Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

General Review Article

Biological Nanofactories: Using Living Forms for Metal Nanoparticle Synthesis

Author(s): Shilpi Srivastava, Zeba Usmani, Atanas G. Atanasov, Vinod Kumar Singh, Nagendra Pratap Singh, Ahmed M. Abdel-Azeem, Ram Prasad, Govind Gupta, Minaxi Sharma* and Atul Bhargava*

Volume 21, Issue 2, 2021

Published on: 16 November, 2020

Page: [245 - 265] Pages: 21

DOI: 10.2174/1389557520999201116163012

Price: $65

Abstract

Metal nanoparticles are nanosized entities with dimensions of 1-100 nm that are increasingly in demand due to applications in diverse fields like electronics, sensing, environmental remediation, oil recovery and drug delivery. Metal nanoparticles possess large surface energy and properties different from bulk materials due to their small size, large surface area with free dangling bonds and higher reactivity. High cost and pernicious effects associated with the chemical and physical methods of nanoparticle synthesis are gradually paving the way for biological methods due to their eco-friendly nature. Considering the vast potentiality of microbes and plants as sources, biological synthesis can serve as a green technique for the synthesis of nanoparticles as an alternative to conventional methods. A number of reviews are available on green synthesis of nanoparticles but few have focused on covering the entire biological agents in this process. Therefore present paper describes the use of various living organisms like bacteria, fungi, algae, bryophytes and tracheophytes in the biological synthesis of metal nanoparticles, the mechanisms involved and the advantages associated therein.

Keywords: Metal nanoparticles, green nanotechnology, bacteria, fungi, lower plants, angiosperms.

« Previous
Graphical Abstract
[1]
Gil, P.R.; Parak, W.J. Composite nanoparticles take aim at cancer. ACS Nano, 2008, 2(11), 2200-2205.
[http://dx.doi.org/10.1021/nn800716j] [PMID: 19206383]
[2]
Anandharamakrishnan, C.; Parthasarathi, S. Food Nanotechnology: Principles and Applications; CRC Press: New York, 2019.
[http://dx.doi.org/10.1201/9781315153872]
[3]
Srivastava, S.; Pathak, N.; Bhargava, A.; Srivastava, P. Nanotechnology: The science of the future. Current Trend in Life Science; Shukla, D.S.; Pandey, D.K. , Eds.; JBC Press: ; New Delhi, 2014, pp. 182-195.
[4]
Vo-Dinh, T. The new paradigm shift at the convergence of nanotechnology, molecular biology and biomedical sciences. NanoBiotechnology, 2005, 1, 3-6.
[http://dx.doi.org/10.1385/NBT:1:1:003]
[5]
Hunt, G.; Mehta, M. Introduction: The challenge of nanotechnologies. In: Nantechnology Risk, Ethics and Law; Earthscan: London, 2013, pp. 1-12..
[6]
Goodsell, D.S. The quest for nanotechnology. Bionanotechnology: Lessons from Nature; Wiley-Liss: New York, 2004, pp. 1-8.
[http://dx.doi.org/10.1002/0471469572.ch1]
[7]
Sanner, M.F.; Stolz, M.; Burkhard, P.; Kong, X.P.; Min, G.; Sun, T.T.; Driamov, S.; Aebi, U.; Stoffler, D. Visualizing nature at work from the nano to the macro scale. Nanobiotechnol, 2005, 1, 7-21.
[http://dx.doi.org/10.1385/NBT:1:1:007]
[8]
Porter, A.L.; Youtie, J. How interdisciplinary is nanotechnology? J. Nanopart. Res., 2009, 11(5), 1023-1041.
[http://dx.doi.org/10.1007/s11051-009-9607-0] [PMID: 21170124]
[9]
Barry, R.C.; Lin, Y.; Wang, J.; Liu, G.; Timchalk, C.A. Nanotechnology-based electrochemical sensors for biomonitoring chemical exposures. J. Expo. Sci. Environ. Epidemiol., 2009, 19(1), 1-18.
[http://dx.doi.org/10.1038/jes.2008.71] [PMID: 19018275]
[10]
Guo, P. RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy. J. Nanosci. Nanotechnol., 2005, 5(12), 1964-1982.
[http://dx.doi.org/10.1166/jnn.2005.446] [PMID: 16430131]
[11]
Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett., 2010, 10(9), 3223-3230.
[http://dx.doi.org/10.1021/nl102184c] [PMID: 20726522]
[12]
Ghasemzadeh, G.; Momenpour, M.; Omidi, F.; Hosseini, M.R.; Ahani, M.; Barzegari, A. Applications of nanomaterials in water treatment and environmental remediation. Front. Environ. Sci. Eng., 2014, 8, 471-482.
[http://dx.doi.org/10.1007/s11783-014-0654-0]
[13]
Hu, Y.; Liu, C.; Muyldermans, S. Nanobody-based delivery systems for diagnosis and targeted tumor therapy. Front. Immunol., 2017, 8, 1442.
[http://dx.doi.org/10.3389/fimmu.2017.01442] [PMID: 29163515]
[14]
Sharma, C.; Dhiman, R.; Rokana, N.; Panwar, H. Nanotechnology: an untapped resource for food packaging. Front. Microbiol., 2017, 8, 1735.
[http://dx.doi.org/10.3389/fmicb.2017.01735] [PMID: 28955314]
[15]
Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnology, 2017, 15(1), 65.
[http://dx.doi.org/10.1186/s12951-017-0308-z] [PMID: 28974225]
[16]
Doyle, A.M.; Shaikhutdinov, S.K.; Jackson, S.D.; Freund, H.J. Hydrogenation on metal surfaces: Why are nanoparticles more active than single crystals? Angew. Chem. Int. Ed. Engl., 2003, 42(42), 5240-5243.
[http://dx.doi.org/10.1002/anie.200352124] [PMID: 14601183]
[17]
Mirkin, C.A. The beginning of a small revolution. Small, 2005, 1(1), 14-16.
[http://dx.doi.org/10.1002/smll.200400092] [PMID: 17193343]
[18]
El-Sayed, M.A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res., 2001, 34(4), 257-264.
[http://dx.doi.org/10.1021/ar960016n] [PMID: 11308299]
[19]
Bogunia-Kubik, K.; Sugisaka, M. From molecular biology to nanotechnology and nanomedicine. Biosystems, 2002, 65(2-3), 123-138.
[http://dx.doi.org/10.1016/S0303-2647(02)00010-2] [PMID: 12069723]
[20]
Daniel, M.C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. J. Chem. Rev, 2004, 104(1), 293-346.
[http://dx.doi.org/10.1021/cr030698+] [PMID: 14719978]
[21]
Gahlawat, G.; Choudhury, A.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Advances, 2019, 9, 12944-12967.
[http://dx.doi.org/10.1039/C8RA10483B]
[22]
Nath, D.; Banerjee, P. Green nanotechnology - a new hope for medical biology. Environ. Toxicol. Pharmacol., 2013, 36(3), 997-1014.
[http://dx.doi.org/10.1016/j.etap.2013.09.002] [PMID: 24095717]
[23]
Srivastava, S.; Bhargava, A. Green nanotechnology. J. Nanotechnol. Mater. Sci., 2016, 3, 1-7.
[http://dx.doi.org/10.15436/2377-1372.16.022]
[24]
Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M.S.; Metreveli, G.; Schaumann, G.E.; Schulz, R.; Wagner, S. Nanoparticles in the environment: Where do we come from, where do we go to? Environ. Sci. Eur., 2018, 30(1), 6.
[http://dx.doi.org/10.1186/s12302-018-0132-6] [PMID: 29456907]
[25]
Huang, Y.W.; Cambre, M.; Lee, H.J. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int. J. Mol. Sci., 2017, 18(12), 2702.
[http://dx.doi.org/10.3390/ijms18122702] [PMID: 29236059]
[26]
Mahapatra, I.; Clark, J.R.; Dobson, P.J.; Owen, R.; Lynch, I.; Lead, J.R. Expert perspectives on potential environmental risks from nanomedicines and adequacy of the current guideline on environmental risk assessment. Environ. Sci. Nano, 2018, 5, 1873-1889.
[http://dx.doi.org/10.1039/C8EN00053K]
[27]
Shrivastava, V.; Chauhan, P.S.; Tomar, R.S. Bio-Fabrication of metal nanoparticles: a review. Int. J. Curr. Res. Life Sci, 2018, 7, 1927-1932.
[28]
Chen, X.J.; Sanchez-Gaytan, B.L.; Qian, Z.; Park, S-J. Noble metal nanoparticles in DNA detection and delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2012, 4(3), 273-290.
[http://dx.doi.org/10.1002/wnan.1159] [PMID: 22223509]
[29]
Doria, G.; Conde, J.; Veigas, B.; Giestas, L.; Almeida, C.; Assunção, M.; Rosa, J.; Baptista, P.V. Noble metal nanoparticles for biosensing applications. Sensors (Basel), 2012, 12(2), 1657-1687.
[http://dx.doi.org/10.3390/s120201657] [PMID: 22438731]
[30]
Simões, M.F.; Ottoni, C.A.; Antunes, A. Biogenic metal nanoparticles: A new approach to detect life on Mars? Life, 2020, 10(3), 28.
[http://dx.doi.org/10.3390/life10030028] [PMID: 32245046]
[31]
Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 2013, 31(2), 346-356.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[32]
Hsueh, Y-H.; Lin, K-S.; Ke, W-J.; Hsieh, C-T.; Chiang, C-L.; Tzou, D-Y.; Liu, S.T. The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PLoS One, 2015, 10(12)e0144306
[http://dx.doi.org/10.1371/journal.pone.0144306] [PMID: 26669836]
[33]
Zhang, Y.; Shareena Dasari, T.P.; Deng, H.; Yu, H. Antimicrobial activity of gold nanoparticles and ionic gold. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2015, 33(3), 286-327.
[http://dx.doi.org/10.1080/10590501.2015.1055161] [PMID: 26072980]
[34]
López, J.; Espinosa, L.F.; Donohue, A.; Reyes, S.Y. Antimicrobial activity of silver nanoparticles in polycaprolactone nanofibers against Gram-positive and negative bacteria. Ind. Eng. Chem. Res., 2016, 55, 12532-12538.
[http://dx.doi.org/10.1021/acs.iecr.6b02300]
[35]
Shamaila, S.; Zafar, N.; Riaz, S.; Sharif, R.; Nazir, J.; Naseem, S. Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials (Basel), 2016, 6(4), 71.
[http://dx.doi.org/10.3390/nano6040071] [PMID: 28335198]
[36]
Salomoni, R.; Léo, P.; Montemor, A.F.; Rinaldi, B.G.; Rodrigues, M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl., 2017, 10, 115-121.
[http://dx.doi.org/10.2147/NSA.S133415] [PMID: 28721025]
[37]
Mokhtar, A.; Djelad, A.; Bengueddach, A.; Sassi, M. CuNPsmagadiite/chitosan nanocomposite beads as advanced antibacterial agent: Synthetic path and characterization. Int. J. Biol. Macromol., 2018, 118(Pt B), 2149-2155..
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.058] [PMID: 30009912]
[38]
Zahraoui, M.; Mokhtar, A.; Adjdir, M.; Bennabi, F.; Khaled, R.; Djelad, A.; Bengueddach, A.; Sassi, M. Preparation of Al-magadiite material, copper ions exchange and effect of counter-ions: antibacterial and antifungal applications. Res. Chem. Intermed., 2018, 45, 633-644.
[http://dx.doi.org/10.1007/s11164-018-3634-3]
[39]
Panácek, A.; Kolár, M.; Vecerová, R.; Prucek, R.; Soukupová, J.; Krystof, V.; Hamal, P.; Zboril, R.; Kvítek, L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials, 2009, 30(31), 6333-6340.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.065] [PMID: 19698988]
[40]
Ishida, K.; Cipriano, T.F.; Rocha, G.M.; Weissmüller, G.; Gomes, F.; Miranda, K.; Rozental, S. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem. Inst. Oswaldo Cruz, 2014, 109(2), 220-228.
[http://dx.doi.org/10.1590/0074-0276130269] [PMID: 24714966]
[41]
Pariona, N.; Mtz-Enriquez, A.I.; Sánchez-Rangel, D.; Carrión, G.; Paraguay-Delgado, F.; Rosas-Saito, G. Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Advances, 2019, 9, 18835-18843.
[http://dx.doi.org/10.1039/C9RA03110C]
[42]
Xue, B.; He, D.; Gao, S.; Wang, D.; Yokoyama, K.; Wang, L. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int. J. Nanomedicine, 2016, 11, 1899-1906.
[PMID: 27217752]
[43]
Souza, A.C.O.; Amaral, A.C. Antifungal therapy for systemic mycosis and the nanobiotechnology era: improving efficacy, biodistribution and toxicity. Front. Microbiol., 2017, 8, 336.
[http://dx.doi.org/10.3389/fmicb.2017.00336] [PMID: 28326065]
[44]
Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 2009, 27(1), 76-83.
[http://dx.doi.org/10.1016/j.biotechadv.2008.09.002] [PMID: 18854209]
[45]
Benn, T.; Cavanagh, B.; Hristovski, K.; Posner, J.D.; Westerhoff, P.; Raju, K.M. The release of nanosilver from consumer products used in the home. J. Environ. Qual., 2010, 39(6), 1875-1882.
[http://dx.doi.org/10.2134/jeq2009.0363] [PMID: 21284285]
[46]
Ravindra, S.; Mohan, Y.M.; Reddy, N.N.; Raju, K.M. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “green approach”. Colloids Surf. A Physicochem. Eng. Asp., 2010, 367, 31-40.
[http://dx.doi.org/10.1016/j.colsurfa.2010.06.013]
[47]
Rogers, J.V.; Parkinson, C.V.; Choi, Y.W.; Speshock, J.L.; Hussain, S.M. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res. Lett., 2008, 3, 129-133.
[http://dx.doi.org/10.1007/s11671-008-9128-2]
[48]
Mehrbod, P.; Motamed, N.; Tabatabaian, M.; Soleimani, E.R.; Amini, E.; Shahidi, M.; Kheiri, M.T. In vitro antiviral effect of “nanosilver” on influenza virus. Daru, 2009, 17, 88-93.
[49]
Speshock, J.L.; Murdock, R.C.; Braydich-Stolle, L.K.; Schrand, A.M.; Hussain, S.M. Interaction of silver nanoparticles with Tacaribe virus. J. Nanobiotech, 2010, 8, 19.
[http://dx.doi.org/10.1186/1477-3155-8-19] [PMID: 20718972]
[50]
Lara, H.H.; Garza-Treviño, E.N.; Ixtepan-Turrent, L.; Singh, D.K. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnology, 2011, 9, 30.
[http://dx.doi.org/10.1186/1477-3155-9-30] [PMID: 21812950]
[51]
Xiang, D.X.; Chen, Q.; Pang, L.; Zheng, C.L. Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. J. Virol. Methods, 2011, 178(1-2), 137-142.
[http://dx.doi.org/10.1016/j.jviromet.2011.09.003] [PMID: 21945220]
[52]
Gaikwad, S.; Ingle, A.; Gade, A.; Rai, M.; Falanga, A.; Incoronato, N.; Russo, L.; Galdiero, S.; Galdiero, M. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomedicine, 2013, 8, 4303-4314.
[PMID: 24235828]
[53]
Mori, Y.; Ono, T.; Miyahira, Y.; Nguyen, V.Q.; Matsui, T.; Ishihara, M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett., 2013, 8(1), 93.
[http://dx.doi.org/10.1186/1556-276X-8-93] [PMID: 23421446]
[54]
Fortina, P.; Kricka, L.J.; Graves, D.J.; Park, J.; Hyslop, T.; Tam, F.; Halas, N.; Surrey, S.; Waldman, S.A. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol., 2007, 25(4), 145-152.
[http://dx.doi.org/10.1016/j.tibtech.2007.02.005] [PMID: 17316852]
[55]
Rajakumar, G.; Abdul Rahuman, A. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop., 2011, 118(3), 196-203.
[http://dx.doi.org/10.1016/j.actatropica.2011.03.003] [PMID: 21419749]
[56]
Rahman, K.; Khan, S.U.; Fahad, S.; Chang, M.X.; Abbas, A.; Khan, W.U.; Rahman, L.; Haq, Z.U.; Nabi, G.; Khan, D. Nano-biotechnology: a new approach to treat and prevent malaria. International J. Nanomed., 2019, 14, 1401-1410.
[http://dx.doi.org/10.2147/IJN.S190692] [PMID: 30863068]
[57]
Ponarulselvam, S.; Panneerselvam, C.; Murugan, K.; Aarthi, N.; Kalimuthu, K.; Thangamani, S. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac. J. Trop. Biomed., 2012, 2(7), 574-580.
[http://dx.doi.org/10.1016/S2221-1691(12)60100-2] [PMID: 23569974]
[58]
Murugan, K.; Labeeba, M.A.; Panneerselvam, C.; Dinesh, D.; Suresh, U.; Subramaniam, J.; Madhiyazhagan, P.; Hwang, J.S.; Wang, L.; Nicoletti, M.; Benelli, G. Aristolochia indica green-synthesized silver nanoparticles: A sustainable control tool against the malaria vector Anopheles stephensi? Res. Vet. Sci., 2015, 102, 127-135.
[http://dx.doi.org/10.1016/j.rvsc.2015.08.001] [PMID: 26412532]
[59]
Kannan, D.; Yadav, N.; Ahmad, S.; Namdev, P.; Bhattacharjee, S.; Lochab, B.; Singh, S. Pre-clinical study of iron oxide nanoparticles fortified artesunate for efficient targeting of malarial parasite. EBioMedicine, 2019, 45, 261-277.
[http://dx.doi.org/10.1016/j.ebiom.2019.06.026] [PMID: 31255656]
[60]
Govindarajan, M.; Rajeswary, M.; Veerakumar, K.; Muthukumaran, U.; Hoti, S.L.; Mehlhorn, H.; Barnard, D.R.; Benelli, G. Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control. Parasitol. Res., 2016, 115(2), 723-733.
[http://dx.doi.org/10.1007/s00436-015-4794-3] [PMID: 26490683]
[61]
Rotimi, L.; Ojemaye, M.O.; Okoh, O.O.; Sadimenko, A.; Okoh, A.I. Synthesis, characterization, antimalarial, antitrypanocidal and antimicrobial properties of gold nanoparticle. Green Chem. Lett. Rev., 2018, 12, 61-68.
[http://dx.doi.org/10.1080/17518253.2019.1569730]
[62]
Fraceto, L.F.; Grillo, R.; de Medeiros, G.A. Nanotechnology in agriculture: which innovation potential does it have? Front. Environ. Sci., 2016, 4, 20.
[http://dx.doi.org/10.3389/fenvs.2016.00020]
[63]
Chen, H.D.; Yada, R. Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci. Technol., 2011, 22, 585-594.
[http://dx.doi.org/10.1016/j.tifs.2011.09.004]
[64]
Dasgupta, N.; Ranjan, S.; Mundekkad, D.; Ramalingam, C.; Shanker, R.; Kumar, A. Nanotechnology in agro-food: from field to plate. Food Res. Int., 2015, 69, 381-400.
[http://dx.doi.org/10.1016/j.foodres.2015.01.005]
[65]
Parisi, C.; Vigani, M.; Rodriguez-Cerezo, E. Agricultural nanotechnologies: what are the current possibilities? Nano Today, 2015, 10, 124-127.
[http://dx.doi.org/10.1016/j.nantod.2014.09.009]
[66]
Khin, M.M.; Nair, A.S.; Babu, V.J.; Murugan, R.; Ramakrishna, S. A review on nanomaterials for environmental remediation. Energy Environ. Sci., 2012, 5, 8075-8109.
[http://dx.doi.org/10.1039/c2ee21818f]
[67]
Zhang, X-F.; Liu, Z-G.; Shen, W.; Gurunathan, S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[68]
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13, 2638.
[http://dx.doi.org/10.1039/c1gc15386b]
[69]
Barabadi, H.; Najafi, M.; Samadian, H.; Azarnezhad, A.; Vahidi, H.; Mahjoub, M.A.; Koohiyan, M.; Ahmadi, A. systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: are green nanoparticles safe enough for clinical marketing? Medicina (Kaunas), 2019, 55(8), 439.
[http://dx.doi.org/10.3390/medicina55080439] [PMID: 31387257]
[70]
Yang, N.; Aoki, K. Voltammetry of the silver alkylcarboxylate nanoparticles in suspension. Electrochim. Acta, 2005, 50, 4868-4872.
[http://dx.doi.org/10.1016/j.electacta.2005.02.071]
[71]
Vijayaraghavan, K.; Ashokkumar, T. Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. J. Environ. Chem. Eng., 2017, 5, 4866-4883.
[http://dx.doi.org/10.1016/j.jece.2017.09.026]
[72]
Tan, Y.; Dai, Y.; Li, Y.; Zhua, D. Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate. J. Mater. Chem., 2003, 13, 1069-1075.
[http://dx.doi.org/10.1039/b211386d]
[73]
Mallick, K.; Witcomb, M.J.; Scurell, M.S. Polymer stabilized silver nanoparticles: a photochemical synthesis route. J. Mater. Sci., 2004, 39, 4459-4463.
[http://dx.doi.org/10.1023/B:JMSC.0000034138.80116.50]
[74]
Tan, Y.; Li, Y.; Zhu, D. Preparation of silver nanocrystals in the presence of aniline. J. Colloid Interface Sci., 2003, 258(2), 244-251.
[http://dx.doi.org/10.1016/S0021-9797(02)00151-0] [PMID: 12618093]
[75]
Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine (Lond.), 2010, 6(2), 257-262.
[http://dx.doi.org/10.1016/j.nano.2009.07.002] [PMID: 19616126]
[76]
Li, X.; Xu, H.; Chen, Z.S.; Chen, G. Biosynthesis of nanoparticles by microorganisms and their applications; J; Nanomat, 2011, pp. 1-16.
[77]
Singh, A.; Singh, N.B.; Hussain, I.; Singh, H.; Singh, S.C. Plant nanoparticle interaction: An approach to improve agricultural practices and plant productivity. Int. J. Pharm. Sci. Inven, 2015, 4, 25-40.
[78]
Kharissova, O.V.; Dias, H.V.R.; Kharisov, B.I.; Pérez, B.O.; Pérez, V.M.J. The greener synthesis of nanoparticles. Trends Biotechnol., 2013, 31(4), 240-248.
[http://dx.doi.org/10.1016/j.tibtech.2013.01.003] [PMID: 23434153]
[79]
Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 2009, 145(1-2), 83-96.
[http://dx.doi.org/10.1016/j.cis.2008.09.002] [PMID: 18945421]
[80]
Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 2010, 156(1-2), 1-13.
[http://dx.doi.org/10.1016/j.cis.2010.02.001] [PMID: 20181326]
[81]
Singh, H.; Du, J.; Singh, P.; Yi, T.H. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(6), 1163-1170.
[http://dx.doi.org/10.1080/21691401.2017.1362417] [PMID: 28784039]
[82]
Li, C-J.; Trost, B.M. Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13197-13202.
[http://dx.doi.org/10.1073/pnas.0804348105] [PMID: 18768813]
[83]
Karn, B.; Bergeson, L. Green nanotechnology: Straddling promise and uncertainty. Nat. Resour. Environ., 2009, 24, 9-23.
[84]
Karn, B.; Wong, S.S. Ten years of green nanotechnology., Sustainable nanotechnology and the environment: Advances and achievements. Am. Chem. Soc., 2013, 1-10..
[http://dx.doi.org/10.1021/bk-2013-1124.ch001]
[85]
Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett., 2016, 38(4), 545-560.
[http://dx.doi.org/10.1007/s10529-015-2026-7] [PMID: 26721237]
[86]
Kumar, V.; Yadav, S.K. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol., 2009, 84, 151-157.
[http://dx.doi.org/10.1002/jctb.2023]
[87]
Bhattacharya, D.; Gupta, R.K. Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol., 2005, 25(4), 199-204.
[http://dx.doi.org/10.1080/07388550500361994] [PMID: 16419617]
[88]
Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanopart. Res., 2008, 10, 507-517.
[http://dx.doi.org/10.1007/s11051-007-9275-x]
[89]
Sintubin, L.; De Gusseme, B.; Van der Meeren, P.; Pycke, B.F.G.; Verstraete, W.; Boon, N. The antibacterial activity of biogenic silver and its mode of action. Appl. Microbiol. Biotechnol., 2011, 91(1), 153-162.
[http://dx.doi.org/10.1007/s00253-011-3225-3] [PMID: 21468709]
[90]
Hakim, L.F.; Portman, J.L.; Casper, M.D.; Weimer, A.W. Aggregation behavior of nanoparticles in fluidized beds. Powder Technol., 2005, 160, 149-160.
[http://dx.doi.org/10.1016/j.powtec.2005.08.019]
[91]
Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.R.; Khan, M.I.; Parishcha, R.; Ajaykumar, P.V.; Alam, M.; Kumar, R. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett., 2001, 1, 515-519.
[http://dx.doi.org/10.1021/nl0155274]
[92]
Tripp, S.L.; Pusztay, S.V.; Ribbe, A.E.; Wei, A. Self-assembly of cobalt nanoparticle rings. J. Am. Chem. Soc., 2002, 124(27), 7914-7915.
[http://dx.doi.org/10.1021/ja0263285] [PMID: 12095331]
[93]
Huang, J.; Lin, L.; Sun, D.; Chen, H.; Yang, D.; Li, Q. Bio-inspired synthesis of metal nanomaterials and applications. Chem. Soc. Rev., 2015, 44(17), 6330-6374.
[http://dx.doi.org/10.1039/C5CS00133A] [PMID: 26083903]
[94]
Jha, A.K.; Prasad, K.; Kumar, V.; Prasad, K. Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol. Prog., 2009, 25(5), 1476-1479.
[http://dx.doi.org/10.1002/btpr.233] [PMID: 19725113]
[95]
Aromal, S.A.; Vidhu, V.K.; Philip, D. Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 85(1), 99-104.
[http://dx.doi.org/10.1016/j.saa.2011.09.035] [PMID: 22018585]
[96]
Gericke, M.; Pinches, A. Biological synthesis of metal nanoparticles. Hydrometallurgy, 2006, 83, 132-140.
[http://dx.doi.org/10.1016/j.hydromet.2006.03.019]
[97]
Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology, 2018, 16(1), 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 30373622]
[98]
Marslin, G.; Siram, K.; Maqbool, Q.; Selvakesavan, R.K.; Kruszka, D.; Kachlicki, P.; Franklin, G. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials (Basel), 2018, 11(6), 940.
[http://dx.doi.org/10.3390/ma11060940] [PMID: 29865278]
[99]
Jacob, J.M.; Lens, P.N.; Balakrishnan, R.M. Microbial synthesis of chalcogenide semiconductor nanoparticles: a review. Microb. Biotechnol., 2016, 9(1), 11-21.
[http://dx.doi.org/10.1111/1751-7915.12297] [PMID: 26110980]
[100]
Nadhe, S.B.; Singh, R.; Wadhwani, S.A.; Chopade, B.A. Acinetobacter sp. mediated synthesis of AgNPs, its optimization, characterization and synergistic antifungal activity against C. albicans. J. Appl. Microbiol., 2019, 127(2), 445-458.
[http://dx.doi.org/10.1111/jam.14305] [PMID: 31074075]
[101]
Saravanan, M.; Barik, S.K. MubarakAli, D.; Prakash, P.; Pugazhendhi, A. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb. Pathog., 2018, 116, 221-226.
[http://dx.doi.org/10.1016/j.micpath.2018.01.038] [PMID: 29407231]
[102]
Rehman, S.; Jermy, B.R.; Akhtar, S.; Borgio, J.F.; Abdul Azeez, S.; Ravinayagam, V.; Al Jindan, R.; Alsalem, Z.H.; Buhameid, A.; Gani, A. Isolation and characterization of a novel thermophile; Bacillus haynesii, applied for the green synthesis of ZnO nanoparticles. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2072-2082.
[http://dx.doi.org/10.1080/21691401.2019.1620254] [PMID: 31126203]
[103]
Ordenes-Aenishanslins, N.A.; Saona, L.A.; Durán-Toro, V.M.; Monrás, J.P.; Bravo, D.M.; Pérez-Donoso, J.M. Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells. Microb. Cell Fact., 2014, 13(1), 90.
[http://dx.doi.org/10.1186/s12934-014-0090-7] [PMID: 25027643]
[104]
Banu, A.N.; Balasubramanian, C.; Moorthi, P.V. Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol. Res., 2014, 113(1), 311-316.
[http://dx.doi.org/10.1007/s00436-013-3656-0] [PMID: 24173811]
[105]
Kalishwaralal, K.; Deepak, V.; Ram Kumar Pandian, S.; Kottaisamy, M. BarathmaniKanth, S.; Kartikeyan, B.; Gurunathan, S. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B Biointerfaces, 2010, 77(2), 257-262.
[http://dx.doi.org/10.1016/j.colsurfb.2010.02.007] [PMID: 20197229]
[106]
Nordmeier, A.; Merwin, A.; Roeper, D.F.; Chidambaram, D. Microbial synthesis of metallic molybdenum nanoparticles. Chemosphere, 2018, 203, 521-525.
[http://dx.doi.org/10.1016/j.chemosphere.2018.02.079] [PMID: 29649694]
[107]
El-Baghdady, K.Z.; El-Shatoury, E.H.; Abdullah, O.M.; Khalil, M.M.H. Biogenic production of silver nanoparticles by Enterobacter cloacae Ism26. Turk. J. Biol., 2018, 42(4), 319-321.
[http://dx.doi.org/10.3906/biy-1801-53] [PMID: 30814895]
[108]
Correa-Llantén, D.N.; Muñoz-Ibacache, S.A.; Castro, M.E.; Muñoz, P.A.; Blamey, J.M. Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb. Cell Fact., 2013, 12, 75.
[http://dx.doi.org/10.1186/1475-2859-12-75] [PMID: 23919572]
[109]
Law, N.; Ansari, S.; Livens, F.R.; Renshaw, J.C.; Lloyd, J.R. Formation of nanoscale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl. Environ. Microbiol., 2008, 74(22), 7090-7093.
[http://dx.doi.org/10.1128/AEM.01069-08] [PMID: 18723646]
[110]
Krishnaraj, R.N.; Berchmans, S. In vitro antiplatelet activity of silver nanoparticles synthesized using the microorganism Gluconobacter roseus: an AFM-based study. RSC Advances, 2013, 3, 8953-8959.
[http://dx.doi.org/10.1039/c3ra41246f]
[111]
Srivastava, P.; Braganca, J.M.; Kowshik, M. In vivo synthesis of selenium nanoparticles by Halococcus salifodinae BK18 and their anti-proliferative properties against HeLa cell line. Biotechnol. Prog., 2014, 30(6), 1480-1487.
[http://dx.doi.org/10.1002/btpr.1992] [PMID: 25219897]
[112]
Seshadri, S.; Prakash, A.; Kowshik, M. Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. p R58-8. Bull. Mater. Sci., 2012, 35, 1201-1205.
[http://dx.doi.org/10.1007/s12034-012-0417-0]
[113]
Kalpana, D.; Lee, Y.S. Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae. Enzyme Microb. Technol., 2013, 52(3), 151-156.
[http://dx.doi.org/10.1016/j.enzmictec.2012.12.006] [PMID: 23410925]
[114]
Aziz Mousavi, S.M.A.; Mirhosseini, S.A.; Rastegar Shariat Panahi, M.; Mahmoodzadeh Hosseini, H. Characterization of biosynthesized silver nanoparticles using Lactobacillus rhamnosus GG and its in vitro assessment against colorectal cancer cells; Probiotics Antimicrob Prot, 2019.
[115]
Parikh, R.Y.; Ramanathan, R.; Coloe, P.J.; Bhargava, S.K.; Patole, M.S.; Shouche, Y.S.; Bansal, V. Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp. PLoS One, 2011, 6(6)e21401
[http://dx.doi.org/10.1371/journal.pone.0021401] [PMID: 21713008]
[116]
Samadi, N.; Golkaran, D.; Eslamifar, A.; Jamalifar, H.; Fazeli, M.R.; Mohseni, F.A. Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J. Biomed. Nanotechnol., 2009, 5(3), 247-253.
[http://dx.doi.org/10.1166/jbn.2009.1029] [PMID: 20055006]
[117]
Rajasree, S.R.; Suman, T.Y. Extracellular biosynthesis of gold nanoparticles using a gram-negative bacterium Pseudomonas fluorescens. Asian Pac. J. Trop. Dis., 2012, 2, S796-S799.
[http://dx.doi.org/10.1016/S2222-1808(12)60267-9]
[118]
Gallardo-Benavente, C.; Carrión, O.; Todd, J.D.; Pieretti, J.C.; Seabra, A.B.; Durán, N.; Rubilar, O.; Pérez-Donoso, J.M.; Quiroz, A. Biosynthesis of CdS Quantum Dots mediated by volatile sulfur compounds released by Antarctic Pseudomonas fragi. Front. Microbiol., 2019, 10, 1866.
[http://dx.doi.org/10.3389/fmicb.2019.01866] [PMID: 31456780]
[119]
Borghese, R.; Brucale, M.; Fortunato, G.; Lanzi, M.; Mezzi, A.; Valle, F.; Cavallini, M.; Zannoni, D. Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus. J. Hazard. Mater., 2016, 309, 202-209.
[http://dx.doi.org/10.1016/j.jhazmat.2016.02.011] [PMID: 26894294]
[120]
Ghorbani, H.R. Biosynthesis of silver nanoparticles using Salmonella typhirium. J. Nanostruct. Chem, 2013, 3, 29-32.
[http://dx.doi.org/10.1186/2193-8865-3-29]
[121]
Konishi, Y.; Ohno, K.; Saitoh, N.; Nomura, T.; Nagamine, S.; Hishida, H.; Takahashi, Y.; Uruga, T. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J. Biotechnol., 2007, 128(3), 648-653.
[http://dx.doi.org/10.1016/j.jbiotec.2006.11.014] [PMID: 17182148]
[122]
Rajeswaran, S.; Somasundaram Thirugnanasambandan, S.; Dewangan, N.K.; Moorthy, R.K.; Kandasamy, S.; Vilwanathan, R. Multifarious pharmacological applications of green routed eco-friendly iron nanoparticles synthesized by Streptomyces sp. (SRT12). Biol. Trace Elem. Res., 2020, 194(1), 273-283.
[http://dx.doi.org/10.1007/s12011-019-01777-5] [PMID: 31256390]
[123]
Juibari, M.M.; Abbasalizadeh, S.; Jouzani, G.S.; Noruzi, M. Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater. Lett., 2011, 65, 1014-1017.
[http://dx.doi.org/10.1016/j.matlet.2010.12.056]
[124]
Fernández-Llamosas, H.; Castro, L.; Blázquez, M.L.; Díaz, E.; Carmona, M. Speeding up bioproduction of selenium nanoparticles by using Vibrio natriegens as microbial factory. Sci. Rep., 2017, 7(1), 16046.
[http://dx.doi.org/10.1038/s41598-017-16252-1] [PMID: 29167550]
[125]
Narayanan, K.B.; Sakthivel, N. Biosynthesis of silver nanoparticles by phytopathogen Xanthomonas oryzae pv. oryzae strain BXO8. J. Microbiol. Biotechnol., 2013, 23(9), 1287-1292.
[http://dx.doi.org/10.4014/jmb.1304.04047] [PMID: 23751558]
[126]
Loshchinina, E.A.; Vetchinkina, E.P.; Kupryashina, M.A.; Kursky, V.F.; Nikitina, V.E. Nanoparticles synthesis by Agaricus soil basidiomycetes. J. Biosci. Bioeng., 2018, 126(1), 44-52.
[http://dx.doi.org/10.1016/j.jbiosc.2018.02.002] [PMID: 29496400]
[127]
Sarkar, J.; Ray, S.; Chattopadhyay, D.; Laskar, A.; Acharya, K. Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst. Eng., 2012, 35(4), 637-643.
[http://dx.doi.org/10.1007/s00449-011-0646-4] [PMID: 22009439]
[128]
Musarrat, J.; Dwivedi, S.; Singh, B.R.; Al-Khedhairy, A.A.; Azam, A.; Naqvi, A. Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour. Technol., 2010, 101(22), 8772-8776.
[http://dx.doi.org/10.1016/j.biortech.2010.06.065] [PMID: 20619641]
[129]
Ammar, H.A.; Rabie, G.H.; Mohamed, E. Novel fabrication of gelatin-encapsulated copper nanoparticles using Aspergillus versicolor and their application in controlling of rotting plant pathogens. Bioprocess Biosyst. Eng., 2019, 42(12), 1947-1961.
[http://dx.doi.org/10.1007/s00449-019-02188-5] [PMID: 31435736]
[130]
Kalpana, V.N.; Kataru, B.A.S.; Sravani, N.; Vigneshwari, T.; Panneerselvam, A.; Devi Rajeswari, V. Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: antimicrobial textiles and dye degradation studies. OpenNano, 2018, 3, 48-55.
[http://dx.doi.org/10.1016/j.onano.2018.06.001]
[131]
Rahimi, G.; Alizadeh, F.; Khodavadi, A. Mycosynthesis of silver nanoparticles from Candida albicans and its antibacterial activity against Escherichia coli and Staphylococcus aureus. Trop. J. Pharm. Res., 2016, 15, 371-375.
[http://dx.doi.org/10.4314/tjpr.v15i2.21]
[132]
Costa Silva, L.P.; Oliveira, J.P.; Keijok, W.J.; da Silva, A.R.; Aguiar, A.R.; Guimarães, M.C.C.; Ferraz, C.M.; Araújo, J.V.; Tobias, F.L.; Braga, F.R. Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans. Int. J. Nanomedicine, 2017, 12, 6373-6381.
[http://dx.doi.org/10.2147/IJN.S137703] [PMID: 28919741]
[133]
Rajam, K.S.; Rani, M.E.; Gunaseeli, R.; Munavar, M.H. Extracellular synthesis of silver nanoparticles by the fungus Emericella nidulans EV4 and its application. Indian J. Exp. Biol., 2017, 55, 262-265.
[134]
Qian, Y.; Yu, H.; He, D.; Yang, H.; Wang, W.; Wan, X.; Wang, L. Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst. Eng., 2013, 36(11), 1613-1619.
[http://dx.doi.org/10.1007/s00449-013-0937-z] [PMID: 23463299]
[135]
Kumar, S.A.; Ansary, A.A.; Ahmad, A.; Khan, M.I. Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J. Biomed. Nanotechnol., 2007, 3, 190-194.
[http://dx.doi.org/10.1166/jbn.2007.027]
[136]
Srivastava, S.; Bhargava, A.; Pathak, N.; Srivastava, P. Production, characterization and antibacterial activity of silver nanoparticles produced by Fusarium oxysporum and monitoring of protein-ligand interaction through in-silico approaches. Microb. Pathog., 2019, 129, 136-145.
[http://dx.doi.org/10.1016/j.micpath.2019.02.013] [PMID: 30742948]
[137]
Chan, S. Instantaneous biosynthesis of silver nanoparticles (AgNPs) by selected macro fungi. Aust. J. Basic Appl. Sci., 2012, 6, 222-226.
[138]
Chowdhury, S.; Basu, A.; Kundu, S. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria. Nanoscale Res. Lett., 2014, 9(1), 365.
[http://dx.doi.org/10.1186/1556-276X-9-365] [PMID: 25114655]
[139]
Castro-Longoria, E.; Moreno-Velázquez, S.D.; Vilchis-Nestor, A.R.; Arenas-Berumen, E.; Avalos-Borja, M. Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. J. Microbiol. Biotechnol., 2012, 22(7), 1000-1004.
[http://dx.doi.org/10.4014/jmb.1110.10085] [PMID: 22580320]
[140]
Taha, Z.K.; Hawar, S.N.; Sulaiman, G.M. Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotechnol. Lett., 2019, 41(8-9), 899-914.
[http://dx.doi.org/10.1007/s10529-019-02699-x] [PMID: 31201601]
[141]
Mazumdar, H.; Haloi, N.A. Study on biosynthesis of iron nanoparticles by Pleurotus sp. J. Microbiol. Biotechnol. Res, 2011, 1, 39-49.
[142]
Saravanan, M.; Arokiyaraj, S.; Lakshmi, T.; Pugazhendhi, A. Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb. Pathog., 2018, 117, 68-72.
[http://dx.doi.org/10.1016/j.micpath.2018.02.008] [PMID: 29427709]
[143]
Chen, J.C.; Lin, Z.H.; Ma, X.X. Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett. Appl. Microbiol., 2003, 37(2), 105-108.
[http://dx.doi.org/10.1046/j.1472-765X.2003.01348.x] [PMID: 12859650]
[144]
Arun, G.; Eyini, M.; Gunasekaran, P. Green synthesis of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications. Biotechnol. Bioproc. Eng, 2014, 19, 1083-1090.
[http://dx.doi.org/10.1007/s12257-014-0071-z]
[145]
Elamawi, R.M.; Al-Harbi, R.E.; Hendi, A.A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biol. Pest Control, 2018, 28, 28.
[http://dx.doi.org/10.1186/s41938-018-0028-1]
[146]
El-Baz, A.F.; Sorour, N.M.; Shetaia, Y.M. Trichosporon jirovecii-mediated synthesis of cadmium sulfide nanoparticles. J. Basic Microbiol., 2015, 55, 1-11.
[PMID: 26467054]
[147]
Velusamy, P.; Kumar, G.V.; Jeyanthi, V.; Das, J.; Pachaiappan, R. Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol. Res., 2016, 32(2), 95-102.
[http://dx.doi.org/10.5487/TR.2016.32.2.095] [PMID: 27123159]
[148]
Lovley, D.R.; Roden, E.E.; Philips, J.P.; Woodward, J.C. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar. Geol., 1993, 113, 41-53.
[http://dx.doi.org/10.1016/0025-3227(93)90148-O]
[149]
Konishi, Y.; Tsukiyama, T.; Ohno, K.; Saitoh, N.; Nomura, T.; Nagamine, S. Intracellular recovery of gold by microbial reduction of AuCl4− ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy, 2006, 81, 24-29.
[http://dx.doi.org/10.1016/j.hydromet.2005.09.006]
[150]
Zadvorny, O.A.; Zorin, N.A.; Gogotov, I.N. Transformation of metals and metal ions by hydrogenases from phototrophic bacteria. Arch. Microbiol., 2006, 184(5), 279-285.
[http://dx.doi.org/10.1007/s00203-005-0040-1] [PMID: 16283252]
[151]
Fu, J.K.; Liu, Y.; Gu, P.; Tang, D.L.; Lin, Z.Y.; Yao, B.X.; Weng, S.Z. Spectroscopic characterization on the biosorption and bioreduction of Ag(I) by Lactobacillus sp. A09. Acta Phys. Chim. Sin., 2000, 16, 770-882.
[152]
Fu, M.; Li, Q.; Sun, D.; Lu, Y.; He, N.; Deng, X.; Wang, H.; Huang, J. Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chin. J. Chem. Eng., 2006, 14, 114-117.
[http://dx.doi.org/10.1016/S1004-9541(06)60046-3]
[153]
Reith, F.; Etschmann, B.; Grosse, C.; Moors, H.; Benotmane, M.A.; Monsieurs, P.; Grass, G.; Doonan, C.; Vogt, S.; Lai, B.; Martinez-Criado, G.; George, G.N.; Nies, D.H.; Mergeay, M.; Pring, A.; Southam, G.; Brugger, J. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc. Natl. Acad. Sci. USA, 2009, 106(42), 17757-17762.
[http://dx.doi.org/10.1073/pnas.0904583106] [PMID: 19815503]
[154]
Reith, F.; Fairbrother, L.; Nolze, G.; Wilhelmi, O.; Clode, P.; Gregg, A.; Parsons, J.E.; Wakelin, S.A.; Pring, A.; Hough, R.; Southam, G.; Brugger, J. Nanoparticle factories: Biofilms hold the key to gold dispersion and nugget formation. Geology, 2010, 38, 843-846.
[http://dx.doi.org/10.1130/G31052.1]
[155]
Johnston, C.W.; Wyatt, M.A.; Li, X.; Ibrahim, A.; Shuster, J.; Southam, G.; Magarvey, N.A. Gold biomineralization by a metallophore from a gold-associated microbe. Nat. Chem. Biol., 2013, 9(4), 241-243.
[http://dx.doi.org/10.1038/nchembio.1179] [PMID: 23377039]
[156]
Singh, P.K.; Kundu, S. Biosynthesis of gold nanoparticles using bacteria. Proc. Natl. Acad. Sci. (India). Sect. B. Biol. Sci., 2014, 84, 331-336.
[157]
Montero-Silva, F.; Durán, N.; Seeger, M. Synthesis of extracellular gold nanoparticles using Cupriavidus metallidurans CH34 cells. IET Nanobiotechnol., 2018, 12, 40-46.
[http://dx.doi.org/10.1049/iet-nbt.2017.0185]
[158]
Funari, R.; Ripa, R.; Söderström, B.; Skoglund, U.; Shen, A.Q. Detecting gold biomineralization by Delftia acidovorans biofilms on a quartz crystal microbalance. ACS Sens., 2019, 4(11), 3023-3033.
[http://dx.doi.org/10.1021/acssensors.9b01580] [PMID: 31631654]
[159]
Balaji, D.S.; Basavaraja, S.; Deshpande, R.; Mahesh, D.B.; Prabhakar, B.K.; Venkataraman, A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf. B Biointerfaces, 2009, 68(1), 88-92.
[http://dx.doi.org/10.1016/j.colsurfb.2008.09.022] [PMID: 18995994]
[160]
Debnath, G.; Das, P.; Saha, A.K. Green synthesis of silver nanoparticles using mushroom extract of Pleurotus giganteus: characterization, antimicrobial, and α-amylase inhibitory activity. BioNanoSci., 2019, 2019(9), 611-619.
[http://dx.doi.org/10.1007/s12668-019-00650-y]
[161]
Owaid, M.N.; Raman, J.; Lakshmanan, H.; Al-Saeedi, S.S.S.; Sabaratnam, V.; Abed, I.A. Mycosynthesis of silver nanoparticles by Pleurotus cornucopiae var. citrinopileatus and its inhibitory effects against Candida sp. Mater. Lett., 2015, 153, 186-190.
[http://dx.doi.org/10.1016/j.matlet.2015.04.023]
[162]
Al-Bahrani, R.; Raman, J.; Lakshmanan, H.; Hassan, A.A.; Sabaratnam, V. Green synthesis of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria. Mater. Lett., 2017, 186, 21-25.
[http://dx.doi.org/10.1016/j.matlet.2016.09.069]
[163]
Rajput, S.; Werezuk, R.; Lange, R.M.; McDermott, M.T. Fungal isolate optimized for biogenesis of silver nanoparticles with enhanced colloidal stability. Langmuir, 2016, 32(34), 8688-8697.
[http://dx.doi.org/10.1021/acs.langmuir.6b01813] [PMID: 27466012]
[164]
Molnár, Z.; Bódai, V.; Szakacs, G.; Erdélyi, B.; Fogarassy, Z.; Sáfrán, G.; Varga, T.; Kónya, Z.; Tóth-Szeles, E.; Szűcs, R.; Lagzi, I. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci. Rep., 2018, 8(1), 3943.
[http://dx.doi.org/10.1038/s41598-018-22112-3] [PMID: 29500365]
[165]
Azmath, P.; Baker, S.; Rakshith, D.; Satish, S. Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm. J., 2016, 24(2), 140-146.
[http://dx.doi.org/10.1016/j.jsps.2015.01.008] [PMID: 27013906]
[166]
Sabri, M.A.; Umer, A.; Awan, G.H.; Hassan, M.F.; Hasnain, A. Selection of suitable biological method for the synthesis of silver nanoparticles. Nanomater. Nanotechnol., 2016, 6, 1-20.
[http://dx.doi.org/10.5772/62644]
[167]
Guilger-Casagrande, M.; de Lima, R. Synthesis of silver nanoparticles mediated by fungi: a review. Front. Bioeng. Biotechnol., 2019, 7, 287.
[http://dx.doi.org/10.3389/fbioe.2019.00287] [PMID: 31696113]
[168]
Gudikandula, K.; Vadapally, P.; Charya, M.A.S. Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies. Open Nano, 2017, 2017(2), 64-78.
[http://dx.doi.org/10.1016/j.onano.2017.07.002]
[169]
Ramezani, F.; Ramezani, M.; Talebi, S. Mechanistic aspects of biosynthesis of nanoparticles by several microbes. Nanocon, 2010, 10, 12-14.
[170]
Baymiller, M.; Huang, F.; Rogelj, S. Rapid one-step synthesis of gold nanoparticles using the ubiquitous coenzyme NADH; Matters, 2017, pp. 1-4.
[171]
Srivastava, S.; Pathak, N.; Srivastava, P. Identification of limiting factors for the optimum growth of fusarium oxysporum in liquid medium. Toxicol. Int., 2011, 18(2), 111-116.
[http://dx.doi.org/10.4103/0971-6580.84262] [PMID: 21976815]
[172]
Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces, 2003, 28, 313-318.
[http://dx.doi.org/10.1016/S0927-7765(02)00174-1]
[173]
Durán, N.; Marcato, P.D.; Alves, O.L.; Souza, G.I.; Esposito, E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnology, 2005, 3, 8.
[http://dx.doi.org/10.1186/1477-3155-3-8] [PMID: 16014167]
[174]
Salvadori, M.R.; Lepre, L.F.; Ando, R.A.; Oller do Nascimento, C.A.; Corrêa, B. Biosynthesis and uptake of copper nanoparticles by dead biomass of Hypocrea lixii isolated from the metal mine in the Brazilian Amazon Region. PLoS One, 2013, 8(11)e80519
[http://dx.doi.org/10.1371/journal.pone.0080519] [PMID: 24282549]
[175]
Salvadori, M.R.; Ando, R.A.; Oller do Nascimento, C.A.; Corrêa, B. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One, 2014, 9(1)e87968
[http://dx.doi.org/10.1371/journal.pone.0087968] [PMID: 24489975]
[176]
Salvadori, M.R.; Ando, R.A.; Nascimento, C.A.; Corrêa, B. Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLoS One, 2015, 10(6)e0129799
[http://dx.doi.org/10.1371/journal.pone.0129799] [PMID: 26043111]
[177]
Hamedi, S.; Shojaosadati, S.A.; Shokrollahzadeh, S.; Hashemi-Najafabadi, S. Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity. World J. Microbiol. Biotechnol., 2014, 30(2), 693-704.
[http://dx.doi.org/10.1007/s11274-013-1417-y] [PMID: 24068530]
[178]
Guilger, M.; Pasquoto-Stigliani, T.; Bilesky-Jose, N.; Grillo, R.; Abhilash, P.C.; Fraceto, L.F.; Lima, R. Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. Sci. Rep., 2017, 7, 44421.
[http://dx.doi.org/10.1038/srep44421] [PMID: 28300141]
[179]
Barsanti, L.; Gualtieri, P. Algae: anatomy, biochemistry and biotechnology; CRC Press: Boca Raton, 2014.
[http://dx.doi.org/10.1201/b16544]
[180]
Cavalier-Smith, T. Higher classification and phylogeny of Euglenozoa. Eur. J. Protistol., 2016, 56, 250-276.
[http://dx.doi.org/10.1016/j.ejop.2016.09.003] [PMID: 27889663]
[181]
Siddiqi, K.S.; Husen, A. Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nanoscale Res. Lett., 2016, 11(1), 363.
[http://dx.doi.org/10.1186/s11671-016-1580-9] [PMID: 27530743]
[182]
Arya, A.; Gupta, K.; Chundawat, T.S.; Vaya, D. Biogenic synthesis of copper and silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Bioinorg. Chem. Appl., 2018.20187879403
[http://dx.doi.org/10.1155/2018/7879403] [PMID: 30420873]
[183]
Aboelfetoh, E.F.; El-Shenody, R.A.; Ghobara, M.M. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environ. Monit. Assess., 2017, 189(7), 349.
[http://dx.doi.org/10.1007/s10661-017-6033-0] [PMID: 28646435]
[184]
Kannan, R.R.; Arumugam, R.; Ramya, D.; Manivannan, K.; Anantharaman, P. Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl. Nanosci., 2013, 3, 229-233.
[http://dx.doi.org/10.1007/s13204-012-0125-5]
[185]
Annamalai, J.; Nallamuthu, T. Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Appl. Nanosci., 2015, 5, 603-607.
[http://dx.doi.org/10.1007/s13204-014-0353-y]
[186]
Soisuwan, S.; Warisnoicharoen, W.; Lirdprapamongkol, K.; Svasti, J. Eco-friendly synthesis of fucoidan-stabilized gold nanoparticles. Am. J. Appl. Sci., 2010, 7, 1038-1042.
[http://dx.doi.org/10.3844/ajassp.2010.1038.1042]
[187]
Gu, H.; Chen, X.; Chen, F.; Zhou, X.; Parsaee, Z. Ultrasound-assisted biosynthesis of CuO-NPs using brown alga Cystoseira trinodis: Characterization, photocatalytic AOP, DPPH scavenging and antibacterial investigations. Ultrason. Sonochem., 2018, 41, 109-119.
[http://dx.doi.org/10.1016/j.ultsonch.2017.09.006] [PMID: 29137732]
[188]
Venkatesan, J.; Manivasagan, P.; Kim, S.K.; Kirthi, A.V.; Marimuthu, S.; Rahuman, A.A. Marine algae-mediated synthesis of gold nanoparticles using a novel Ecklonia cava. Bioprocess Biosyst. Eng., 2014, 37(8), 1591-1597.
[http://dx.doi.org/10.1007/s00449-014-1131-7] [PMID: 24525832]
[189]
Mata, Y.N.; Torres, E.; Blázquez, M.L.; Ballester, A.; González, F.; Muñoz, J.A. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J. Hazard. Mater., 2009, 166(2-3), 612-618.
[http://dx.doi.org/10.1016/j.jhazmat.2008.11.064] [PMID: 19124199]
[190]
Abdel-Raouf, N.; Al-Enazi, N.M.; Ibraheem, I.B.M. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab. J. Chem., 2017, 10, S3029-S3039.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.044]
[191]
Chetia, L.; Kalita, D.; Ahmed, G.A. Synthesis of Ag nanoparticles using diatom cells for ammonia sensing. Sens. Biosensing Res., 2017, 16, 55-61.
[http://dx.doi.org/10.1016/j.sbsr.2017.11.004]
[192]
Abdel-Raouf, N.; Al-Enazi, N.M.; Ibraheem, I.B.M.; Alharbi, R.M.; Alkhulaifi, M.M. Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization. Saudi J. Biol. Sci., 2019, 26(6), 1207-1215.
[http://dx.doi.org/10.1016/j.sjbs.2018.01.007] [PMID: 31516350]
[193]
Sharma, B.; Purkayastha, D.D.; Hazra, S.; Gogoi, L.; Bhattacharjee, C.R.; Ghosh, N.N.; Rout, J. Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa. Mater. Lett., 2014, 116, 94-97.
[http://dx.doi.org/10.1016/j.matlet.2013.10.107]
[194]
Parial, D.; Pal, R. Biosynthesis of monodisperse gold nanoparticles by green alga Rhizoclonium and associated biochemical changes. J. Appl. Phycol., 2015, 27, 975-984.
[http://dx.doi.org/10.1007/s10811-014-0355-x]
[195]
Kumaresan, M.; Vijai Anand, K.; Govindaraju, K.; Tamilselvan, S.; Ganesh Kumar, V. Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria. Microb. Pathog., 2018, 124, 311-315.
[http://dx.doi.org/10.1016/j.micpath.2018.08.060] [PMID: 30165114]
[196]
Arockiya Aarthi Rajathi, F.; Parthiban, C.; Ganesh Kumar, V.; Anantharaman, P. Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 99, 166-173.
[http://dx.doi.org/10.1016/j.saa.2012.08.081] [PMID: 23063860]
[197]
Pytlik, N.; Kaden, J.; Finger, M.; Naumann, J.; Wanke, S.; Machill, S.; Brunner, E. Biological synthesis of gold nanoparticles by the diatom Stephanopyxis turris and in vivo SERS analyses. Algal Res., 2017, 28, 9-15.
[http://dx.doi.org/10.1016/j.algal.2017.10.004]
[198]
Vijayan, S.R.; Santhiyagu, P.; Singamuthu, M.; Kumari Ahila, N.; Jayaraman, R.; Ethiraj, K. Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity. ScientificWorldJournal, 2014.2014938272
[http://dx.doi.org/10.1155/2014/938272] [PMID: 24672397]
[199]
Senapati, S.; Syed, A.; Moeez, S.; Kumar, A.; Ahmad, A. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater. Lett., 2012, 79, 116-118.
[http://dx.doi.org/10.1016/j.matlet.2012.04.009]
[200]
Kulkarni, A.P.; Srivastava, A.A.; Harpale, P.M.; Zunjarrao, R.S. Plant mediated synthesis of silver nanoparticles‐tapping the unexploited sources. J. Natural Prod. Plant Resour, 2011, 4, 100-107.
[201]
Vimala, A.; Sathish, S.S.; Thamizharasi, T.; Palani, R.; Vijayakanth, P.; Kavitha, R. Moss (Bryophyte) mediated synthesis and characterization of silver nanoparticles from Campylopus flexuosus (Hedw.). Bird. J. Pharm. Sci. Res, 2017, 9, 292-297.
[202]
Srivastava, A.A.; Kulkarni, A.P.; Harpale, P.M.; Zunjarrao, R.S. Plant mediated synthesis of silver nanoparticles using a bryophyte: Fissidens minutus and its antimicrobial activity. Int. J. Eng. Sci. Technol., 2011, 3, 8342-8347.
[203]
Kulkarni, A.P.; Srivastava, A.A.; Nagalgaon, R.K. Phytofabrication of silver nanoparticles from a novel plant source and its application. Intern. J. Biol. Pharm. Res, 2012, 3, 417-421.
[204]
Sant, D.G.; Gujarathi, T.R.; Harne, S.R.; Ghosh, S.; Kitture, R.; Kale, S.; Chopade, B.A.; Pardesi, K.R. Adiantum philippense L. frond assisted rapid green synthesis of gold and silver nanoparticles. J. Nanopart., 2013, 182320...
[205]
Kunjiappan, S.; Chowdhury, R.; Bhattacharjee, C. A green chemistry approach for the synthesis and characterization of bioactive gold nanoparticles using Azolla microphylla methanol extract. Front. Mater. Sci., 2014, 8, 123-135.
[http://dx.doi.org/10.1007/s11706-014-0246-8]
[206]
Rajaganesh, R.; Murugan, K.; Panneerselvam, C.; Jayashanthini, S.; Aziz, A.T.; Roni, M.; Suresh, U.; Trivedi, S.; Rehman, H.; Higuchi, A.; Nicoletti, M.; Benelli, G. Fern-synthesized silver nanocrystals: Towards a new class of mosquito oviposition deterrents? Res. Vet. Sci., 2016, 109, 40-51.
[http://dx.doi.org/10.1016/j.rvsc.2016.09.012] [PMID: 27892872]
[207]
Femi-Adepoju, A.G.; Dada, A.O.; Otun, K.O.; Adepoju, A.O.; Fatoba, O.P. Green synthesis of silver nanoparticles using terrestrial fern (Gleichenia Pectinata (Willd.) C. Presl.): characterization and antimicrobial studies. Heliyon, 2019, 5(4)e01543
[http://dx.doi.org/10.1016/j.heliyon.2019.e01543] [PMID: 31049445]
[208]
Baskaran, X.; Geo Vigila, A.V.; Parimelazhagan, T.; Muralidhara-Rao, D.; Zhang, S. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible silver nanoparticles from an early tracheophyte, Pteris tripartita Sw. Int. J. Nanomedicine, 2016, 11, 5789-5806.
[http://dx.doi.org/10.2147/IJN.S108208] [PMID: 27895478]
[209]
Castro-Longoria, E.; Trejo-Guillén, K.; Vilchis-Nestor, A.R.; Avalos-Borja, M.; Andrade-Canto, S.B.; Leal-Alvarado, D.A.; Santamaría, J.M. Biosynthesis of lead nanoparticles by the aquatic water fern, Salvinia minima Baker, when exposed to high lead concentration. Colloids Surf. B Biointerfaces, 2014, 114, 277-283.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.050] [PMID: 24211828]
[210]
Verma, D.K.; Hasan, S.H.; Banik, R.M. Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. J. Photochem. Photobiol. B, 2016, 155, 51-59.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.12.008] [PMID: 26735000]
[211]
Castro, J.R.; García-Hernández, L.; Ortega, P.A.R.; Islas, D.A. Green synthesis of gold nanoparticles (AuNPs) by Cupressus Goveniana extract. Electrochem. Soc. Trans, 2018, 84, 207-215.
[212]
Ebrahiminezhad, A.; Taghizadeh, S.; Ghasemi, Y. Green synthesis of silver nanoparticles using Mediterranean cypress (Cupressus sempervirens) leaf extract. Am. J. Biochem. Biotechnol., 2017, 13, 1-6.
[http://dx.doi.org/10.3844/ajbbsp.2017.1.6]
[213]
Jha, A.K.; Prasad, K. Green synthesis of silver nanoparticles using Cycas leaf. Intern. J. Green Nanotech: Physics Chem, 2010, 1, 110-117.
[http://dx.doi.org/10.1080/19430871003684572]
[214]
Ebrahiminezhad, A.; Taghizadeh, S.; Berenjian, A.; Fatemeh, H.N.; Younes, G. Green synthesis of silver nanoparticles capped with natural carbohydrates using Ephedra intermedia. Nanosci. Nanotechnol. Asia, 2017, 7, 104-112.
[http://dx.doi.org/10.2174/2210681206666161006165643]
[215]
Nasar, M.Q.; Khalil, A.T.; Ali, M.; Shah, M.; Ayaz, M.; Shinwari, Z.K. Phytochemical analysis, Ephedra procera C.A. Mey. mediated green synthesis of silver nanoparticles, their cytotoxic and antimicrobial potentials. Medicina (Kaunas), 2019, 55(7)E369
[http://dx.doi.org/10.3390/medicina55070369] [PMID: 31336944]
[216]
Song, J.Y.; Kim, B.S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng., 2009, 32(1), 79-84.
[http://dx.doi.org/10.1007/s00449-008-0224-6] [PMID: 18438688]
[217]
Geraldes, A.N.; Alves da Silva, A.; Leal, J.; Estrada-villegas, G.M.; Lincopan, N.; Katti, K.V.; Lugão, A.B. Green nanotechnology from plant extracts: synthesis and characterization of gold nanoparticles. Adv. Nanoparticl, 2016, 5, 176-185.
[http://dx.doi.org/10.4236/anp.2016.53019]
[218]
Velmurugan, P.; Park, J.H.; Lee, S.M.; Jang, J.S.; Lee, K.J.; Han, S.S.; Lee, S.H.; Cho, M.; Oh, B.T. Synthesis and characterization of nanosilver with antibacterial properties using Pinus densiflora young cone extract. J. Photochem. Photobiol. B, 2015, 147, 63-68.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.03.008] [PMID: 25846578]
[219]
Iravani, S.; Zolfaghari, B. Green synthesis of silver nanoparticles using Pinus eldarica bark extract., BioMed. Res. Intern., 2013,639725..
[220]
Zheng, B.; Kong, T.; Jing, X.; Odoom-Wubah, T.; Li, X.; Sun, D.; Lu, F.; Zheng, Y.; Huang, J.; Li, Q. Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism. J. Colloid Interface Sci., 2013, 396, 138-145.
[http://dx.doi.org/10.1016/j.jcis.2013.01.021] [PMID: 23403109]
[221]
Xia, Q.H.; Ma, Y.J.; Wang, J.W. Biosynthesis of silver nanoparticles using Taxus yunnanensis callus and their antibacterial activity and cytotoxicity in human cancer cells. Nanomater, 2016, 6(9), 160.
[http://dx.doi.org/10.3390/nano6090160] [PMID: 28335288]
[222]
Parial, D.; Patra, H.K.; Dasgupta, A.K.R.; Pal, R. Screening of different algae for green synthesis of gold nanoparticles. Eur. J. Phycol., 2012, 47, 22-29.
[http://dx.doi.org/10.1080/09670262.2011.653406]
[223]
Castro, L.; Blázquez, M.L.; Muñoz, J.A.; González, F.; Ballester, A. Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol., 2013, 7(3), 109-116.
[http://dx.doi.org/10.1049/iet-nbt.2012.0041] [PMID: 24028809]
[224]
Baker, S.; Harini, B.P.; Rakshith, D.; Satish, S. Marine microbes: invisible nano factories. J. Pharm. Res., 2013, 6, 383-388.
[http://dx.doi.org/10.1016/j.jopr.2013.03.001]
[225]
Steel, J.B.; Wilson, J.B.; Anderson, B.J.; Lodge, R.H.E.; Tangney, R.S. Are bryophyte communities different from higher-plant communities? Abundance relations. Oikos, 2004, 104, 479-486.
[http://dx.doi.org/10.1111/j.0030-1299.2004.12840.x]
[226]
Sun, S-Q.; Wu, Y-H.; Wang, G-X.; Zhou, J.; Yu, D.; Bing, H.J.; Luo, J. Bryophyte species richness and composition along an altitudinal gradient in Gongga Mountain, China. PLoS One, 2013, 8(3)e58131
[http://dx.doi.org/10.1371/journal.pone.0058131] [PMID: 23472146]
[227]
Shanker, A. Combined data from chloroplast and mitochondrial genome sequences showed paraphyly of bryophytes. Arch. Bryology, 2013, 171, 1-9.
[228]
Asakawa, Y.; Ludwiczuk, A. Chemical constituents of bryophytes: structures and biological activity. J. Nat. Prod., 2018, 81(3), 641-660.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01046] [PMID: 29019405]
[229]
Ligrone, R.; Ducket, J.G.; Renzaglia, K.S. Conducting tissues and phyletic relationships of bryophytes. Phil. Trans. Royal Soc. B: Biol. Sci, 2000, 355(1398), 795-813.
[http://dx.doi.org/10.1098/rstb.2000.0616] [PMID: 10905610]
[230]
Ligrone, R.; Duckett, J.G.; Renzaglia, K.S. Major transitions in the evolution of early land plants: a bryological perspective. Annal. Bot, 2012, 109(5), 851-871.
[http://dx.doi.org/10.1093/aob/mcs017] [PMID: 22356739]
[231]
Wang, X-Q.; Ran, J.H. Evolution and biogeography of gymnosperms. Mol. Phylogenet. Evol., 2014, 75, 24-40.
[http://dx.doi.org/10.1016/j.ympev.2014.02.005] [PMID: 24565948]
[232]
Crepet, W.L. Progress in understanding angiosperm history, success, and relationships: Darwin’s abominably “perplexing phenomenon”. Proc. Natl. Acad. Sci. USA, 2000, 97(24), 12939-12941.
[http://dx.doi.org/10.1073/pnas.97.24.12939] [PMID: 11087846]
[233]
Wang, X. The Dawn Angiosperms: Uncovering the Origin of Flowering Plants; Springer-Verlag: Berlin, Heidelberg, 2010.
[http://dx.doi.org/10.1007/978-3-642-01161-0]
[234]
Crane, P.R.; Friis, E.M.; Pedersen, K.R. The origin and early diversification of angiosperms. Nature, 1995, 374, 27-33.
[http://dx.doi.org/10.1038/374027a0]
[235]
Parthiban, E.; Manivannan, N.; Ramanibai, R.; Mathivanan, N. Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens., Biotechnol. Rep. (Amst.), 2018, 21e00297.
[http://dx.doi.org/10.1016/j.btre.2018.e00297] [PMID: 30581768]
[236]
Chandra, H.; Patel, D.; Kumari, P.; Jangwan, J.S.; Yadav, S. Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater. Sci. Eng. C, 2019, 102, 212-220.
[http://dx.doi.org/10.1016/j.msec.2019.04.035] [PMID: 31146992]
[237]
Moteriya, P.; Chanda, S. Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic, and genotoxic activities. Artif. Cells Nanomed. Biotechnol., 2017, 45(8), 1556-1567.
[http://dx.doi.org/10.1080/21691401.2016.1261871] [PMID: 27900878]
[238]
Vanaja, M.; Annadurai, G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci., 2013, 3, 217-223.
[http://dx.doi.org/10.1007/s13204-012-0121-9]
[239]
Rao, N.H. N, L.; Pammi, S.V.; Kollu, P.; S, G.; P, L. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Mater. Sci. Eng. C, 2016, 62, 553-557.
[http://dx.doi.org/10.1016/j.msec.2016.01.072] [PMID: 26952458]
[240]
Wu, F.; Zhu, J.; Li, G.; Wang, J.; Veeraraghavan, V.P.; Krishna Mohan, S.; Zhang, Q. Biologically synthesized green gold nanoparticles from Siberian ginseng induce growth-inhibitory effect on melanoma cells (B16). Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3297-3305.
[http://dx.doi.org/10.1080/21691401.2019.1647224] [PMID: 31379212]
[241]
Pourmortazavi, S.M.; Taghdiri, M.; Makari, V.; Rahimi-Nasrabadi, M. Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(Pt C), 1249-1254.
[http://dx.doi.org/10.1016/j.saa.2014.10.010] [PMID: 25456666]
[242]
Zangeneh, M.M.; Ghaneialvar, H.; Akbaribazm, M.; Ghanimatdan, M.; Abbasi, N.; Goorani, S.; Pirabbasi, E.; Zangeneh, A. Novel synthesis of Falcaria vulgaris leaf extract conjugated copper nanoparticles with potent cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition. J. Photochem. Photobiol. B, 2019.197111556
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111556] [PMID: 31326842]
[243]
Lee, K.X.; Shameli, K.; Miyake, M. Green synthesis of gold nanoparticles using aqueous extract of Garcinia mangostana fruit peels.J. Nanomater., 2016, •••8489094.
[244]
Mohammad, G.R.K.S.; Tabrizi, M.H.; Ardalan, T.; Yadamani, S.; Safavi, E. Green synthesis of zinc oxide nanoparticles and evaluation of anti-angiogenesis, anti-inflammatory and cytotoxicity properties. J. Biosci., 2019, 44(2), 30.
[http://dx.doi.org/10.1007/s12038-019-9845-y] [PMID: 31180043]
[245]
Aritonang, H.F.; Koleangan, H.; Wuntu, A.D. Synthesis of silver nanoparticles using aqueous extract of medicinal plants’ (Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. Intern. J. Microbiol., 2019, 8642303..
[246]
Das, G.; Patra, J.K.; Basavegowda, N.; Vishnuprasad, C.N.; Shin, H.S. Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.). Lam. Int. J. Nanomedicine, 2019, 14, 4741-4754.
[http://dx.doi.org/10.2147/IJN.S210517] [PMID: 31456635]
[247]
Swamy, M.K.; Akhtar, M.S.; Mohanty, S.K.; Sinniah, U.R. Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim. Acta A, 2015, 151, 939-944.
[http://dx.doi.org/10.1016/j.saa.2015.07.009] [PMID: 26186612]
[248]
Moodley, J.S.; Krishna, S.B.N.; Pillay, K. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential., Adv. Nat. Sci. Nanosci. Nanotechnol., 2018, 9015011.
[http://dx.doi.org/10.1088/2043-6254/aaabb2]
[249]
Dobrucka, R.; Romaniuk-Drapała, A.; Kaczmarek, M. Evaluation of biological synthesized platinum nanoparticles using Ononidis radix extract on the cell lung carcinoma A549. Biomed. Microdevices, 2019, 21(3), 75.
[http://dx.doi.org/10.1007/s10544-019-0424-7] [PMID: 31346766]
[250]
Shaik, M.R.; Khan, M.; Kuniyil, M.; Al-Warthan, A.; Alkhathlan, H.Z.; Siddiqui, M.R.H.; Shaik, J.P.; Ahamed, A.; Mahmood, A.; Khan, M.; Adil, S.F. Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability, 2018, 10, 913.
[http://dx.doi.org/10.3390/su10040913]
[251]
Dar, P.; Waqas, U.; Hina, A.; Anwar, J.; Dar, A.; Khan, Z. Biogenic synthesis, characterization of silver nanoparticles using multani mitti (Fullers Earth), tomato (Solanum lycopersicum) seeds, rice husk (Oryza sativa) and evaluation of their potential antimicrobial activity. J. Chem. Soc. Pak., 2016, 38, 665-674.
[252]
Muhammad, W.; Khan, M.A.; Nazir, M.; Siddiquah, A.; Mushtaq, S.; Hashmi, S.S.; Abbasi, B.H. Papaver somniferum L. mediated novel bioinspired lead oxide (PbO) and iron oxide (Fe2O3) nanoparticles: In-vitro biological applications, biocompatibility and their potential towards HepG2 cell line. Mater. Sci. Eng. C, 2019.103109740
[http://dx.doi.org/10.1016/j.msec.2019.109740] [PMID: 31349401]
[253]
Fatimah, I. Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. J. Adv. Res., 2016, 7(6), 961-969.
[http://dx.doi.org/10.1016/j.jare.2016.10.002] [PMID: 27857843]
[254]
Devanesan, S.; AlSalhi, M.S.; Balaji, R.V.; Ranjitsingh, A.J.A.; Ahamed, A.; Alfuraydi, A.A.; AlQahtani, F.Y.; Aleanizy, F.S.; Othman, A.H. Antimicrobial and cytotoxicity effects of synthesized silver nanoparticles from Punica granatum peel extract. Nanoscale Res. Lett., 2018, 13(1), 315.
[http://dx.doi.org/10.1186/s11671-018-2731-y] [PMID: 30288618]
[255]
Ontong, J.C.; Paosen, S.; Shankar, S.; Voravuthikunchai, S.P. Eco-friendly synthesis of silver nanoparticles using Senna alata bark extract and its antimicrobial mechanism through enhancement of bacterial membrane degradation. J. Microbiol. Methods, 2019.165105692
[http://dx.doi.org/10.1016/j.mimet.2019.105692] [PMID: 31437555]
[256]
Abbasi, B.H.; Shah, M.; Hashmi, S.S.; Nazir, M.; Naz, S.; Ahmad, W.; Khan, I.U.; Hano, C. Green bio-assisted synthesis, characterization and biological evaluation of biocompatible ZnO NPs synthesized from different tissues of milk thistle (Silybum marianum). Nanomaterials (Basel), 2019, 9(8)E1171
[http://dx.doi.org/10.3390/nano9081171] [PMID: 31426328]
[257]
Lakshmeesha, T.R.; Kalagatur, N.K.; Mudili, V.; Mohan, C.D.; Rangappa, S.; Prasad, B.D.; Ashwini, B.S.; Hashem, A.; Alqarawi, A.A.; Malik, J.A.; Abd Allah, E.F.; Gupta, V.K.; Siddaiah, C.N.; Niranjana, S.R. Biofabrication of zinc oxide nanoparticles with Syzygium aromaticum flower buds extract and finding its novel application in controlling the growth and mycotoxins of Fusarium graminearum. Front. Microbiol., 2019, 10, 1244.
[http://dx.doi.org/10.3389/fmicb.2019.01244] [PMID: 31249558]
[258]
Akhter, S.M.H.; Mohammad, F.; Ahmad, S. Terminalia belerica mediated green synthesis of nanoparticles of copper, iron and zinc metal oxides as the alternate antibacterial agents against some common pathogens. BioNanoSci., 2019, 9, 365-372.
[http://dx.doi.org/10.1007/s12668-019-0601-4]
[259]
Haverkamp, R.; Marshall, A. The mechanism of metal nanoparticle formation in plants: limits on accumulation. J. Nanopart. Res., 2009, 11, 1453-1464.
[http://dx.doi.org/10.1007/s11051-008-9533-6]
[260]
Das, R.K.; Gogoi, N.; Bora, U. Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst. Eng., 2011, 34(5), 615-619.
[http://dx.doi.org/10.1007/s00449-010-0510-y] [PMID: 21229266]
[261]
Unal, I.S.; Demirbas, A.; Onal, I.; Ildiz, N.; Ocsoy, I. One step preparation of stable gold nanoparticle using red cabbage extracts under UV light and its catalytic activity. J. Photochem Photobiol, 2020, 204111800.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111800 ] [PMID: 32028188]
[262]
He, X.; Gao, L.; Ma, N. One-step instant synthesis of protein-conjugated quantum dots at room temperature. Sci. Rep., 2013, 3, 2825.
[http://dx.doi.org/10.1038/srep02825] [PMID: 24084780]
[263]
Wu, P.; Zhao, T.; Tian, Y.; Wu, L.; Hou, X. Protein-directed synthesis of Mn-doped ZnS quantum dots: a dual-channel biosensor for two proteins. Chemistry, 2013, 19(23), 7473-7479.
[http://dx.doi.org/10.1002/chem.201204035] [PMID: 23576296]
[264]
Leng, Y.; Fu, L.; Ye, L.; Li, B.; Xu, X.; Xing, X.; He, J.; Song, Y.; Leng, C.; Guo, Y.; Ji, X.; Lu, Z. Protein-directed synthesis of highly monodispersed, spherical gold nanoparticles and their applications in multidimensional sensing. Sci. Rep., 2016, 6, 28900.
[http://dx.doi.org/10.1038/srep28900] [PMID: 27353703]
[265]
Chen, C.; Ng, D.Y.W.; Weil, T. Denatured proteins as a novel template for the synthesis of well-defined, ultra-stable and water-soluble metal nanostructures for catalytic applications. J. Leather Sci. Eng., 2020, 2, 7.
[http://dx.doi.org/10.1186/s42825-020-00020-5]
[266]
Julin, S.; Nummelin, S.; Kostiainen, M.A.; Linko, V. DNA nanostructure-directed assembly of metal nanoparticle superlattices. J. Nanopart. Res., 2018, 20(5), 119.
[http://dx.doi.org/10.1007/s11051-018-4225-3] [PMID: 29950921]
[267]
Ocsoy, I.; Paret, M.L.; Ocsoy, M.A.; Kunwar, S.; Chen, T.; You, M.; Tan, W. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano, 2013, 7(10), 8972-8980.
[http://dx.doi.org/10.1021/nn4034794] [PMID: 24016217]
[268]
Ocsoy, I.; Gulbakan, B.; Chen, T.; Zhu, G.; Chen, Z.; Sari, M.M.; Peng, L.; Xiong, X.; Fang, X.; Tan, W. DNA-guided metal-nanoparticle formation on graphene oxide surface. Adv. Mater., 2013, 25(16), 2319-2325.
[http://dx.doi.org/10.1002/adma.201204944] [PMID: 23436286]
[269]
Samanta, A.; Medintz, I.L. Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology. Nanoscale, 2016, 8(17), 9037-9095.
[http://dx.doi.org/10.1039/C5NR08465B] [PMID: 27080924]
[270]
Glusker, J.; Katz, A.; Bock, C. Metal ions in biological systems. Rigaku J., 1999, 16, 8-16.
[271]
Si, S.; Mandal, T.K. Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chemistry, 2007, 13(11), 3160-3168.
[http://dx.doi.org/10.1002/chem.200601492] [PMID: 17245786]
[272]
Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 2014, 6(1), 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44] [PMID: 24772325]
[273]
Ge, J.; Lei, J.; Zare, R.N. Protein-inorganic hybrid nanoflowers. Nat. Nanotechnol., 2012, 7(7), 428-432.
[http://dx.doi.org/10.1038/nnano.2012.80] [PMID: 22659609]
[274]
Shende, P.; Kasture, P.; Gaud, R.S. Nanoflowers: the future trend of nanotechnology for multi-applications., Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 413-422..
[http://dx.doi.org/10.1080/21691401.2018.1428812] [PMID: 29361844]
[275]
Baldemir, A.; Köse, N.B.; Ildiz, N.; Ilgün, S.; Yusufbeyoglu, S.; Yilmaz, V.; Ocsoy, I. Synthesis and characterization of green tea (Camellia sinensis (L.) Kuntze) extract and its majör components-based nanoflowers: a new strategy toenhance antimicrobial activity. RSC Advances, 2017, 7, 44303-44308.
[http://dx.doi.org/10.1039/C7RA07618E]
[276]
Molina, G.A.; Esparza, R. LuisLópez-Miranda, J.; Hernández-Martínez, A.R.; España-Sánchez, B.L.; Elizalde-Peña, E.A.; Estevez, M. Green synthesis of Ag nano-flowers using Kalanchoe daigremontiana extract for enhanced photocatalytic and antibacterial activities. Colloids Surf. A Physicochem. Eng. Asp., 2019, 180, 141-149.
[277]
Koca, F.D.; Demirezen Yilmaz, D.; Ertas Onmaz, N.; Yilmaz, E.; Ocsoy, I. Green synthesis of allicin based hybrid nanoflowers with evaluation of their catalytic and antimicrobial activities. Biotechnol. Lett., 2020, 42(9), 1683-1690.
[http://dx.doi.org/10.1007/s10529-020-02877-2] [PMID: 32239349]
[278]
Altinkaynak, C.; Yilmaz, I.; Koksal, Z.; Özdemir, H.; Ocsoy, I.; Özdemir, N. Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability. Int. J. Biol. Macromol., 2016, 84, 402-409.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.018] [PMID: 26712698]
[279]
Altinkaynak, C.; Tavlasoglu, S.; Kalin, R.; Sadeghian, N.; Ozdemir, H.; Ocsoy, I.; Özdemir, N. A hierarchical assembly of flower-like hybrid Turkish black radish peroxidase-Cu2+ nanobiocatalyst and its effective use in dye decolorization. Chemosphere, 2017, 182, 122-128.
[http://dx.doi.org/10.1016/j.chemosphere.2017.05.012] [PMID: 28494355]
[280]
Ildiz, N.; Baldemir, A.; Altinkaynak, C.; Özdemir, N.; Yilmaz, V.; Ocsoy, I. Self assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme Microb. Technol., 2017, 102, 60-66.
[http://dx.doi.org/10.1016/j.enzmictec.2017.04.003] [PMID: 28465062]
[281]
Altinkaynak, C.; Ildiz, N.; Baldemir, A.; Özdemir, N.; Yilmaz, V.; Ocsoy, I. Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity. Derim, 2019, 36, 159-167.
[282]
Celik, C.; Ildiz, N.; Ocsoy, I. Building block and rapid synthesis of catecholamines-inorganic nanoflowers with their peroxidase-mimicking and antimicrobial activities. Sci. Rep., 2020, 10(1), 2903.
[http://dx.doi.org/10.1038/s41598-020-59699-5] [PMID: 32075999]
[283]
Koca, F.D.; Demirezen Yilmaz, D.; Ertas Onmaz, N.; Ocsoy, I. Peroxidase-like activity and antimicrobial properties of curcumin-inorganic hybrid nanostructure. Saudi J. Biol. Sci., 2020, 27(10), 2574-2579.
[http://dx.doi.org/10.1016/j.sjbs.2020.05.025] [PMID: 32994713]
[284]
Temel, S.; Gokmen, F.O.; Yaman, E. Antibacterial activity of ZnO nanoflowers deposited on biodegradable acrylic acid hydrogel by chemical bath deposition. Bull. Mater. Sci., 2020, 43, 18.
[http://dx.doi.org/10.1007/s12034-019-1967-1]
[285]
Ingle, A.P.; Rai, M. Copper nanoflowers as effective antifungal agents for plant pathogenic fungi. IET Nanobiotechnol., 2017, 11(5), 546-551.
[http://dx.doi.org/10.1049/iet-nbt.2016.0170] [PMID: 28745287]
[286]
Basu, P.; Mukherjee, K.; Khamrui, S.; Mukherjee, S.; Ahmed, M.; Acharya, K.; Banerjee, D.; Nambissan, P.M.G.; Chatterjee, K. Oxygen, nitrogen co-doped molybdenum disulphide nanoflowers for an excellent antifungal activity. Mater. Adv, In press
[http://dx.doi.org/10.1039/D0MA00343C]
[287]
Borah, D.; Hazarika, M.; Tailor, P.; Silva, A.R.; Chetia, B.; Singaravelu, G.; Das, P. Starch-templated bio-synthesis of gold nanoflowers for in vitro antimicrobial and anticancer activities. Appl. Nanosci., 2018, 8, 241-253.
[http://dx.doi.org/10.1007/s13204-018-0793-x]
[288]
Negahdary, M.; Heli, H. Applications of nanoflowers in biomedicine. Recent Pat. Nanotechnol., 2018, 12(1), 22-33.
[http://dx.doi.org/10.2174/1872210511666170911153428] [PMID: 28901846]
[289]
Zhu, L.; Gong, L.; Zhang, Y.; Wang, R.; Ge, J.; Liu, Z.; Zare, R.N. Rapid detection of phenol using a membrane containing laccase nanoflowers. Chem. Asian J., 2013, 8(10), 2358-2360.
[http://dx.doi.org/10.1002/asia.201300020] [PMID: 23423764]
[290]
Lin, Z.; Xiao, Y.; Yin, Y.; Hu, W.; Liu, W.; Yang, H. Facile synthesis of enzyme-inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol. ACS Appl. Mater. Interfaces, 2014, 6(13), 10775-10782.
[http://dx.doi.org/10.1021/am502757e] [PMID: 24937087]
[291]
Ye, R.; Zhu, C.; Song, Y.; Lu, Q.; Ge, X.; Yang, X.; Zhu, M.J.; Du, D.; Li, H.; Lin, Y. Bioinspired synthesis of all-in-one organicinorganic hybrid nanoflowerscombined with a hand held pH meter for on-site detection of food pathogen. Small, 2016, 12(23), 3094-3100.
[http://dx.doi.org/10.1002/smll.201600273] [PMID: 27121135]
[292]
Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic synthesis of nanoparticles: a review. Arab. J. Chem., 2019, 12, 3576-3600.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.002]
[293]
Abbasi, E.; Milani, M.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A.; Tayefi Nasrabadi, H.; Nikasa, P.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Samiei, M. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit. Rev. Microbiol., 2016, 42(2), 173-180.
[PMID: 24937409]
[294]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[295]
Burdușel, A.C.; Gherasim, O.; Grumezescu, A.M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials (Basel), 2018, 8(9), 681.
[http://dx.doi.org/10.3390/nano8090681] [PMID: 30200373]
[296]
Lee, S.H.; Jun, B.H. Silver nanoparticles: synthesis and application for nanomedicine. Int. J. Mol. Sci., 2019, 20(4), 865.
[http://dx.doi.org/10.3390/ijms20040865] [PMID: 30781560]
[297]
Awad, M.A.; Mekhamer, W.K.; Merghani, N.M.; Hendi, A.A.; Ortashi, K.M.O.; Al-Abbas, F.; Eisa, N.E. Green synthesis, characterization, and antibacterial activity of silver/polystyrene nanocomposite. J. Nanomater., 2015.2015943821
[http://dx.doi.org/10.1155/2015/943821]
[298]
Teow, S.Y.; Wong, M.M.; Yap, H.Y.; Peh, S.C.; Shameli, K. Bactericidal properties of plants-derived metal and metal oxide nanoparticles (NPs). Molecules (Basel), 2018, 23(6), 1366.
[http://dx.doi.org/10.3390/molecules23061366] [PMID: 29882775]
[299]
Kebir, Z.A.M.; Adel, M.; Adjdir, M.; Bengueddach, A.; Sassi, M. Preparation and antibacterial activity of silver nanoparticles intercalated kenyaite materials. Mater. Res. Express, 2018.5085021
[http://dx.doi.org/10.1088/2053-1591/aacc7f]
[300]
Abdelkrim, S.; Mokhtar, A.; Djelad, A.; Bennabi, F.; Souna, A.; Bengueddach, A.; Sassi, M. Chitosan/Ag-Bentonite nanocomposites: preparation, characterization, swelling and biological properties. J. Inorg. Organomet. Polym., 2020, 30, 831-840.
[http://dx.doi.org/10.1007/s10904-019-01219-8]
[301]
Altinsoy, B.D.; Şeker Karatoprak, G.; Ocsoy, I. Extracellular directed ag NPs formation and investigation of their antimicrobial and cytotoxic properties. Saudi Pharm. J., 2019, 27(1), 9-16.
[http://dx.doi.org/10.1016/j.jsps.2018.07.013] [PMID: 30627047]
[302]
Madamsetty, V.S.; Mukherjee, A.; Mukherjee, S. Recent trends of the bio-inspired nanoparticles in cancer theranostics. Front. Pharmacol., 2019, 10, 1264.
[http://dx.doi.org/10.3389/fphar.2019.01264] [PMID: 31708785]
[303]
Fathi-Achachelouei, M.; Knopf-Marques, H.; Ribeiro da Silva, C.E.; Barthès, J.; Bat, E.; Tezcaner, A.; Vrana, N.E. Use of nanoparticles in tissue engineering and regenerative medicine. Front. Bioeng. Biotechnol., 2019, 7, 113.
[http://dx.doi.org/10.3389/fbioe.2019.00113] [PMID: 31179276]
[304]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[305]
Mukherjee, S.; Patra, C.R. Biologically synthesized metal nanoparticles: recent advancement and future perspectives in cancer theranostics. Future Sci. OA, 2017, 3(3)FSO203
[http://dx.doi.org/10.4155/fsoa-2017-0035] [PMID: 28884002]
[306]
Khandel, P.; Yadaw, R.K.; Soni, D.K.; Kanwar, L.; Shahi, S.K. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J. Nanostruct. Chem, 2018, 8, 217-254.
[http://dx.doi.org/10.1007/s40097-018-0267-4]
[307]
Kanwar, R.; Rathee, J.; Salunke, D.B.; Mehta, S.K. Green nanotechnology-driven drug delivery assemblies. ACS Omega, 2019, 4(5), 8804-8815.
[http://dx.doi.org/10.1021/acsomega.9b00304] [PMID: 31459969]
[308]
Murugan, K.; Benelli, G.; Panneerselvam, C.; Subramaniam, J.; Jeyalalitha, T.; Dinesh, D.; Nicoletti, M.; Hwang, J.S.; Suresh, U.; Madhiyazhagan, P. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp. Parasitol., 2015, 153, 129-138.
[http://dx.doi.org/10.1016/j.exppara.2015.03.017] [PMID: 25819295]
[309]
Dinesh, D.; Murugan, K.; Madhiyazhagan, P.; Panneerselvam, C.; Kumar, P.M.; Nicoletti, M.; Jiang, W.; Benelli, G.; Chandramohan, B.; Suresh, U. Mosquitocidal and antibacterial activity of greensynthesized silver nanoparticles from Aloe vera extracts: Towards an effective tool against the malaria vector Anopheles stephensi? Parasitol. Res., 2015, 114(4), 1519-1529..
[http://dx.doi.org/10.1007/s00436-015-4336-z] [PMID: 25653031]
[310]
Benelli, G.; Caselli, A.; Canale, A. Nanoparticles for mosquito control: challenges and constraints. J. King Saud Univ.-. Sci, 2016, 29, 424-435..

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy