Generic placeholder image

Current Drug Delivery


ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Comparative Evaluation of the Transdermal Permeation Effectiveness of Fu’s Cupping Therapy on Eight Different Types of Model Drugs

Author(s): Yanyan Miao, Jian Xu, Yao Liu, Fangfang Yang, Xiaoxia Zheng, Weijie Xie and Yongping Zhang*

Volume 18, Issue 4, 2021

Published on: 16 November, 2020

Page: [446 - 459] Pages: 14

DOI: 10.2174/1567201817999201116192238

open access plus


Background: Overcoming the skin barrier to achieve the transdermal penetration of drugs across the Stratum Corneum (SC) remains a significant challenge. Our previous study showed that Fu’s Cupping Therapy (FCT) contributes to the transdermal enhancement and percutaneous absorption rate of representative drugs and improves their clinical effects. This work evaluated the transdermal enhancement effect of FCT on drugs with different Molecular Weights (MW).

Methods: We investigated the enhancements in the transdermal penetration of eight types of model drugs through the skin of BALB/c-nu mice and Sprague Dawley rats using Franz diffusion devices. In addition, 3% azone, 5% azone, 3% peppermint oil, and 5% peppermint oil were used as penetration enhancers to study the transdermal behaviour of these drugs.

Results: Our results showed that the BALB/c-nu mouse skin was the best transdermal media, and the optimal time for FCT was 10 min. Compared with other penetration enhancers, FCT exerted a significantly improved effect on enhancing the percutaneous penetration of the selected log(P)- model drugs in addition to the two large MW drugs (ginsenoside Rg1 and notoginsenoside R1). Statistical analysis revealed that the relationship between the log(P) of various model drugs and the permeability coefficient [log(Pcm)] of the FCT group was log(Pcm)=0.080(log(P))2-0.136 (log(P))-0.282.

Conclusion: FCT may be used as a novel method for enhancing physical penetration and thus effectively promoting the transdermal absorption of drugs and might lay a foundation for future research on drug transdermal technology.

Keywords: Cupping therapy, penetration enhancer, physical penetration technology, notoginsenoside R1, SC, FCT.

Graphical Abstract
Ghosh, B.; Reddy, L.H.; Kulkarni, R.V.; Khanam, J. Comparison of skin permeability of drugs in mice and human cadaver skin. Indian J. Exp. Biol., 2000, 38(1), 42-45.
[PMID: 11233083]
Akomeah, F.; Nazir, T.; Martin, G.P.; Brown, M.B. Effect of heat on the percutaneous absorption and skin retention of three model penetrants. Eur. J. Pharm. Sci., 2004, 21(2-3), 337-345.
[] [PMID: 14757507]
Artusi, M.; Nicoli, S.; Colombo, P.; Bettini, R.; Sacchi, A.; Santi, P. Effect of chemical enhancers and iontophoresis on thiocolchicoside permeation across rabbit and human skin in vitro. J. Pharm. Sci., 2004, 93(10), 2431-2438.
[] [PMID: 15349953]
Bloksgaard, M.; Brewer, J.R.; Pashkovski, E.; Ananthapadmanabhan, K.P.; Sørensen, J.A.; Bagatolli, L.A. Effect of detergents on the physicochemical properties of skin stratum corneum: a two-photon excitation fluorescence microscopy study. Int. J. Cosmet. Sci., 2014, 36(1), 39-45.
[] [PMID: 23962033]
Escobar-Chávez, J.J.; Bonilla-Martínez, D.; Villegas-González, M.A.; Molina-Trinidad, E.; Casas-Alancaster, N.; Revilla-Vázquez, A.L. Microneedles: a valuable physical enhancer to increase transdermal drug delivery. J. Clin. Pharmacol., 2011, 51(7), 964-977.
[] [PMID: 21148047]
Kendall, M.A.; Chong, Y.F.; Cock, A. The mechanical properties of the skin epidermis in relation to targeted gene and drug delivery. Biomaterials, 2007, 28(33), 4968-4977.
[] [PMID: 17720240]
Mack Correa, M.C.; Mao, G.; Saad, P.; Flach, C.R.; Mendelsohn, R.; Walters, R.M. Molecular interactions of plant oil components with stratum corneum lipids correlate with clinical measures of skin barrier function. Exp. Dermatol., 2014, 23(1), 39-44.
[] [PMID: 24372651]
Subongkot, T.; Pamornpathomkul, B.; Rojanarata, T.; Opanasopit, P.; Ngawhirunpat, T. Investigation of the mechanism of enhanced skin penetration by ultradeformable liposomes. Int. J. Nanomedicine, 2014, 9, 3539-3550.
[PMID: 25114524]
Vineet, M.; Mithun, S.R. Physical and chemical penetration enhancers in transdermal drug delivery system. Asian J. Pharm., 2010, 4(3), 173-182.
Polat, B.E.; Deen, W.M.; Langer, R.; Blankschtein, D. A physical mechanism to explain the delivery of chemical penetration enhancers into skin during transdermal sonophoresis - insight into the observed synergism. J. Control. Release, 2012, 158(2), 250-260.
[] [PMID: 22100440]
Polat, B.E.; Hart, D.; Langer, R.; Blankschtein, D. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J. Control. Release, 2011, 152(3), 330-348.
[] [PMID: 21238514]
Chen, H.; Zhu, H.; Zheng, J.; Mou, D.; Wan, J.; Zhang, J.; Shi, T.; Zhao, Y.; Xu, H.; Yang, X. Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin. J. Control. Release, 2009, 139(1), 63-72.
[] [PMID: 19481577]
Yang, Y.; Kalluri, H.; Banga, A.K. Effects of chemical and physical enhancement techniques on transdermal delivery of cyanocobalamin (vitamin B12) in vitro. Pharmaceutics, 2011, 3(3), 474-484.
[] [PMID: 24310591]
Bal, S.; Kruithof, A.C.; Liebl, H.; Tomerius, M.; Bouwstra, J.; Lademann, J.; Meinke, M. In vivo visualization of microneedle conduits in human skin using laser scanning microscopy. Laser Phys. Lett., 2010, 7(3), 242-246.
Wiechers, J.W. The barrier function of the skin in relation to percutaneous absorption of drugs. Pharm. Weekbl. Sci., 1989, 11(6), 185-198.
[] [PMID: 2694089]
Cupping therapy. J. Acupuncture Tuina Sci., 2003, 1, 37.
Cao, H.; Han, M.; Li, X.; Dong, S.; Shang, Y.; Wang, Q.; Xu, S.; Liu, J. Clinical research evidence of cupping therapy in China: a systematic literature review. BMC Complement. Altern. Med., 2010, 10(1), 70.
[] [PMID: 21078197]
Lu, F. Treatment of facial spasm by plum-blossom needle tapping and cupping therapy J. Tradit. Chinese Med., = Chung i tsa chih ying wen pan, 1993, 13(3), 203.
Cui, S.; Cui, J. [Progress of researches on the mechanism of cupping therapy]. Zhen ci yan jiu = Acupuncture Res., 2012, 37(6), 506-510.
Xie, W.; Zhang, Y.; Jian, X.; Wu, J.; Fu, W.; Shuai, C.; Pharmacy, S.O. Progress of Fu's cupping therapy as new physical penetration technologies for transdermal administration, modernization of traditional Chinese Medicine and materia medica-world science and technology. Molecules, 2015, 22(4), 525.
Xie, W.; Zhang, Y.; Jian, X.U.; Pharmacy, S.O. Matrix formulation screening of indomethacin hydrophilic gel patch by uniform design. Tradit. Med. Res., 2019, 4(1), 42-53.
Xie, W.J.; Zhang, Y.P.; Xu, J.; Sun, X.B.; Yang, F.F. The effect and mechanism of transdermal penetration enhancement of Fu’s cupping therapy: new physical penetration technology for transdermal administration with Traditional Chinese Medicine (TCM) characteristics. Molecules, 2017, 22(4), 525.
[] [PMID: 28346390]
Guy, R.H.; Hadgraft, J. Physicochemical aspects of percutaneous penetration and its enhancement. Pharm. Res., 1988, 5(12), 753-758.
[] [PMID: 3247284]
Schott, H. Hydrophilic-lipophilic balance, solubility parameter, and oil-water partition coefficient as universal parameters of nonionic surfactants. J. Pharm. Sci., 1995, 84(10), 1215-1222.
[] [PMID: 8801337]
Xiong, L.Q.; Guo-Feng, L.I.; Bi-Ya, S.U.; Liu, Y.; Wang, L. A study on the relationship between the oil/water partition coefficient and transdermal action of drugs: dexamethasone acetate and dexamethansone sodium phosphate. Chung Kuo Yao Hsueh Tsa Chih, 2011, 46(6), 439-446.
Wiechers, J.W. The barrier function of the skin in relation to percutaneous absorption of drugs. Pharm Weekbl Sci., 1989, 11(6), 185-198.
Qiu, F.; Tang, X.; Zhong-Gui, H.E.; Hao-Zhi, L.I. Stability of baicalin aqueous solution by validated RP-HPLC. J. Pharmaceut. Sci., 2004, 13(2), 134-137.
Yi, L.; Xu, X. Study on the precipitation reaction between baicalin and berberine by HPLC. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 810(1), 165-168.
[] [PMID: 15358321]
Wang, Q.; Liu, R.X.; Kai-Shun, B.I.; Guo, D.A. HPLC Determination of albiflorin, paeoniflorin, and benzoylpaeoniflorinin total glucoside of paeony capsule. Chin. Tradit. Herbal Drugs, 2005.
Xie, X.M.; Yu, C.Z.; Xu, H.; Wang, S.; Wang, D.L.; Zhang, L.; Chou, G.X.; Wang, Z.T. [Quality evaluation of prepared slices of Paeonia lactiflon-determination of paeoniflorin by HPLC]. Zhongguo Zhongyao Zazhi, 2004, 29(8), 759-762.
[PMID: 15506287]
Henderson, D.E.; Slickman, A.M.; Henderson, S.K. Quantitative HPLC determination of the antioxidant activity of capsaicin on the formation of lipid hydroperoxides of linoleic acid: a comparative study against BHT and melatonin. J. Agric. Food Chem., 1999, 47(7), 2563-2570.
[] [PMID: 10552527]
Attuquayefio, V.K.; Buckle, K.A. Rapid sample preparation method for HPLC analysis of capsaicinoids in capsicum fruits and oleoresins. J. Agric. Food Chem., 1987, 35(5), 777-779.
Srinivasan, G.V.; Unnikrishnan, K.P.; Rema Shree, A.B.; Balachandran, I. HPLC estimation of berberine in tinospora cordifolia and tinospora sinensis. Indian J. Pharm. Sci., 2008, 70(1), 96-99.
[] [PMID: 20390090]
Bailey, F.; Brittain, P.N. The quantitative determination of fluocinolone acetonide and acetonide acetate in formulated products by high pressure liquid chromatography. J. Pharm. Pharmacol., 1972, 24(6), 425-428.
[] [PMID: 4403822]
Bailey, F.; Holbrook, A.; Miller, R.J. The determination of fluocinolone acetonide in formulated products. J. Pharm. Pharmacol., 2011, 18(S1), 12S-16S.
[] [PMID: 4403822]
Iqbal, M.S.; Shad, M.A.; Ashraf, M.W.; Bilal, M.; Saeed, M. Development and validation of an HPLC method for the determination of dexamethasone, dexamethasone sodium phosphate and chloramphenicol in presence of each other in pharmaceutical preparations. Chromatographia, 2006, 64(3-4), 219-222.
AlAani, H.; Alnukkary, Y. Stability-indicating HPLC method for simultaneous determination of chloramphenicol, dexamethasone sodium phosphate and tetrahydrozoline hydrochloride in ophthalmic solution. Adv. Pharm. Bull., 2016, 6(1), 137-141.
[] [PMID: 27123429]
Wang, M.; Fan, Y.; Gao, W. Quantitative determination of notoginsenoside R1 and ginsenoside Rg1, Rb1 content in total notoginsenosides of panax notogineseng and xuesaitong injection by HPLC gradient elution method. Yaowu Fenxi Zazhi, 2000, 20(6), 410-412.
Xu, G.B.; Wang, Z.T.; Pan, N.; Zhao, Z. [Determination of notoginsenoside R1 and ginsenoside Rg1 in Rupixiao tablets by HPLC]. Zhongguo Zhongyao Zazhi, 2006, 31(13), 1067-1069.
[PMID: 17048603]
Godin, B.; Touitou, E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv. Drug Deliv. Rev., 2007, 59(11), 1152-1161.
[] [PMID: 17889400]
Wei-Jie Xie, Y-M.W.; Chen, S-S.; Xu, J.; Yang, F-F.; Zhang, Y-P.; Sun, X-B. In vitro evaluation of transdermal permeation effects of Fu’s cupping therapy via six diffusion kinetics models. Tradit. Med. Res., 2019, 4(1), 42-53.
Batheja, P.; Sheihet, L.; Kohn, J.; Singer, A.J.; Michniak-Kohn, B. Topical drug delivery by a polymeric nanosphere gel: formulation optimization and in vitro and in vivo skin distribution studies. J. Control. Release, 2011, 149(2), 159-167.
[] [PMID: 20950659]
Lan, Y.; Qing, W.U.; Mao, Y.Q.; Wang, Q.; Jing, A.N.; Chen, Y.Y.; Wang, W.P.; Zhao, B.C.; Liu, N.; Zhang, Y.W. Cytotoxicity and enhancement activity of essential oil from zanthoxylum bungeanum maxim. as a natural transdermal penetration enhancer. J. Zhejiang Univ. Sci. B., 2014, 15(2), 153-164..
Zhao, J. The generalized Cholesky factorization method for solving symmetric indefinite linear systems. Metrology Measurem. Tech., 1996, 18(4), 49.
Guo-Feng, L.I.; Fumio, K.; Liu, L.J.; Akira, Y.; Chen, J.H. Influence of different layers of skin on the percutaneous absorption of drugs with different lipophilicity. Mil. Med. Res., 2002, 17(2), 152-156.
Lan, Y.; Wang, J.; Li, H.; Zhang, Y.; Chen, Y.; Zhao, B.; Wu, Q. Effect of menthone and related compounds on skin permeation of drugs with different lipophilicity and molecular organization of stratum corneum lipids. Pharm. Dev. Technol., 2016, 21(4), 389-398.
[PMID: 25684238]
Xu, J.; Zhao, W.; Zhang, M. Percutaneous absorption of one hundred drugs and the conclusion of experimental regressive equation. Chung Kuo Yao Hsueh Tsa Chih, 1998, 168.
Lowe, D.T. Cupping therapy: an analysis of the effects of suction on skin and the possible influence on human health. Complement. Ther. Clin. Pract., 2017, 29, 162-168.
[] [PMID: 29122256]
Tang, X.; Xiao, X.H.; Zhang, G.Q. [Effect of cupping on hemodynamic levels in the regional sucked tissues in patients with lumbago] Zhen ci yan jiu = Acupuncture Res., 2012, 37(5), 390-393.
Subadi, I.; Nugraha, B.; Laswati, H.; Josomuljono, H. Pain relief with wet cupping therapy in rats is mediated by heat shock protein 70 and β-endorphin. Iran. J. Med. Sci., 2017, 42(4), 384-391.
[PMID: 28761205]
Wang, L.; Zhou, Q.; Tian, H.; Zhao, J. [Analysis on the laws of acupoint selection and therapeutic operations with acupuncture based on the characteristics of postherpetic neuralgia]. Zhongguo Zhenjiu, 2017, 37(4), 429-431.
[PMID: 29231598]
Tagil, S.M.; Celik, H.T.; Ciftci, S.; Kazanci, F.H.; Arslan, M.; Erdamar, N.; Kesik, Y.; Erdamar, H.; Dane, S. Wet-cupping removes oxidants and decreases oxidative stress. Complement. Ther. Med., 2014, 22(6), 1032-1036.
[] [PMID: 25453524]
Deng, X.L.; Chen, B.; Chen, Z.L. [Clinical application of moving cupping therapy based on skin reaction observation and syndrome differentiation]. Zhongguo Zhenjiu, 2014, 34(12), 1215-1216.
[PMID: 25876357]
Ghods, R.; Sayfouri, N.; Ayati, M.H. Anatomical features of the interscapular area where wet cupping therapy is done and its possible relation to acupuncture meridians. J. Acupunct. Meridian Stud., 2016, 9(6), 290-296.
[] [PMID: 28010830]
Gu, X.; Chen, Z.; Chen, B.; Fan, Y.; Chen, X. [Application of blistering cupping]. Zhongguo Zhenjiu, 2016, 36(11), 1191-1196.
[PMID: 29231306]
Li, J.; Zhang, H.; Yang, J.; Xu, X.; Niu, Y.; Cai, J. [Innovation of characteristic medicinal cupping devices]. Zhongguo Zhenjiu, 2015, 35(8), 819-822.
[PMID: 26571901]
Zhao, P.; Wang, Y.; Gu, F.; Li, C.; Wei, Y.; Wang, G.; Zhang, W. [Comparison of the effects of the intervention with electric thermal bian stone and air suction cup on blood perfusion at meridian points]. Zhongguo Zhenjiu, 2018, 38(2), 159-164.
[PMID: 29473359]
Almaiman, A.A. Proteomic effects of wet cupping (Al-hijamah). Saudi Med. J., 2018, 39(1), 10-16.
[] [PMID: 29332103]
Cao, H.; Bourchier, S.; Liu, J. Does syndrome differentiation matter? A meta-analysis of randomized controlled trials in cochrane reviews of acupuncture. Med. Acupunct., 2012, 24(2), 68-76.
[] [PMID: 24761164]
Cao, H.J.; Liu, J.P.; Hu, H.; Wang, N.S. Using a partially randomized patient preference study design to evaluate the therapeutic effect of acupuncture and cupping therapy for fibromyalgia: study protocol for a partially randomized controlled trial. Trials, 2014, 15, 280.
[] [PMID: 25012121]
Meng, X.W.; Wang, Y.; Piao, S.A.; Lv, W.T.; Zhu, C.H.; Mu, M.Y.; Li, D.D.; Liu, H.P.; Guo, Y. Wet cupping therapy improves local blood perfusion and analgesic effects in patients with nerve- root type cervical spondylosis. Chin. J. Integr. Med., 2018, 24(11), 830-834.
[] [PMID: 29340888]
Shawaf, T.; El-Deeb, W.; Hussen, J.; Hendi, M.; Al-Bulushi, S. Evaluation of wet cupping therapy on the arterial and venous blood parameters in healthy Arabian horses. Vet. World, 2018, 11(5), 620-626.
[] [PMID: 29915500]
Kim, T.H.; Kim, K.H.; Choi, J.Y.; Lee, M.S. Adverse events related to cupping therapy in studies conducted in Korea: a systematic review. Eur. J. Integr. Med., 2014, 6(4), 434-440.

© 2022 Bentham Science Publishers | Privacy Policy