 19009059]
[89]
Amedjkouh, M. Primary amine catalyzed direct asymmetric aldol reaction assisted by water. Tetrahedron Asymmetry, 2005, 16, 1411-1414.
[http://dx.doi.org/10.1016/j.tetasy.2005.02.031]
[90]
Amedjkouh, M. Aqua-organocatalyzed direct asymmetric aldol reaction with acyclic amino acids and organic bases with control of diastereo-and enantioselectivity. Tetrahedron Asymmetry, 2007, 18, 390-395.
[http://dx.doi.org/10.1016/j.tetasy.2007.01.025]
[91]
Bassan, A.; Zou, W.; Reyes, E.; Himo, F.; Córdova, A. The origin of stereoselectivity in primary amino acid catalyzed intermolecular aldol reactions. Angew. Chem. Int. Ed. Engl., 2005, 44(43), 7028-7032.
[http://dx.doi.org/10.1002/anie.200502388] [PMID: 16259017]
[92]
Córdova, A.; Zou, W.; Ibrahem, I.; Reyes, E.; Engqvist, M.; Liao, W.W. Acyclic amino acid-catalyzed direct asymmetric aldol reactions: alanine, the simplest stereoselective organocatalyst. Chem. Commun. (Camb.), 2005, 28(28), 3586-3588.
[http://dx.doi.org/10.1039/b507968n] [PMID: 16010332]
[93]
Córdova, A.; Zou, W.; Dziedzic, P.; Ibrahem, I.; Reyes, E.; Xu, Y. Direct asymmetric intermolecular aldol reactions catalyzed by amino acids and small peptides. Chemistry, 2006, 12(20), 5383-5397.
[http://dx.doi.org/10.1002/chem.200501639] [PMID: 16637082]
[94]
Jiang, Z.; Liang, Z.; Wu, X.; Lu, Y. Asymmetric aldol reactions catalyzed by tryptophan in water. Chem. Commun. (Camb.), 2006, 26(26), 2801-2803.
[http://dx.doi.org/10.1039/b606154k] [PMID: 17009468]
[95]
Brogan, A.P.; Dickerson, T.J.; Janda, K.D. Enamine-based aldol organocatalysis in water: are they really “all wet”? Angew. Chem. Int. Ed. Engl., 2006, 45(48), 8100-8102.
[http://dx.doi.org/10.1002/anie.200601392] [PMID: 17001595]
[96]
Hayashi, Y. In water or in the presence of water? Angew. Chem. Int. Ed. Engl., 2006, 45(48), 8103-8104.
[http://dx.doi.org/10.1002/anie.200603378] [PMID: 17103474]
[97]
Blackmond, D.G.; Armstrong, A.; Coombe, V.; Wells, A. Water in organocatalytic processes: debunking the myths. Angew. Chem. Int. Ed. Engl., 2007, 46(21), 3798-3800.
[http://dx.doi.org/10.1002/anie.200604952] [PMID: 17361975]
[98]
Wu, X.; Jiang, Z.; Shen, H-M.; Lu, Y. Highly efficient threonine-derived organocatalysts for direct asymmetric aldol reactions in water. Adv. Syn. Cat., 2007, 349, 812-816.
[http://dx.doi.org/10.1002/adsc.200600564]
[99]
Ramasastry, S.S.V.; Zhang, H.; Tanaka, F.; Barbas, C.F., III Direct catalytic asymmetric synthesis of anti-1,2-amino alcohols and syn-1,2-diols through organocatalytic anti-Mannich and syn-aldol reactions. J. Am. Chem. Soc., 2007, 129(2), 288-289.
[http://dx.doi.org/10.1021/ja0677012] [PMID: 17212404]
[100]
Utsumi, N.; Imai, M.; Tanaka, F.; Ramasastry, S.S.V.; Barbas, C.F., III Mimicking aldolases through organocatalysis: syn-selective aldol reactions with protected dihydroxyacetone. Org. Lett., 2007, 9(17), 3445-3448.
[http://dx.doi.org/10.1021/ol701467s] [PMID: 17645352]
[101]
Ibrahem, I.; Zou, W.; Engqvist, M.; Xu, Y.; Cordova, A. Acyclic chiral amines and amino acids as inexpensive and readily tunable catalysts for the direct asymmetric three-component Mannich reaction. Chemistry-A Eur. J., 2005, 11, 7024-7029.
[102]
Cheng, L.; Wu, X.; Lu, Y. Direct asymmetric three-component organocatalytic anti-selective Mannich reactions in a purely aqueous system. Org. Biomol. Chem., 2007, 5(7), 1018-1020.
[http://dx.doi.org/10.1039/b701579h] [PMID: 17377652]
[103]
Cheng, L.; Han, X.; Huang, H.; Wong, M.W.; Lu, Y. Highly diastereoselective and enantioselective direct organocatalytic anti-selective Mannich reactions employing N-tosylimines. Chem. Commun. (Camb.), 2007, 40(40), 4143-4145.
[http://dx.doi.org/10.1039/b706793c] [PMID: 17925956]
[104]
Mondal, B.; Pan, S.C. Primary amino acid catalyzed asymmetric intramolecular Mannich reaction for the synthesis of 2-aryl-2,3-dihydro-4-quinolones. Org. Biomol. Chem., 2014, 12(48), 9789-9792.
[http://dx.doi.org/10.1039/C4OB02146K] [PMID: 25371139]
[105]
Agami, C.; Levisalles, J.; Sevestre, H. Extension of the proline-catalysed asymmetric annelation to diketones. A new case of kinetic resolution. J. Chem. Soc. Chem. Commun., 1984, 7, 418-420.
[http://dx.doi.org/10.1039/c39840000418]
[106]
Agami, C.; Meynier, F.; Puchot, C.; Guilhem, J.; Pascard, C. Stereochemistry-59: New insights into the mechanism of the proline-catalyzed asymmetric robinson cyclization; structure of two intermediates. asymmetric dehydration. Tetrahedron, 1984, 40, 1031-1038.
[http://dx.doi.org/10.1016/S0040-4020(01)91242-6]
[107]
Agami, C.; Puchot, C.; Sevestre, H. Is the mechanism of the proline-catalyzed enantioselective aldol reaction related to biochemical processes? Tetrahedron Lett., 1986, 27, 1501-1504.
[http://dx.doi.org/10.1016/S0040-4039(00)84297-5]
[108]
Peter, I.D. lionel, M. In the golden age of organocatalysis. Angew. Chem. Int. Ed., 2004, 43, 5138-5175.
[http://dx.doi.org/10.1002/anie.200400650]
[109]
Hiyoshizo, K.; Hideaki, I.; Atsushi, O. Organocatalytic asymmetric synthesis using proline and related molecules. Part 1. Heterocycles, 2008, 75, 493-529.
[http://dx.doi.org/10.3987/REV-07-620]
[110]
Northrup, A.B.; MacMillan, D.W.C. The first direct and enantioselective cross-aldol reaction of aldehydes. J. Am. Chem. Soc., 2002, 124(24), 6798-6799.
[http://dx.doi.org/10.1021/ja0262378] [PMID: 12059180]
[111]
List, B. Direct catalytic asymmetric α-amination of aldehydes. J. Am. Chem. Soc., 2002, 124(20), 5656-5657.
[http://dx.doi.org/10.1021/ja0261325] [PMID: 12010036]
[112]
Zhong, G. A facile and rapid route to highly enantiopure 1,2-diols by novel catalytic asymmetric α-aminoxylation of aldehydes. Angew. Chem. Int. Ed. Engl., 2003, 42(35), 4247-4250.
[http://dx.doi.org/10.1002/anie.200352097] [PMID: 14502748]
[113]
Brown, S.P.; Brochu, M.P.; Sinz, C.J.; MacMillan, D.W.C. The direct and enantioselective organocatalytic α-oxidation of aldehydes. J. Am. Chem. Soc., 2003, 125(36), 10808-10809.
[http://dx.doi.org/10.1021/ja037096s] [PMID: 12952459]
[114]
List, B.; Pojarliev, P.; Martin, H.J. Efficient proline-catalyzed Michael additions of unmodified ketones to nitro olefins. Org. Lett., 2001, 3(16), 2423-2425.
[http://dx.doi.org/10.1021/ol015799d] [PMID: 11483025]
[115]
Northrup, A.B.; Mangion, I.K.; Hettche, F.; MacMillan, D.W.C. Enantioselective organocatalytic direct aldol reactions of α-oxyaldehydes: step one in a two-step synthesis of carbohydrates. Angew. Chem. Int. Ed. Engl., 2004, 43(16), 2152-2154.
[http://dx.doi.org/10.1002/anie.200453716] [PMID: 15083470]
[116]
Chandrasekhar, S.; Vijeender, K.; Sridhar, C. L-Proline-catalyzed one-pot synthesis of 2-aryl-2,3-dihydroquinolin-4(1H)-ones. Tetrahedron Lett., 2007, 48, 4935-4937.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.028]
[117]
Notz, W.; Watanabe, S.; Chowdari, N.S.; Zhong, G.; Betancort, J.M.; Tanaka, F.; Barbas, C.F., III The scope of the direct proline- catalyzed asymmetric addition of ketones to imines. Adv. Synth. Catal., 2004, 346, 1131-1140.
[http://dx.doi.org/10.1002/adsc.200404114]
[118]
Hanessian, S.; Pham, V. Catalytic asymmetric conjugate addition of nitroalkanes to cycloalkenones. Org. Lett., 2000, 2(19), 2975-2978.
[http://dx.doi.org/10.1021/ol000170g] [PMID: 10986086]
[119]
Notz, W.; List, B. Catalytic asymmetric synthesis of anti-1,2-diols. J. Am. Chem. Soc., 2000, 122, 7386-7387.
[http://dx.doi.org/10.1021/ja001460v]
[120]
Mukherjee, S.; Yang, J.W.; Hoffmann, S.; List, B. Asymmetric enamine catalysis. Chem. Rev., 2007, 107(12), 5471-5569.
[http://dx.doi.org/10.1021/cr0684016] [PMID: 18072803]
[121]
Chowdari, N.S.; Ramachary, D.B.; Cordova, A.; Barbas, C.F. Proline-catalyzed asymmetric assembly reactions: enzyme-like assembly of carbohydrates and polyketides from three aldehyde substrates. Tetrahedron Lett., 2002, 43, 9591-9595.
[http://dx.doi.org/10.1016/S0040-4039(02)02412-7]
[122]
Chandrasekhar, S.; Narsihmulu, C.; Reddy, N.R.; Sultana, S.S. Asymmetric aldol reactions in poly(ethylene glycol) catalyzed by L-proline. Tetrahedron Lett., 2004, 45, 4581-4582.
[http://dx.doi.org/10.1016/j.tetlet.2004.03.116]
[123]
Chandrasekhar, S.; Vijeender, K.; Reddy, K.V. New synthesis of flavanones catalyzed by L-proline. Tetrahedron Lett., 2005, 46, 6991-6993.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.066]
[124]
Mukhopadhyay, C.; Kumar, P.; Ray, T.; Butcher, J. L-Proline-catalyzed one-pot expeditious synthesis of highly substituted pyridines at room temperature. Tetrahedron Lett., 2010, 51, 1797-1802.
[http://dx.doi.org/10.1016/j.tetlet.2010.01.106]
[125]
Rajanarendar, E.; Reddy, M.N.; Raju, S. An efficient one pot synthesis of isoxazolyl polyhydroquinolines via Hantzch condensation using L-proline as catalyst. Indian J. Chem., 2011, 50B, 751-755. [Sec B].
[126]
Karimi, A.R.; Momeni, H.R.; Pashazadeh, R. L-Proline-catalyzed diastereoselective synthesis of cis-isoquinolonic acids and evaluation of their neuroprotective effects. Tetrahedron Lett., 2012, 53, 3440-3443.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.089]
[127]
Zhu, S.; Wang, J.; Xu, Z.; Li, J. An efficient one-pot synthesis of pyrano[3,2-c]quinolin-2,5-dione derivatives catalyzed by L-proline. Molecules, 2012, 17(12), 13856-13863.
[http://dx.doi.org/10.3390/molecules171213856] [PMID: 23174901]
[128]
Elnagdi, N.M.H.; Al-Hokbany, N.S. Organocatalysis in synthesis: L-proline as an enantioselective catalyst in the synthesis of pyrans and thiopyrans. Molecules, 2012, 17(4), 4300-4312.
[http://dx.doi.org/10.3390/molecules17044300] [PMID: 22491679]
[129]
Mecadon, H.; Rohman, R. Md.; Kharbangar, I.; Laloo, B. M.; Kharkongor, I.; Rajbangshi, M.; Myrboh, B. L-Proline as an efficicent catalyst for the multi-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in water. Tetrahedron Lett., 2011, 52, 3228-3231.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.048]
[130]
Hasaninejad, S. Firoozi and F. Mandegani, An efficient synthesis of novel spiro[benzo[c]pyrano [3,2-a]phenazines] via domino multi-component reactions using l-proline as a bifunctional organocatalyst. Tetrahedron Lett., 2013, 54, 2791-2794.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.073]
[131]
Rao, S.N.; Mohan, D.C.; Adimurthy, S. L-proline: an efficient catalyst for transamidation of carboxamides with amines. Org. Lett., 2013, 15(7), 1496-1499.
[http://dx.doi.org/10.1021/ol4002625] [PMID: 23473076]
[132]
Kumar, I.; Rode, C.V. Stereoselective synthesis of 2-amino-1,3,5-hexane triols using L-proline catalyzed aldol reaction. Tetrahedron Asymmetry, 2006, 17, 763-766.
[http://dx.doi.org/10.1016/j.tetasy.2006.02.013]
[133]
Alcaide, B.; Almendros, P.; Luna, A.; Torres, M.R. Proline-catalyzed diastereoselective direct aldol reaction between 4-oxoazetidine-2-carbaldehydes and ketones. J. Org. Chem., 2006, 71(13), 4818-4822.
[http://dx.doi.org/10.1021/jo0604235] [PMID: 16776507]
[134]
Pan, Q.; Zou, B.; Wang, Y.; Ma, D. Diastereoselective aldol reaction of N,N-dibenzyl-α-amino aldehydes with ketones catalyzed by proline. Org. Lett., 2004, 6(6), 1009-1012.
[http://dx.doi.org/10.1021/ol049927k] [PMID: 15012087]
[135]
Casas, J.; Sunden, H.; Cordova, A. Direct organocatalytic asymmetric α-hydroxymethylation of ketones and aldehydes. Tetrahedron Lett., 2004, 45, 6117-6119.
[http://dx.doi.org/10.1016/j.tetlet.2004.06.062]
[136]
Ward, D.E.; Jheengut, V. Proline-catalyzed asymmetric aldol reactions of tetrahydro-4H-thiopyran-4-one with aldehydes. Tetrahedron Lett., 2004, 45, 8347-8350.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.061]
[137]
Ward, D.E.; Jheengut, V.; Akinnusi, O.T. Enantioselective direct intermolecular aldol reactions with enantiotopic group selectivity and dynamic kinetic resolution. Org. Lett., 2005, 7(6), 1181-1184.
[http://dx.doi.org/10.1021/ol050195l] [PMID: 15760169]
[138]
Bøgevig, A.; Kumaragurubaran, N.; Jørgensen, K.A. Direct catalytic asymmetric aldol reactions of aldehydes. Chem. Commun. (Camb.), 2002, 6(6), 620-621.
[http://dx.doi.org/10.1039/b200681b] [PMID: 12120152]
[139]
Shen, Z.; Li, B.; Wang, L.; Zhang, Y. Proline-catalyzed aldol reactions of acyl cyanides with acetone: an efficient and convenient synthesis of 1,3-diketones. Tetrahedron Lett., 2005, 46, 8785-8788.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.036]
[140]
Liu, H.; Peng, L.; Zhang, T.; Li, Y. L-Proline catalyzed asymmetric aldol reactions of protected hydroxyacetone. New J. Chem., 2003, 8, 1159-1160.
[141]
Tokuda, O.; Kano, T.; Gao, W-G.; Ikemoto, T.; Maruoka, K. A practical synthesis of (S)-2-cyclohexyl-2-phenylglycolic acid via organocatalytic asymmetric construction of a tetrasubstituted carbon center. Org. Lett., 2005, 7(22), 5103-5105.
[http://dx.doi.org/10.1021/ol052164w] [PMID: 16235968]
[142]
Samanta, S.; Zhao, C-G. Asymmetric direct aldol reaction of 1,2-diketones and ketones mediated by proline derivatives. Tetrahedron Lett., 2006, 47, 3383-3386.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.085]
[143]
Samanta, S.; Zhao, C-G. Organocatalytic enantioselective synthesis of α-hydroxy phosphonates. J. Am. Chem. Soc., 2006, 128(23), 7442-7443.
[http://dx.doi.org/10.1021/ja062091r] [PMID: 16756289]
[144]
Funabiki, K.; Yamamoto, H.; Nagaya, H.; Matsui, M. Proline-catalyzed direct asymmetric aldol reaction of trifluoroacetaldehyde ethyl hemiacetal with ketones. Tetrahedron Lett., 2006, 47, 5507-5510.
[http://dx.doi.org/10.1016/j.tetlet.2006.05.165]
[145]
Katritzky, A.R.; Suzuki, K.; Singh, S.K.; He, H-Y. Regiospecific C-acylation of pyrroles and indoles using N-acylbenzotriazoles. J. Org. Chem., 2003, 68(14), 5720-5723.
[http://dx.doi.org/10.1021/jo034187z] [PMID: 12839468]
[146]
Sun, B.; Peng, L.; Chen, X.; Li, Y.; Li, Y.; Yamasaki, K. Synthesis of (−)-(5R,6S)-6-acetoxyhexadecan-5-olide by L-proline-catalyzed asymmetric aldol reactions. Tetrahedron Asymmetry, 2005, 16, 1305-1307.
[http://dx.doi.org/10.1016/j.tetasy.2005.02.017]
[147]
Ikishima, H.; Sekiguchi, Y.; Ichikawa, Y.; Kotsuki, H. Synthesis of (−)-(5R, 6S)-6-acetoxyhexadecanolide based on L-proline-catalyzed asymmetric aldol reactions. Tetrahedron, 2006, 62, 311-316.
[http://dx.doi.org/10.1016/j.tet.2005.08.111]
[148]
Enders, D.; Palecek, J.; Grondal, C. A direct organocatalytic entry to sphingoids: asymmetric synthesis of D-arabino- and L-ribo-phytosphingosine. Chem. Commun. (Camb.), 2006, 6(6), 655-657.
[http://dx.doi.org/10.1039/b515007h] [PMID: 16446841]
[149]
Enders, D.; Grondal, C. A Direct entry to carbasugars: Asymmetric synthesis of 1-epi-(+)-MK7607. Synlett, 2006, 20, 3507-3509.
[http://dx.doi.org/10.1055/s-2006-956495]
[150]
Wennemers, H. Asymmetric catalysis with peptides. Chem. Commun. (Camb.), 2011, 47(44), 12036-12041.
[http://dx.doi.org/10.1039/c1cc15237h] [PMID: 21993353]
[151]
List, B.; Martin, H.J. Mining sequence space for asymmetric aminocatalysis: N-terminal prolyl-peptides efficiently catalyze enantioselective aldol and Michael reactions. Synlett, 2003, 12, 1901-1902.
[http://dx.doi.org/10.1055/s-2003-41490]
[152]
Tsogoeva, S.B.; Jagtap, S.B.; Ardemasova, Z.A. Kalikhevich, V. N. Trends in asymmetric Michael reactions catalysed by tripeptides in combination with an achiral additive in different solvents. Eur. J. Org. Chem., 2004, 19, 4014-4019.
[http://dx.doi.org/10.1002/ejoc.200400243]
[153]
Tsogoeva, S.B.; Jagtap, S.B.; Ardemasova, Z.A. 4-trans-Amino-proline based di- and tetrapeptides as organic catalysts for asymmetric C-C bond formation reactions. Tetrahedron Asymmetry, 2006, 17, 989-992.
[http://dx.doi.org/10.1016/j.tetasy.2006.03.012]
[154]
Tsogoeva, S.B.; Jagtap, S.B. Dual catalyst control in the chiral diamine-dipeptide-catalyzed asymmetric Michael addition. Synlett, 2004, 14, 2624-2626.
[http://dx.doi.org/10.1055/s-2004-834830]
[155]
Guerin, D.J.; Miller, S.J. Asymmetric azidation-cycloaddition with open-chain peptide-based catalysts. A sequential enantioselective route to triazoles. J. Am. Chem. Soc., 2002, 124(10), 2134-2136.
[http://dx.doi.org/10.1021/ja0177814] [PMID: 11878965]
[156]
Revell, J.D.; Gantenbein, D.; Krattiger, P.; Wennemers, H. Solid- supported and pegylated H-Pro-Pro-Asp-NHR as catalysts for asymmetric aldol reactions. Biopolymers, 2006, 84(1), 105-113.
[http://dx.doi.org/10.1002/bip.20393] [PMID: 16245260]
[157]
Huang, W.; Tian, H.; Xu, H.; Zheng, L.; Liu, Q.; Zhang, S. L-Valine dipeptide organocatalysts with two amide units for the direct asymmetric aldol reaction in brine. Catal. Lett., 2011, 141, 872-876.
[http://dx.doi.org/10.1007/s10562-011-0589-z]
[158]
Haque, T.S.; Little, J.C.; Gellman, S.H. Stereochemical requirement for β-hairpin formation: model stdies with four-residue peptides and depsipeptides. J. Am. Chem. Soc., 1996, 118, 6975-6985.
[http://dx.doi.org/10.1021/ja960429j]
[159]
Zozulia, O.; Dolan, M.A.; Korendovych, I.V. Catalytic peptide assemblies. Chem. Soc. Rev., 2018, 47(10), 3621-3639.
[http://dx.doi.org/10.1039/C8CS00080H] [PMID: 29594277]
[160]
Sudipta, R.; Dilip, K. M. Peptide-catalyzed fundamental organic transformations Curr. Organocatalysis, 2017, 4, 1-8.
[161]
Shi, L-X.; Sun, Q.; Ge, Z-M.; Zhu, Y-Q.; Cheng, T-M.; Li, R-T. Dipeptide-catalyzed direct asymmetric aldol reaction. Synlett, 2004, 12, 2215-2217.
[162]
Freund, M.; Schenker, S.; Tsogoeva, S.B. Enantioselective nitro-Michael reactions catalyzed by short peptides on water. Org. Biomol. Chem., 2009, 7(20), 4279-4284.
[http://dx.doi.org/10.1039/b910249c] [PMID: 19795068]
[163]
Tang, Z.; Yang, Z-H.; Cun, L-F.; Gong, L-Z.; Mi, A-Q.; Jiang, Y-Z. Small peptides catalyze highly enantioselective direct aldol reactions of aldehydes with hydroxyacetone: unprecedented regiocontrol in aqueous media. Org. Lett., 2004, 6(13), 2285-2287.
[http://dx.doi.org/10.1021/ol049141m] [PMID: 15200341]
[164]
Zou, W.; Ibrahem, I.; Dziedzic, P.; Sundén, H.; Córdova, A. Small peptides as modular catalysts for the direct asymmetric aldol reaction: ancient peptides with aldolase enzyme activity. Chem. Commun. (Camb.), 2005, 39(39), 4946-4948.
[http://dx.doi.org/10.1039/b509920j] [PMID: 16205809]
[165]
Andreae, M.R.M.; Davis, A.P. Heterogeneous catalysis of the asymmetric aldol reaction by solid-supported proline-terminated peptides. Tetrahedron Asymmetry, 2005, 16, 2487-2492.
[http://dx.doi.org/10.1016/j.tetasy.2005.06.031]
[166]
Wang, L.; Yan, J. Merrifield resin supported dipeptides: efficient and recyclable organocatalysts for asymmetric aldol reactions under neat reaction conditions. Synthesis, 2008, 13, 2065-2072.
[http://dx.doi.org/10.1055/s-2008-1067104]
[167]
Rodríguez-Llansola, F.; Miravet, J.F.; Escuder, B. A supramolecular hydrogel as a reusable heterogeneous catalyst for the direct aldol reaction. Chem. Commun. (Camb.), 2009, 47(47), 7303-7305.
[http://dx.doi.org/10.1039/b916250j] [PMID: 20024209]
[168]
Bayat, S.; Tejo, B.A.; Salleh, A.B.; Abdmalek, E.; Normi, Y.M.; Abdul Rahman, M.B. Various polar tripeptides as asymmetric organocatalyst in direct aldol reactions in aqueous media. Chirality, 2013, 25(11), 726-734.
[http://dx.doi.org/10.1002/chir.22205] [PMID: 23966316]
[169]
Bayat, S.; Tejo, B.A.; Abdulmalek, E.; Salleh, A.B.; Normi, Y.M.; Rahman, M.B.A. Rational design of mimetic peptides based on aldo-ketoreductase enzyme as asymmetric organocatalysts in aldol reactions. RSC Advances, 2014, 4, 38859-38868.
[http://dx.doi.org/10.1039/C4RA04866K]
[170]
Psarra, A.; Kokotos, C.G.; Moutevelis-Minakakis, P. tert-Butyl esters of tripeptides based on Pro-Phe as organocatalysts for the asymmetric aldol reaction in aqueous or organic medium. Tetrahedron, 2014, 70, 608-615.
[http://dx.doi.org/10.1016/j.tet.2013.12.007]
[171]
Gurka, A.; Bucsi, I.; Kova’cs, L.; Sz˝oll˝osi, G.; Barto’k, M. Reversal of the enantioselectivity in aldol addition over immobilized di- and tripeptides: studies under continuous flow conditions. RSC Advances, 2014, 4, 61611-61618.
[http://dx.doi.org/10.1039/C4RA07188C]
[172]
Akagawa, K.; Suzuki, R.; Kudo, K. Development of a peptide-based primary aminocatalyst with a helical structure. Asian J. Org. Chem., 2014, 3, 514-522.
[http://dx.doi.org/10.1002/ajoc.201400028]
[173]
Johnsson, K.; Allemann, R.K.; Widmer, H.; Benner, S.A. Synthesis, structure and activity of artificial, rationally designed catalytic polypeptides. Nature, 1993, 365(6446), 530-532.
[http://dx.doi.org/10.1038/365530a0] [PMID: 8413606]
[174]
Duschmalé, J.; Wennemers, H. Adapting to substrate challenges: peptides as catalysts for conjugate addition reactions of aldehydes to α,β-disubstituted nitroolefins. Chemistry, 2012, 18(4), 1111-1120.
[http://dx.doi.org/10.1002/chem.201102484] [PMID: 22189758]
[175]
Weber, A.L.; Pizzarello, S. The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecular evolution. Proc. Natl. Acad. Sci. USA, 2006, 103(34), 12713-12717.
[http://dx.doi.org/10.1073/pnas.0602320103] [PMID: 16905650]
[176]
Agirre, M.; Arrieta, A.; Arrastia, I.; Cossío, F.P. Organocatalysts derived from unnatural α-amino acids: scope and applications. Chem. Asian J., 2019, 14(1), 44-66.
[http://dx.doi.org/10.1002/asia.201801296] [PMID: 30300971]
[177]
Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature, 2003, 423(6941), 705-714.
[http://dx.doi.org/10.1038/nature01650] [PMID: 12802325]
[178]
Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. Engl., 2004, 43(18), 2334-2375.
[http://dx.doi.org/10.1002/anie.200300610] [PMID: 15114565]
[179]
Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev., 2008, 37(1), 191-214.
[http://dx.doi.org/10.1039/B618320B] [PMID: 18197340]
[180]
Eddaoudi, M.; Moler, D.B.; Li, H.; Chen, B.; Reineke, T.M.; O’Keeffe, M.; Yaghi, O.M. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res., 2001, 34(4), 319-330.
[http://dx.doi.org/10.1021/ar000034b] [PMID: 11308306]
[181]
Ockwig, N.W.; Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O.M. Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res., 2005, 38(3), 176-182.
[http://dx.doi.org/10.1021/ar020022l] [PMID: 15766236]
[182]
Furukawa, H.; Yaghi, O.M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc., 2009, 131(25), 8875-8883.
[http://dx.doi.org/10.1021/ja9015765] [PMID: 19496589]
[183]
Ahmad, R.; Wong-Foy, A.G.; Matzger, A.J. Microporous coordination polymers as selective sorbents for liquid chromatography. Langmuir, 2009, 25(20), 11977-11979.
[http://dx.doi.org/10.1021/la902276a] [PMID: 19754060]
[184]
Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N.A.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc., 2008, 130(21), 6774-6780.
[http://dx.doi.org/10.1021/ja710973k] [PMID: 18454528]
[185]
Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal-organic framework materials as catalysts. Chem. Soc. Rev., 2009, 38(5), 1450-1459.
[http://dx.doi.org/10.1039/b807080f] [PMID: 19384447]
[186]
Isak, R.S. Organocatalysis: Key Trends in Green Synthetic Chemistry, Challenges, Scope towards Heterogenization, and Importance from Research and Industrial Point of View. J. Catal., 2014, 2-35.
[187]
Taylor-Pashow, K.M.; Della Rocca, J.; Xie, Z.; Tran, S.; Lin, W. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc., 2009, 131(40), 14261-14263.
[http://dx.doi.org/10.1021/ja906198y] [PMID: 19807179]
[188]
Tonigold, M.; Lu, Y.; Bredenkötter, B.; Rieger, B.; Bahnmüller, S.; Hitzbleck, J.; Langstein, G.; Volkmer, D. Heterogeneous catalytic oxidation by MFU-1: a cobalt(II)-containing metal-organic framework. Angew. Chem. Int. Ed. Engl., 2009, 48(41), 7546-7550.
[http://dx.doi.org/10.1002/anie.200901241] [PMID: 19746371]
[189]
Dhakshinamoorthy, A.; Alvaro, M.; Garcia, M. Claisen-Schmidt condensation catalyzed by metal-organic frameworks. Adv. Synth. Catal., 2010, 352, 711-717.
[http://dx.doi.org/10.1002/adsc.200900747]
[190]
Hu, A.; Ngo, H.L.; Lin, W. Chiral porous hybrid solids for practical heterogeneous asymmetric hydrogenation of aromatic ketones. J. Am. Chem. Soc., 2003, 125(38), 11490-11491.
[http://dx.doi.org/10.1021/ja0348344] [PMID: 13129339]
[191]
Tanaka, K.; Oda, S.; Shiro, M. A novel chiral porous metal-organic framework: asymmetric ring opening reaction of epoxide with amine in the chiral open space. Chem. Commun. (Camb.), 2008, (7), 820-822.
[http://dx.doi.org/10.1039/B714083E] [PMID: 18253515]
[192]
Jiang, D.; Mallat, T.; Krumeich, F.; Baiker, A. Copper-based metal-organic framework for the facile ring-opening of epoxides. J. Catal., 2008, 257, 390-395.
[http://dx.doi.org/10.1016/j.jcat.2008.05.021]
[193]
Ingleson, M.J.; Barrio, J.P.; Bacsa, J.; Dickinson, C.; Park, H.; Rosseinsky, M.J. Generation of a solid Brønsted acid site in a chiral framework. Chem. Commun. (Camb.), 2008, (11), 1287-1289.
[http://dx.doi.org/10.1039/b718443c] [PMID: 18389109]
[194]
Nießing, S.; Czekelius, C.; Janiak, C. Immobilisation of catalytically active proline on H2N-MIL-101(Al) accompanied with reversal in enantioselectivity. Catal. Commun., 2017, 95, 12-15.
[http://dx.doi.org/10.1016/j.catcom.2017.02.027]
[195]
Maleki, B.; Babaee, S.; Tayebee, R. Zn(L-proline)2 as a powerful and reusable organometallic catalyst for the very fast synthesis of 2-amino-4H-benzo[g]chromene derivatives under solvent-free conditions. Appl. Organomet. Chem., 2015, 29, 408-411.
[http://dx.doi.org/10.1002/aoc.3306]
[196]
Zhuang, J.; Young, A.P.; Tsung, C-K. Integration of biomolecules with metal-organic frameworks. Small, 2017, 13(32), 1700880.
[http://dx.doi.org/10.1002/smll.201700880] [PMID: 28640560]
[197]
Alizadeh, M.H.; Tayebee, R.; Mirzaei, M. Synthesis and characterization of tetraprolinium silicotungstic acid tetra-hydrate, a new organic-inorganic hybrid based on polyoxometallates. Cryst. Res. Technol., 2008, 43, 214-217.
[http://dx.doi.org/10.1002/crat.200710963]
[198]
Saba, D.; Mahbobeh, G-M.; Ali, R. O.; Mostafa, K.; Sergio, N.; Mercedes, A. l.; Daliran, S.; Ghazagh-Miri, M.; Oveisi, A.R.; Khajeh, M.; Navalón, S.; Âlvaro, M.; Ghaffari-Moghaddam, M.; Samareh Delarami, H.; García, H. A Pyridyltriazol functionalized zirconium metal−organic framework for selective and highly efficient adsorption of palladium. ACS Appl. Mater. Interfaces, 2020, 12(22), 25221-25232.
[http://dx.doi.org/10.1021/acsami.0c06672] [PMID: 32368890]
[199]
Oudi, S.; Oveisi, A.R.; Daliran, S.; Khajeh, M.; Teymoori, E. Brønsted-Lewis dual acid sites in a chromium-based metal-organic framework for cooperative catalysis: Highly efficient synthesis of quinazolin-(4H)-1-one derivatives. J. Colloid Interface Sci., 2020, 561, 782-792.
[http://dx.doi.org/10.1016/j.jcis.2019.11.056] [PMID: 31761467]
[200]
Ghaleno, M.R.; Ghaffari-Moghaddam, M.; Khajeh, M.; Reza Oveisi, A.; Bohlooli, M. Iron species supported on a mesoporous zirconium metal-organic framework for visible light driven synthesis of quinazolin-4(3H)-ones through one-pot three-step tandem reaction. J. Colloid Interface Sci., 2019, 535, 214-226.
[http://dx.doi.org/10.1016/j.jcis.2018.09.099] [PMID: 30293047]
[201]
Kutzscher, C.; Nickerl, G.; Senkovska, I.; Bon, V.; Kaskel, S. Proline functionalized UiO-67 and UiO-68 type metal-organic frameworks showing reversed diastereoselectivity in aldol addition reactions. Chem. Mater., 2016, 28, 2573-2580.
[http://dx.doi.org/10.1021/acs.chemmater.5b04575]
[202]
Nguyen, K.D.; Kutzscher, C.; Drache, F.; Senkovska, I.; Kaskel, S. Chiral functionalization of a zirconium metal-organic framework (DUT-67) as a heterogeneous catalyst in asymmetric Michael addition reaction. Inorg. Chem., 2018, 57(3), 1483-1489.
[http://dx.doi.org/10.1021/acs.inorgchem.7b02854] [PMID: 29364659]
[203]
Feng, X.; Jena, H.S.; Leus, K.; Wang, G.; Ouwehand, J.; Van Der, V.P. L-proline modulated zirconium metal organic frameworks: Simple chiral catalysts for the aldol addition reaction. J. Catal., 2018, 365, 36-42.
[http://dx.doi.org/10.1016/j.jcat.2018.06.013]
[204]
Banerjee, M.; Das, S.; Yoon, M.; Choi, H.J.; Hyun, M.H.; Park, S.M.; Seo, G.; Kim, K. Postsynthetic modification switches an achiral framework to catalytically active homochiral metal-organic porous materials. J. Am. Chem. Soc., 2009, 131(22), 7524-7525.
[http://dx.doi.org/10.1021/ja901440g] [PMID: 19438178]
[205]
Canivet, J.; Aguado, S.; Bergeret, G.; Farrusseng, D. Amino acid functionalized metal-organic frameworks by a soft coupling-deprotection sequence. Chem. Commun. (Camb.), 2011, 47(42), 11650-11652.
[http://dx.doi.org/10.1039/c1cc15541e] [PMID: 21964419]
[206]
Hintz, H.; Wuttke, S. Postsynthetic modification of an amino- tagged MOF using peptide coupling reagents: a comparative study. Chem. Commun. (Camb.), 2014, 50(78), 11472-11475.
[http://dx.doi.org/10.1039/C4CC02650K] [PMID: 24941925]
[207]
Bonnefoy, J.; Legrand, A.; Quadrelli, E.A.; Canivet, J.; Farrusseng, D. Enantiopure peptide-functionalized metal-organic frameworks. J. Am. Chem. Soc., 2015, 137(29), 9409-9416.
[http://dx.doi.org/10.1021/jacs.5b05327] [PMID: 26120932]
[208]
Garibay, S.J.; Wang, Z.; Cohen, S.M. Evaluation of heterogeneous metal-organic framework organocatalysts prepared by postsynthetic modification. Inorg. Chem., 2010, 49(17), 8086-8091.
[http://dx.doi.org/10.1021/ic1011549] [PMID: 20698561]
[209]
Dhakshinamoorthy, A.; Navalon, S.; Asiri, A.M.; Garcia, H. Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions. Chem. Commun. (Camb.), 2019, 56(1), 26-45.
[http://dx.doi.org/10.1039/C9CC07953J] [PMID: 31782441]
[210]
Zhou, M.; El-Sayed, M. E.-S.; Ju, Z.; Wang, W.; Yuan, D. The synthesis and applications of chiral pyrrolidine functionalized metal-organic frameworks and covalent-organic frameworks. Inorg. Chem. Front., 2020, 7, 1319-1333.
[211]
Bulman Page, P.C.; Mace, A.; Arquier, D.; Bethell, D.; Buckley, B.R.; Willock, D.J.; Hutchings, G.J. Towards heterogeneous organocatalysis: chiral iminium cations supported on porous materials for enantioselective alkene epoxidation. Catal. Sci. Technol., 2013, 3, 2330-2339.
[http://dx.doi.org/10.1039/c3cy00352c]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy