Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Review Article

A Brief Survey of Assessment Models to Predict Stress Level of Heavy Metals in Soil

Author(s): Sangeetha Annam and Anshu Singla*

Volume 14, Issue 3, 2021

Published on: 16 November, 2020

Page: [276 - 289] Pages: 14

DOI: 10.2174/2352096513999201116214345

Price: $65

Abstract

Soil is a major and important natural resource, which not only support human life but also furnish commodities for ecological and economic growth. Ecological risk, such as degradation of soil pose a serious threat to the ecosystem. The high-stress level of heavy metals like chromium, copper, cadmium, etc., produce ecological risks, which include: decrease in the fertility of the soil; reduction in crop yield and degradation of metabolism of living beings, and hence ecological health. The ecological risk associated demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological, and hence economic growth. This study reviews the efficient assessment models to predict contamination of soil due to heavy metal.

Keywords: Soil, ecosystem, ecological risk, heavy metals, red soil, alluvial soil, desert soil.

Graphical Abstract
[1]
L.R. Alves, "Heavy metals in agricultural soils: From plants to our daily life", Científica (Jaboticabal), vol. 44, no. 3, pp. 346-361, 2016.
[http://dx.doi.org/10.15361/1984-5529.2016v44n3p346-361]
[2]
Z. Xu, J. Li, Y. Pan, and X. Chai, "Human health risk assessment of heavy metals in a replaced urban industrial area of Qingdao, China", Environ. Monit. Assess., vol. 188, no. 4, p. 229, 2016.
[http://dx.doi.org/10.1007/s10661-016-5224-4] [PMID: 26984566]
[3]
A. Mahar, P. Wang, A. Ali, M.K. Awasthi, A.H. Lahori, Q. Wang, R. Li, and Z. Zhang, "Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review", Ecotoxicol. Environ. Saf., vol. 126, pp. 111-121, 2016.
[http://dx.doi.org/10.1016/j.ecoenv.2015.12.023] [PMID: 26741880]
[4]
V. Srivastava, A. Sarkar, S. Singh, P. Singh, A.S. de Araujo, and R.P. Singh, "Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances", Front. Environ. Sci., vol. 5, p. 64, 2017.
[http://dx.doi.org/10.3389/fenvs.2017.00064]
[5]
R.A. Wuana, and F.E. Okieimen, "Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation", ISRN Ecol., vol. 2011, 2011.
[http://dx.doi.org/10.5402/2011/402647]
[6]
C. Li, K. Zhou, W. Qin, C. Tian, M. Qi, X. Yan, and W. Han, "A review on heavy metals contamination in soil: effects, sources, and remediation techniques"Soil Sedim. Contam.: An Int. J., vol. 28, no. 4, pp. 380-394, 2019.
[http://dx.doi.org/10.1080/15320383.2019.1592108]
[7]
L. Liu, W. Li, W. Song, and M. Guo, "Remediation techniques for heavy metal-contaminated soils: Principles and applicability", Sci. Total Environ., vol. 633, pp. 206-219, 2018.
[http://dx.doi.org/10.1016/j.scitotenv.2018.03.161] [PMID: 29573687]
[8]
H. Rajkumar, P.K. Naik, and M.S. Rishi, "Evaluation of heavy metal contamination in soil using geochemical indexing approaches and chemometric techniques", Int. J. Environ. Sci. Technol., vol. 16, no. 11, pp. 7467-7486, 2019.
[http://dx.doi.org/10.1007/s13762-018-2081-4]
[9]
V. Kumar, A. Sharma, P. Kaur, G.P. Singh Sidhu, A.S. Bali, R. Bhardwaj, A.K. Thukral, and A. Cerda, "Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art", Chemosphere, vol. 216, pp. 449-462, 2019.
[http://dx.doi.org/10.1016/j.chemosphere.2018.10.066] [PMID: 30384315]
[10]
R. Ahmad, H. Kaushik, and R.K. Ranjan, "Assessment of microbial communities and heavy metals in urban soils of Patna, Bihar (India)", Arab. J. Geosci., vol. 12, no. 2, p. 20, 2019.
[http://dx.doi.org/10.1007/s12517-018-4188-9]
[11]
W.A. Jadoon, and R.N. Malik, "Geochemical approach for heavy metals in suburban agricultural soils of Sialkot, Pakistan", SN Appl. Sci., vol. 1, no. 2, p. 161, 2019.
[http://dx.doi.org/10.1007/s42452-019-0167-3]
[12]
N. Adimalla, H. Qian, and H. Wang, "Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana, India: an approach of spatial distribution and multivariate statistical analysis", Environ. Monit. Assess., vol. 191, no. 4, p. 246, 2019.
[http://dx.doi.org/10.1007/s10661-019-7408-1] [PMID: 30915588]
[13]
R. Kumar, V. Kumar, A. Sharma, N. Singh, R. Kumar, and J.K. Katnoria, "Assessment of pollution in roadside soils by using multivariate statistical techniques and contamination indices", SN Applied Sciences, vol. 1, no. 8, p. 842, 2019.
[http://dx.doi.org/10.1007/s42452-019-0888-3]
[14]
M.D. Salam, and A. Varma, Toxic pollutants survey in soils of electronic waste-contaminated sites in Delhi NCR.Waste Management and Resource Efficiency., Springer: Singapore, 2019, pp. 841-851.
[http://dx.doi.org/10.1007/978-981-10-7290-1_71]
[15]
X. Li, D. Meng, J. Li, H. Yin, H. Liu, X. Liu, C. Cheng, Y. Xiao, Z. Liu, and M. Yan, "Response of soil microbial communities and microbial interactions to long-term heavy metal contamination", Environ. Pollut., vol. 231, no. Pt 1, pp. 908-917, 2017.
[http://dx.doi.org/10.1016/j.envpol.2017.08.057] [PMID: 28886536]
[16]
I. Kaur, A. Gupta, B.P. Singh, S. Sharma, and A. Kumar, "Assessment of radon and potentially toxic metals in agricultural soils of Punjab, India", Microchem. J., vol. 146, pp. 444-454, 2019.
[http://dx.doi.org/10.1016/j.microc.2019.01.028]
[17]
S. Sharma, A.K. Nagpal, and I. Kaur, "Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs", Food Chem., vol. 255, pp. 15-22, 2018.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.037] [PMID: 29571461]
[18]
V.K. Gaurav, C. Sharma, R. Buhlan, and S.K. Sethi, Fuzzy-based probabilistic ecological risk assessment approach: A case study of heavy metal contaminated soil.Soft Comput.: Theories Appl., Springer: Singapore, 2018, pp. 419-431.
[http://dx.doi.org/10.1007/978-981-10-5699-4_39]
[19]
N.L. Devi, and I.C. Yadav, "Chemometric evaluation of heavy metal pollutions in Patna region of the Ganges alluvial plain, India: implication for source apportionment and health risk assessment", Environ. Geochem. Health, vol. 40, no. 6, pp. 2343-2358, 2018.
[http://dx.doi.org/10.1007/s10653-018-0101-4] [PMID: 29594919]
[20]
S. Giri, A.K. Singh, and M.K. Mahato, "Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India", J. Earth Syst. Sci., vol. 126, no. 4, p. 49, 2017.
[http://dx.doi.org/10.1007/s12040-017-0833-z]
[21]
G. Singh, and R.K. Kamal, "Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India", Appl. Water Sci., vol. 7, no. 3, pp. 1479-1485, 2017.
[http://dx.doi.org/10.1007/s13201-016-0430-3]
[22]
A.K. Krishna, and K.R. Mohan, "Distribution, correlation, ecological and health risk assessment of heavy metal contamination in surface soils around an industrial area, Hyderabad, India", Environ. Earth Sci., vol. 75, no. 5, p. 411, 2016.
[http://dx.doi.org/10.1007/s12665-015-5151-7]
[23]
S.S. Bhatti, V. Sambyal, and A.K. Nagpal, "Heavy metals bioaccumulation in Berseem (Trifolium alexandrinum) cultivated in areas under intensive agriculture, Punjab, India", Springerplus, vol. 5, no. 1, p. 173, 2016.
[http://dx.doi.org/10.1186/s40064-016-1777-5] [PMID: 27026870]
[24]
N.K. Singh, A.S. Raghubanshi, A.K. Upadhyay, and U.N. Rai, "Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India", Ecotoxicol. Environ. Saf., vol. 130, pp. 224-233, 2016.
[http://dx.doi.org/10.1016/j.ecoenv.2016.04.024] [PMID: 27131746]
[25]
A. Chandrasekaran, R. Ravisankar, N. Harikrishnan, K.K. Satapathy, M.V.R. Prasad, and K.V. Kanagasabapathy, "Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India--spectroscopical approach", Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 137, pp. 589-600, 2015.
[http://dx.doi.org/10.1016/j.saa.2014.08.093] [PMID: 25240831]
[26]
A.K. Krishna, K.R. Mohan, N.N. Murthy, V. Periasamy, G. Bipinkumar, K. Manohar, and S.S. Rao, "Assessment of heavy metal contamination in soils around chromite mining areas, Nuggihalli, Karnataka, India", Environ. Earth Sci., vol. 70, no. 2, pp. 699-708, 2013.
[http://dx.doi.org/10.1007/s12665-012-2153-6]
[27]
S. Kanmani, and R. Gandhimathi, "Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site", Appl. Water Sci., vol. 3, no. 1, pp. 193-205, 2013.
[http://dx.doi.org/10.1007/s13201-012-0072-z]
[28]
S. Das, S.S. Ram, H.K. Sahu, D.S. Rao, A. Chakraborty, M. Sudarshan, and H.N. Thatoi, "A study on soil physico-chemical, microbial and metal content in Sukinda chromite mine of Odisha, India", Environ. Earth Sci., vol. 69, no. 8, pp. 2487-2497, 2013.
[http://dx.doi.org/10.1007/s12665-012-2074-4]
[29]
P. Khanna, "Assessment of heavy metal contamination in different vegetables grown in and around urban areas", Res. J. Environ. Toxicol., vol. 5, no. 3, p. 162, 2011.
[http://dx.doi.org/10.3923/rjet.2011.162.179]
[30]
G. Machender, R. Dhakate, L. Prasanna, and P.K. Govil, "Assessment of heavy metal contamination in soils around Balanagar industrial area, Hyderabad, India", Environ. Earth Sci., vol. 63, no. 5, pp. 945-953, 2011.
[http://dx.doi.org/10.1007/s12665-010-0763-4]
[31]
A.K. Krishna, and P.K. Govil, "Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, Southern India", Environmen. Geol., vol. 54, no. 7, pp. 1465-1472, 2008.
[http://dx.doi.org/10.1007/s00254-007-0927-z]
[32]
T. Roychowdhury, T. Uchino, H. Tokunaga, and M. Ando, "Arsenic and other heavy metals in soils from an arsenic-affected area of West Bengal, India", Chemosphere, vol. 49, no. 6, pp. 605-618, 2002.
[http://dx.doi.org/10.1016/S0045-6535(02)00309-0] [PMID: 12430648]
[33]
P. Fu, K. Yang, and F. Feng, "Study on heavy metal in soil based on spectral second-order differential Gabor transform", Photonirvachak (Dehra Dun), vol. 47, no. 4, pp. 629-638, 2019.
[http://dx.doi.org/10.1007/s12524-018-0890-z]
[34]
K. Liu, D. Zhao, J.Y. Fang, X. Zhang, Q.Y. Zhang, and X.K. Li, "Estimation of heavy-metal contamination in soil using remote sensing spectroscopy and a statistical approach", Photonirvachak (Dehra Dun), vol. 45, no. 5, pp. 805-813, 2017.
[http://dx.doi.org/10.1007/s12524-016-0648-4]
[35]
G. Tóth, T. Hermann, M.R. Da Silva, and L. Montanarella, "Heavy metals in agricultural soils of the European Union with implications for food safety", Environ. Int., vol. 88, pp. 299-309, 2016.
[http://dx.doi.org/10.1016/j.envint.2015.12.017] [PMID: 26851498]
[36]
G. Liu, L. Tao, X. Liu, J. Hou, A. Wang, and R. Li, "Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China", J. Geochem. Explor., vol. 132, pp. 156-163, 2013.
[http://dx.doi.org/10.1016/j.gexplo.2013.06.017]
[37]
Y. Xie, T.B. Chen, M. Lei, J. Yang, Q.J. Guo, B. Song, and X.Y. Zhou, "Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis", Chemosphere, vol. 82, no. 3, pp. 468-476, 2011.
[http://dx.doi.org/10.1016/j.chemosphere.2010.09.053] [PMID: 20970158]
[38]
M. Muchuweti, J.W. Birkett, E. Chinyanga, R. Zvauya, M.D. Scrimshaw, and J.N. Lester, "Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: implications for human health", Agric. Ecosyst. Environ., vol. 112, no. 1, pp. 41-48, 2006.
[http://dx.doi.org/10.1016/j.agee.2005.04.028]
[39]
P. Sihag, A. Keshavarzi, and V. Kumar, "Comparison of different approaches for modeling of heavy metal estimations", SN Appl. Sci., vol. 1, no. 7, p. 780, 2019.
[http://dx.doi.org/10.1007/s42452-019-0816-6]
[40]
L. Zhao, Y.M. Hu, W. Zhou, Z.H. Liu, Y.C. Pan, and Z. Shi, "Estimation methods for soil mercury content using hyperspectral remote sensing", Sustainability, vol. 10, no. 7, p. 2474, 2018.
[http://dx.doi.org/10.3390/su10072474]
[41]
C. Luo, C. Liu, Y. Wang, X. Liu, F. Li, G. Zhang, and X. Li, "Heavy metal contamination in soils and vegetables near an e-waste processing site, South China", J. Hazard. Mater., vol. 186, no. 1, pp. 481-490, 2011.
[http://dx.doi.org/10.1016/j.jhazmat.2010.11.024] [PMID: 21144651]
[42]
M. Liu, X. Liu, M. Wu, L. Li, and L. Xiu, "Integrating spectral indices with environmental parameters for estimating heavy metal concentrations in rice using a dynamic fuzzy neural-network model", Comput. Geosci., vol. 37, no. 10, pp. 1642-1652, 2011.
[http://dx.doi.org/10.1016/j.cageo.2011.03.009]
[43]
M.A.N.O.U.C.H.E.H.R. Amini, M. Afyuni, N. Fathianpour, H. Khademi, and H. Flühler, "Continuous soil pollution mapping using fuzzy logic and spatial interpolation", Geoderma, vol. 124, no. 3-4, pp. 223-233, 2005.
[http://dx.doi.org/10.1016/j.geoderma.2004.05.009]
[44]
M.K.A. Ansari, H.B. Shao, S. Umar, A. Ahmad, S.H. Ansari, M. Iqbal, and G. Owens, "Screening Indian mustard genotypes for phytoremediating arsenic‐contaminated soils", CLEAN–Soil, Air Water, vol. 41, no. 2, pp. 195-201, 2013.
[45]
S.S. Bhatti, V. Kumar, V. Sambyal, J. Singh, and A.K. Nagpal, "Comparative analysis of tissue compartmentalized heavy metal uptake by common forage crop: a field experiment", Catena, vol. 160, pp. 185-193, 2018.
[http://dx.doi.org/10.1016/j.catena.2017.09.015]
[46]
P.S. Chauhan, S.K. Mishra, S. Misra, V.K. Dixit, S. Pandey, and P. Khare, "Evaluation of fertility indicators associated with arsenic-contaminated paddy fields soil", Int. J. Environ. Sci. Technol., vol. 15, no. 11, pp. 2447-2458, 2018.
[http://dx.doi.org/10.1007/s13762-017-1583-9]
[47]
K.R. Sheetal, S.D. Singh, A. Anand, and S. Prasad, "Heavy metal accumulation and effects on growth, biomass and physiological processes in mustard", Indian J. Plant. Physiol., vol. 21, no. 2, pp. 219-223, 2016.
[http://dx.doi.org/10.1007/s40502-016-0221-8]
[48]
J. Wang, J. Xia, and X. Feng, "Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction", J. Environ. Manage., vol. 186, no. 2, pp. 233-239, 2017.
[http://dx.doi.org/10.1016/j.jenvman.2016.05.031] [PMID: 27217079]
[49]
P. Cojocaru, Z.M. Gusiatin, and I. Cretescu, "Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus)", Environ. Sci. Pollut. Res. Int., vol. 23, no. 11, pp. 10693-10701, 2016.
[http://dx.doi.org/10.1007/s11356-016-6176-5] [PMID: 26884243]
[50]
M. Liu, X. Liu, M. Liu, F. Liu, M. Jin, and L. Wu, "Root mass ratio: index derived by assimilation of synthetic aperture radar and the improved world food study model for heavy metal stress monitoring in rice", J. Appl. Remote Sens., vol. 10, no. 2, p. 026038, 2016.
[http://dx.doi.org/10.1117/1.JRS.10.026038]
[51]
F. Liu, X. Liu, L. Zhao, C. Ding, J. Jiang, and L. Wu, "The dynamic assessment model for monitoring cadmium stress levels in rice based on the assimilation of remote sensing and the WOFOST model", IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 8, no. 3, pp. 1330-1338, 2014.
[http://dx.doi.org/10.1109/JSTARS.2014.2371058]
[52]
M. Jin, X. Liu, L. Wu, and M. Liu, "An improved assimilation method with stress factors incorporated in the WOFOST model for the efficient assessment of heavy metal stress levels in rice", Int. J. Appl. Earth Obs. Geoinf., vol. 41, pp. 118-129, 2015.
[http://dx.doi.org/10.1016/j.jag.2015.04.023]
[53]
J. Wang, L. Cui, W. Gao, T. Shi, Y. Chen, and Y. Gao, "Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy", Geoderma, vol. 216, pp. 1-9, 2014.
[http://dx.doi.org/10.1016/j.geoderma.2013.10.024]
[54]
T. Karak, P. Bhattacharyya, R. Kumar Paul, and D.K. Das, "Metal accumulation, biochemical response and yield of Indian mustard grown in soil amended with rural roadside pond sediment", Ecotoxicol. Environ. Saf., vol. 92, pp. 161-173, 2013.
[http://dx.doi.org/10.1016/j.ecoenv.2013.03.019] [PMID: 23597677]
[55]
M.U. Khan, R.N. Malik, and S. Muhammad, "Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan", Chemosphere, vol. 93, no. 10, pp. 2230-2238, 2013.
[http://dx.doi.org/10.1016/j.chemosphere.2013.07.067] [PMID: 24075531]
[56]
R. Kumar Sharma, M. Agrawal, and F. Marshall, "Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India", Ecotoxicol. Environ. Saf., vol. 66, no. 2, pp. 258-266, 2007.
[http://dx.doi.org/10.1016/j.ecoenv.2005.11.007] [PMID: 16466660]
[57]
A.P. de Mora, J.J. Ortega-Calvo, F. Cabrera, and E. Madejón, "Changes in enzyme activities and microbial biomass after “in situ” remediation of a heavy metal-contaminated soil", Appl. Soil Ecol., vol. 28, no. 2, pp. 125-137, 2005.
[http://dx.doi.org/10.1016/j.apsoil.2004.07.006]
[58]
M.A. Alghobar, and S. Suresha, "Evaluation of metal accumulation in soil and tomatoes irrigated with sewage water from Mysore city, Karnataka, India", J. Saudi Soc. Agric. Sci., vol. 16, no. 1, pp. 49-59, 2017.
[http://dx.doi.org/10.1016/j.jssas.2015.02.002]
[59]
C. Özkul, "Heavy metal contamination in soils around the Tunçbilek thermal power plant (Kütahya, Turkey)", Environ. Monit. Assess., vol. 188, no. 5, p. 284, 2016.
[http://dx.doi.org/10.1007/s10661-016-5295-2] [PMID: 27071662]
[60]
P.H. Rathod, I. Müller, F.D. Van der Meer, and B. de Smeth, "Analysis of visible and near infrared spectral reflectance for assessing metals in soil", Environ. Monit. Assess., vol. 188, no. 10, p. 558, 2015.
[http://dx.doi.org/10.1007/s10661-016-5568-9] [PMID: 27614958]
[61]
L. Wang, Y. Wang, W. Zhang, C. Xu, and Z. An, "Multivariate statistical techniques for evaluating and identifying the environmental significance of heavy metal contamination in sediments of the Yangtze River, China", Environ. Earth Sci., vol. 71, no. 3, pp. 1183-1193, 2014.
[http://dx.doi.org/10.1007/s12665-013-2522-9]
[62]
Y. Yang, C.D. Campbell, L. Clark, C.M. Cameron, and E. Paterson, "Microbial indicators of heavy metal contamination in urban and rural soils", Chemosphere, vol. 63, no. 11, pp. 1942-1952, 2006.
[http://dx.doi.org/10.1016/j.chemosphere.2005.10.009] [PMID: 16310826]
[63]
W. Ma, K. Tan, Q. Du, J. Ding, and Q. Yan, "Comparison of common spatial interpolation methods for analyzing pollutant spatial distributions at contaminated sites", Environment Geochem. Health, vol. 41, no. 6, pp. 2709-2730, 2016.
[http://dx.doi.org/10.1109/WHISPERS.2016.8071813]
[64]
N. Zhang, G. Liu, and H. Song, "Using hyperspectral image data to estimate soil mercury with stepwise multiple regression", In: Eighth International Conference on Digital Image Processing (ICDIP 2016), vol. 10033, 2016p. 100333Q
[http://dx.doi.org/10.1117/12.2244667]
[65]
F. Ahmed, A.N.M. Fakhruddin, M.T. Imam, N. Khan, T.A. Khan, M.M. Rahman, and A.T.M. Abdullah, "Spatial distribution and source identification of heavy metal pollution in roadside surface soil: a study of Dhaka Aricha highway, Bangladesh", Ecol. Process., vol. 5, no. 1, p. 2, 2016.
[http://dx.doi.org/10.1186/s13717-016-0045-5]
[66]
P. Qiao, P. Li, Y. Cheng, W. Wei, S. Yang, M. Lei, and T. Chen, "Comparison of common spatial interpolation methods for analyzing pollutant spatial distributions at contaminated sites", Environ. Geochem. Health, vol. 41, no. 6, pp. 2709-2730, 2019.
[http://dx.doi.org/10.1007/s10653-019-00328-0] [PMID: 31144251]
[67]
J. Su, J. Zhang, J. Li, T. Li, H. Liu, and Y. Wang, "Determination of mineral contents of wild Boletus edulis mushroom and its edible safety assessment", J. Environ. Sci. Health B, vol. 53, no. 7, pp. 454-463, 2018.
[http://dx.doi.org/10.1080/03601234.2018.1455361] [PMID: 29624491]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy