Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

General Review Article

Ionic Liquids, Microextraction Methods and Capillary Electrophoresis in Biomedical Research

Author(s): Natalia Miękus*, Martyna Ceraficka, Marta Chyła, Aleksandra Durska and Tomasz Bączek

Volume 18, Issue 1, 2022

Published on: 16 November, 2020

Page: [55 - 62] Pages: 8

DOI: 10.2174/1573412917999201116214131

Price: $65

Abstract

The review aims to present the importance of implementing microextraction-, capillary electrophoresis- and ionic liquid-based approaches in biomedical research. These analytical strategies could improve the biochemical diagnosis of various life-threatening diseases, aid in the search for therapeutic agents, and discover drug targets. They could be used when designing newer, safer medicinal products. All the proposed analytical approaches meet the requirements of “green chemistry”- based methods, which is relevant nowadays in view of the pollution of the Earth becoming a severe problem. The review is divided into three main sections, and biomedical examples of the application of each presented approach are discussed. It is assumed that the undoubted advantages of ionic liquid-, microextraction- and capillary electrophoresis-based methods will speed up their use in the study of various clinically important analytes from different biological fluids and tissue samples.

Keywords: Biological samples, biomarkers, capillary electrophoresis, green chemistry, ionic liquids, microextraction.

Graphical Abstract
[1]
Miękus, N.; Bączek, T. Non-invasive screening for neuroendocrine tumors-Biogenic amines as neoplasm biomarkers and the potential improvement of “gold standards”. J. Pharm. Biomed. Anal., 2016, 130, 194-201, 194-201.
[http://dx.doi.org/10.1016/j.jpba.2016.06.013] [PMID: 27344936]
[2]
Roszkowska, A.; Miękus, N.; Bączek, T. Application of solid-phase microextraction in current biomedical research. J. Sep. Sci., 2019, 42(1), 285-302.
[http://dx.doi.org/10.1002/jssc.201800785] [PMID: 30289623]
[3]
Plenis, A.; Olędzka, I.; Kowalski, P.; Miękus, N.; Bączek, T. Recent trends in the quantification of biogenic amines in biofluids as biomarkers of various disorders: a review. J. Clin. Med., 2019, 8(5), 1-55.
[http://dx.doi.org/10.3390/jcm8050640]
[4]
Yang, Z.; Sweedler, J.V. Application of capillary electrophoresis for the early diagnosis of cancer. Anal. Bioanal. Chem., 2014, 406(17), 4013-4031.
[http://dx.doi.org/10.1007/s00216-014-7722-y] [PMID: 24668067]
[5]
Zinellu, A.; Sotgiu, E.; Assaretti, S.; Sotgia, S.; Paliogiannis, P.; Pintus, G.; Mangoni, A.A.; Carru, C. Evaluation of global genomic DNA methylation in human whole blood by capillary electrophoresis UV detection. J. Anal. Methods Chem., 2017, 20174065892
[http://dx.doi.org/10.1155/2017/4065892] [PMID: 29333318]
[6]
Xie, X.H.; Wang, R.; Jia, Z.P.; Xie, H.; Zhamg, A.M.; Xu, J.; Wang, X.L.; Wang, X.H. Determination of mutation of c-myc oncogene in gastric cancer by capillary electrophoresis. Chin. J. Anal. Chem., 2012, 39(11), 1695-1700.
[http://dx.doi.org/10.3724/SP.J.1096.2011.01695]
[7]
Hu, H.; Li, Z.; Zhang, X.; Xu, C.; Guo, Y. Rapid determination of catecholamines in urine samples by nonaqueous microchip electrophoresis with LIF detection J. Sep. Sci, 2013, 3419 -3452 .
[8]
Soliman, L.C.; Hui, Y.; Hewavitharana, A.K.; Chen, D.D.Y. Monitoring potential prostate cancer biomarkers in urine by capillary electrophoresis-tandem mass spectrometry. J. Chromatogr. A, 2012, 1267, 162-169.
[http://dx.doi.org/10.1016/j.chroma.2012.07.021] [PMID: 22824219]
[9]
Lian, D.S.; Zhao, S.J. Capillary electrophoresis based on the nucleic acid detection in the application of cancer diagnosis and therapy. Analyst (Lond.), 2014, 139(14), 3492-3506.
[http://dx.doi.org/10.1039/C4AN00400K] [PMID: 24872166]
[10]
Maleva, I.; Madjunkova, S.; Bozhinovski, G.; Smickova, E.; Kondov, G.; Spiroski, Z.; Arsovski, A.; Plaseska-Karanfilska, D. Genetic variation of the brca1 and brca2 genes in macedonian patients. Balkan J. Med. Genet., 2012, 15(Suppl.), 81-85.
[http://dx.doi.org/10.2478/v10034-012-0025-8] [PMID: 24052750]
[11]
Caux-Moncoutier, V.; Castéra, L.; Tirapo, C.; Michaux, D.; Rémon, M.A.; Laugé, A.; Rouleau, E.; De Pauw, A.; Buecher, B.; Gauthier-Villars, M.; Viovy, J.L.; Stoppa-Lyonnet, D.; Houdayer, C. EMMA, a cost- and time-effective diagnostic method for simultaneous detection of point mutations and large-scale genomic rearrangements: application to BRCA1 and BRCA2 in 1,525 patients. Hum. Mutat., 2011, 32(3), 325-334.
[http://dx.doi.org/10.1002/humu.21414] [PMID: 21120943]
[12]
Jandova, J.; Eshaghian, A.; Shi, M.; Li, M.; King, L.E.; Janda, J.; Sligh, J.E. Identification of an mtDNA mutation hot spot in UV-induced mouse skin tumors producing altered cellular biochemistry. J. Invest. Dermatol., 2012, 132(2), 421-428.
[http://dx.doi.org/10.1038/jid.2011.320] [PMID: 22011905]
[13]
Kabir, A.; Locatelli, M.; Ulusoy, H. Recent trends in microextraction techniques employed in analytical and bioanalytical sample preparation. separations, 2017, 4(4), 1-15.
[http://dx.doi.org/10.3390/separations4040036]
[14]
Chen, C.Y.; Jhou, Y.T.; Lee, H.L.; Lin, Y.W. Simultaneous, rapid, and sensitive quantification of 8-hydroxy-2′-deoxyguanosine and cotinine in human urine by on-line solid-phase extraction LC-MS/MS: correlation with tobacco exposure biomarkers NNAL. Anal. Bioanal. Chem., 2016, 408(23), 6295-6306.
[http://dx.doi.org/10.1007/s00216-016-9741-3] [PMID: 27422644]
[15]
Bianchi, F.; Riboni, N.; Carbognani, P.; Gnetti, L.; Dalcanale, E.; Ampollini, L.; Careri, M. Solid-phase microextraction coupled to gas chromatography-mass spectrometry followed by multivariate data analysis for the identification of volatile organic compounds as possible biomarkers in lung cancer tissues. J. Pharm. Biomed. Anal., 2017, 146, 329-333.
[http://dx.doi.org/10.1016/j.jpba.2017.08.049] [PMID: 28915496]
[16]
An, J.; Rahn, K.L.; Anderson, J.L. Headspace single drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents. Talanta, 2017, 167, 268-278.
[http://dx.doi.org/10.1016/j.talanta.2017.01.079] [PMID: 28340720]
[17]
Przyjazny, A. Extraction liquid-phase microextraction. Encyclopedia of Analytical Science, 2019, 3, 52-62.
[18]
Mansour, F.R.; Khairy, M.A. Pharmaceutical and biomedical applications of dispersive liquid-liquid microextraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1061-1062, 382-391.
[http://dx.doi.org/10.1016/j.jchromb.2017.07.055] [PMID: 28802218]
[19]
Quigley, A.; Cummins, W.; Connolly, D. Dispersive liquid-liquid microextraction in the analysis of milk and dairy products. Rev. J. Chem., 2016, 2016, 1-12.
[20]
Bavili Tabrizi, A.; Rezazadeh, A. Development of a dispersive liquid-liquid microextraction technique for the extraction and spectrofluorimetric determination of fluoxetine in pharmaceutical formulations and human urine. Adv. Pharm. Bull., 2012, 2(2), 157-164.
[http://dx.doi.org/10.5681/apb.2012.024] [PMID: 24312787]
[21]
Miękus, N.; Olędzka, I.; Plenis, A.; Kowalski, P.; Bień, E.; Miękus, A.; Krawczyk, M.A.; Adamkiewicz-Drożyńska, E.; Bączek, T. Determination of urinary biogenic amines’ biomarker profile in neuroblastoma and pheochromocytoma patients by MEKC method with preceding dispersive liquid-liquid microextraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1036-1037, 114-123.
[http://dx.doi.org/10.1016/j.jchromb.2016.10.007] [PMID: 27750192]
[22]
Mahmood, H.; Moniruzzaman, M. Recent advances of using ionic liquids for biopolymer extraction and processing. Biotechnol. J., 2019, 14(12), e1900072.
[http://dx.doi.org/10.1002/biot.201900072] [PMID: 31677240]
[23]
Heckenbach, M.E.; Romero, F.N.; Green, M.D.; Halden, R.U. Meta-analysis of ionic liquid literature and toxicology. Chemosphere, 2016, 150, 266-274.
[http://dx.doi.org/10.1016/j.chemosphere.2016.02.029] [PMID: 26907595]
[24]
Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev., 2017, 117(10), 7132-7189.
[http://dx.doi.org/10.1021/acs.chemrev.6b00562] [PMID: 28125212]
[25]
Trujillo-Rodriguez, M.J.; Anderson, J.L. Ionic liquids in magnetic-assisted microextraction procedures: A step forward the faster and selective sample preparation. Scientia Chrom., 2017, 9(3), 145-159.
[http://dx.doi.org/10.4322/sc.2017.012]
[26]
Kossakowska, N.; Olędzka, I.; Kowalik, A.; Miękus, N.; Kowalski, P.; Plenis, A.; Bień, E.; Kaczorowska, A.; Krawczyk, M.A.; Adamkiewicz-Drożyńska, E.; Bączek, T. Application of SPME supported by ionic liquids for the determination of biogenic amines by MEKC in clinical practice. J. Pharm. Biomed. Anal., 2019, 173, 24-30.
[http://dx.doi.org/10.1016/j.jpba.2019.05.021] [PMID: 31112850]
[27]
Miękus, N.; Olędzka, I.; Kossakowska, N.; Plenis, A.; Kowalski, P.; Prahl, A.; Bączek, T. Ionic liquids as signal amplifiers for the simultaneous extraction of several neurotransmitters determined by micellar electrokinetic chromatography. Talanta, 2018, 186, 119-123.
[http://dx.doi.org/10.1016/j.talanta.2018.04.041] [PMID: 29784338]
[28]
Liu, C.; Deng, Q.; Fang, G.; Dang, M.; Wang, S. Capillary electrochromatography immunoassay for alpha-fetoprotein based on poly(guanidinium ionic liquid) monolithic material. Anal. Biochem., 2017, 530, 50-56.
[http://dx.doi.org/10.1016/j.ab.2017.04.014] [PMID: 28454733]
[29]
Aubé, A.; Campbell, S.; Schmitzer, A.R.; Claing, A.; Masson, J.F. Ultra-low fouling alkylimidazolium modified surfaces for the detection of HER2 in breast cancer cell lysates [corrected]. Analyst (Lond.), 2017, 142(13), 2343-2353.
[http://dx.doi.org/10.1039/C7AN00056A] [PMID: 28560368]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy