Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Plumbagin: A Potential Anti-cancer Compound

Author(s): Arpita Roy*

Volume 21, Issue 6, 2021

Published on: 16 November, 2020

Page: [731 - 737] Pages: 7

DOI: 10.2174/1389557520666201116144421

Price: $65

Abstract

Cancer is a deadly disease, which has significantly increased in both developed and developing nations. Treatment of cancer utilizing radiotherapy or chemotherapy actuates a few issues which incorporate spewing, sickness, unpalatable reactions, and so forth. In this specific situation, an alternative drug source, which can effectively treat cancer is of prime importance. Products that are obtained from plant sources are utilized for the treatment of various diseases due to their non-harmful nature. Medicinal plants contain different bioactive compounds, which possess an important role in the prevention of different diseases such as cancer. Plumbagin is a bioactive compound, which is mainly present in Plumbaginaceae family and has been explored for its anticancer activity. Plumbagin basically inactivates the Akt/NF-kB, MMP-9 and VEGF pathways that are essential for cancer cell development. Therefore, it is important to review the role of plumbagin in different cancer cells in order to find an alternative drug to overcome this disease. The present review provides a summary of anticancer activity of plumbagin in various cancers and its mode of action.

Keywords: Plumbagin, anticancer agent, lung cancer, breast cancer, colon cancer, ovarian cancer.

Graphical Abstract
[2]
Abedinpour, P.; Baron, V.T.; Chrastina, A.; Rondeau, G.; Pelayo, J.; Welsh, J.; Borgström, P. Plumbagin improves the efficacy of androgen deprivation therapy in prostate cancer: A pre-clinical study. Prostate, 2017, 77(16), 1550-1562.
[http://dx.doi.org/10.1002/pros.23428] [PMID: 28971491]
[3]
Agarwal, V.S.; Ghosh, B. Drug plants of India: Root drugs; New Delhi: Kalyani, 1985, pp. 204-205.
[4]
Alem, F.Z.; Bejaoui, M.; Villareal, M.O.; Rhourri-Frih, B.; Isoda, H. Elucidation of the effect of plumbagin on the metastatic potential of B16F10 murine melanoma cells via MAPK signalling pathway. Exp. Dermatol., 2020, 29(4), 427-435.
[http://dx.doi.org/10.1111/exd.14079] [PMID: 32012353]
[5]
Aziz, M.H.; Dreckschmidt, N.E.; Verma, A.K. Plumbagin, a medicinal plant-derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone-refractory prostate cancer. Cancer Res., 2008, 68(21), 9024-9032.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2494] [PMID: 18974148]
[6]
Budavari, S.; O’Neal, M.; Smith, A.; Heckelman, P.; Kinneary, J. The Merck index: An encyclopedia of chemicals, drugs, and biologicals, 12th ed; Merck & Co. Inc.: Whitehouse Station, NJ, 1996.
[7]
Chao, C.C.; Hou, S.M.; Huang, C.C.; Hou, C.H.; Chen, P.C.; Liu, J.F. Plumbagin induces apoptosis in human osteosarcoma through ROS generation, endoplasmic reticulum stress and mitochondrial apoptosis pathway. Mol. Med. Rep., 2017, 16(4), 5480-5488.
[http://dx.doi.org/10.3892/mmr.2017.7222] [PMID: 28849158]
[8]
Checker, R.; Gambhir, L.; Sharma, D.; Kumar, M.; Sandur, S.K. Plumbagin induces apoptosis in lymphoma cells via oxidative stress mediated glutathionylation and inhibition of mitogen-activated protein kinase phosphatases (MKP1/2). Cancer Lett., 2015, 357(1), 265-278.
[http://dx.doi.org/10.1016/j.canlet.2014.11.031] [PMID: 25444924]
[9]
Chen, C.A.; Chang, H.H.; Kao, C.Y.; Tsai, T.H.; Chen, Y.J. Plumbagin, isolated from Plumbago zeylanica, induces cell death through apoptosis in human pancreatic cancer cells. Pancreatology, 2009, 9(6), 797-809.
[http://dx.doi.org/10.1159/000210028] [PMID: 20110748]
[10]
D’Astafort, D. Chemische Versuche mit dem Plumbagin, der scharfen Materie aus der Wurzel von Plumbago europaea. Arch. Pharm. (Weinheim), 1829, 29, 245-250.
[http://dx.doi.org/10.1002/ardp.18290290323]
[11]
De, U.; Son, J.Y.; Jeon, Y.; Ha, S.Y.; Park, Y.J.; Yoon, S.; Ha, K.T.; Choi, W.S.; Lee, B.M.; Kim, I.S.; Kwak, J.H.; Kim, H.S. Plumbagin from a tropical pitcher plant (Nepenthes alata Blanco) induces apoptotic cell death via a p53-dependent pathway in MCF-7 human breast cancer cells. Food Chem. Toxicol., 2019, 123, 492-500.
[http://dx.doi.org/10.1016/j.fct.2018.11.040] [PMID: 30458268]
[12]
Eldhose, B.; Gunawan, M.; Rahman, M.; Latha, M.S.; Notario, V. Plumbagin reduces human colon cancer cell survival by inducing cell cycle arrest and mitochondria-mediated apoptosis. Int. J. Oncol., 2014, 45(5), 1913-1920.
[http://dx.doi.org/10.3892/ijo.2014.2592] [PMID: 25109615]
[13]
Fieser, L.F.; Dunn, J.T. Synthesis of plumbagin. J. Am. Chem. Soc., 1936, 58(4), 572-575.
[http://dx.doi.org/10.1021/ja01295a010]
[14]
Gomathinayagam, R.; Sowmyalakshmi, S.; Mardhatillah, F.; Kumar, R.; Akbarsha, M.A.; Damodaran, C. Anticancer mechanism of plumbagin, a natural compound, on non-small cell lung cancer cells. Anticancer Res., 2008, 28(2A), 785-792.
[PMID: 18507021]
[15]
Gowda, R.; Sharma, A.; Robertson, G.P. Synergistic inhibitory effects of Celecoxib and Plumbagin on melanoma tumor growth. Cancer Lett., 2017, 385, 243-250.
[http://dx.doi.org/10.1016/j.canlet.2016.10.016] [PMID: 27769779]
[16]
Hafeez, B.B.; Fischer, J.W.; Singh, A.; Zhong, W.; Mustafa, A.; Meske, L.; Sheikhani, M.O.; Verma, A.K. Plumbagin inhibits prostate carcinogenesis in intact and castrated PTEN knockout mice via targeting PKCε, Stat3, and epithelial-to-mesenchymal transition markers. Cancer Prev. Res. (Phila.), 2015, 8(5), 375-386.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0231] [PMID: 25627799]
[17]
Hassan, F.; Hairunisa, N.; Mohammed, S.A.; Yousif, E. A study on antitumor effect of 1, 3, 4-thiadiazole derivatives in prostate and breast cancer cell lines (in vitro); Preprints, 2017.
[18]
Hassan, F.; El-Hiti, G.A.; Abd-Allateef, M.; Yousif, E. Cytotoxicity anticancer activities of anastrozole against breast, liver hepatocellular, and prostate cancer cells. Saudi Med. J., 2017, 38(4), 359-365.
[http://dx.doi.org/10.15537/smj.2017.4.17061] [PMID: 28397941]
[19]
Hassan, F.; Mohammed, S.A.A.; Philip, A.; Hameed, A.A.; Yousif, E. Gold (III) complexes as breast cancer drug. System. Rev. Pharm., 2017, 8(1), 76.
[http://dx.doi.org/10.5530/srp.2017.1.13]
[20]
Hazra, B.; Sarkar, R.; Bhattacharyya, S.; Ghosh, P.K.; Chel, G.; Dinda, B. Synthesis of plumbagin derivatives and their inhibitory activities against Ehrlich ascites carcinoma in vivo and Leishmania donovani Promastigotes in vitro. Phytother. Res., 2002, 16(2), 133-137.
[http://dx.doi.org/10.1002/ptr.867] [PMID: 11933114]
[21]
Hwang, G.H.; Ryu, J.M.; Jeon, Y.J.; Choi, J.; Han, H.J.; Lee, Y.M.; Lee, S.; Bae, J.S.; Jung, J.W.; Chang, W.; Kim, L.K.; Jee, J.G.; Lee, M.Y. The role of thioredoxin reductase and glutathione reductase in plumbagin-induced, reactive oxygen species-mediated apoptosis in cancer cell lines. Eur. J. Pharmacol., 2015, 765, 384-393.
[http://dx.doi.org/10.1016/j.ejphar.2015.08.058] [PMID: 26341012]
[22]
Jayanthi, M.; Gokulanathan, A.; Haribalan, P.; Ashakiran, K.; Kumar, C.D.; Kamla, D. Plumbagin from two Plumbago species inhibits the growth of stomach and breast cancer cell lines. Ind. Crops Prod., 2020, 146, 112-147.
[http://dx.doi.org/10.1016/j.indcrop.2020.112147]
[23]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[24]
Kang, C.G.; Im, E.; Lee, H.J.; Lee, E.O. Plumbagin reduces osteopontin-induced invasion through inhibiting the Rho-associated kinase signaling pathway in A549 cells and suppresses osteopontin-induced lung metastasis in BalB/c mice. Bioorg. Med. Chem. Lett., 2017, 27(9), 1914-1918.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.047] [PMID: 28359791]
[25]
Kawiak, A.; Domachowska, A. Plumbagin suppresses the invasion of HER2-overexpressing breast cancer cells through inhibition of IKKα-mediated NF-κB activation. PLoS One, 2016, 11(10)e0164064
[http://dx.doi.org/10.1371/journal.pone.0164064] [PMID: 27727280]
[26]
Kawiak, A.; Zawacka-Pankau, J.; Lojkowska, E. Plumbagin induces apoptosis in Her2-overexpressing breast cancer cells through the mitochondrial-mediated pathway. J. Nat. Prod., 2012, 75(4), 747-751.
[http://dx.doi.org/10.1021/np3000409] [PMID: 22512718]
[27]
Kawiak, A.; Domachowska, A.; Jaworska, A.; Lojkowska, E. Plumbagin sensitizes breast cancer cells to tamoxifen-induced cell death through GRP78 inhibition and Bik upregulation. Sci. Rep., 2017, 7, 43781.
[http://dx.doi.org/10.1038/srep43781] [PMID: 28287102]
[28]
Kuo, P.L.; Hsu, Y.L.; Cho, C.Y. Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol. Cancer Ther., 2006, 5(12), 3209-3221.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0478] [PMID: 17172425]
[29]
Lai, L.; Liu, J.; Zhai, D.; Lin, Q.; He, L.; Dong, Y.; Zhang, J.; Lu, B.; Chen, Y.; Yi, Z.; Liu, M. Plumbagin inhibits tumour angiogenesis and tumour growth through the Ras signalling pathway following activation of the VEGF receptor-2. Br. J. Pharmacol., 2012, 165(4b), 1084-1096.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01532.x] [PMID: 21658027]
[30]
Lee, J.H.; Yeon, J.H.; Kim, H.; Roh, W.; Chae, J.; Park, H.O.; Kim, D.M. The natural anticancer agent plumbagin induces potent cytotoxicity in MCF-7 human breast cancer cells by inhibiting a PI-5 kinase for ROS generation. PLoS One, 2012, 7(9)e45023
[http://dx.doi.org/10.1371/journal.pone.0045023] [PMID: 23028742]
[31]
Li, J.; Li, J.; Cai, G.; Shen, L.; Lu, F. Proapoptotic and growth-inhibitory effects of plumbagin on human gastric cancer cells via suppression of signal transducer and activator of transcription 3 and protein kinase B. Altern. Ther. Health Med., 2017, 23(5), 42-48.
[PMID: 28236621]
[32]
Li, T.; Lv, M.; Chen, X.; Yu, Y.; Zang, G.; Tang, Z. Plumbagin inhibits proliferation and induces apoptosis of hepatocellular carcinoma by downregulating the expression of SIVA. Drug Des. Devel. Ther., 2019, 13, 1289-1300.
[http://dx.doi.org/10.2147/DDDT.S200610] [PMID: 31118568]
[33]
Liu, Y.; Cai, Y.; He, C.; Chen, M.; Li, H. Anticancer properties and pharmaceutical applications of plumbagin: A review. Am. J. Chin. Med., 2017, 45(3), 423-441.
[http://dx.doi.org/10.1142/S0192415X17500264] [PMID: 28359198]
[34]
Ma, X.; Yin, X.; Liu, H.; Chen, Q.; Feng, Y.; Ma, X.; Liu, W. Antiproliferative activity of plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone) in human gastric carcinoma cells is facilitated via activation of autophagic pathway, mitochondrial-mediated programmed cell death and inhibition of cell migration and invasion. J. BU ON.: Off. J. Balkan Union Oncol, 2019, 24(5), 2000.
[35]
Nair, S; Nair, RRK; Srinivas, P; Srinivas, G; Pillai, MR Radiosensitizing effects of plumbagin in cervical cancer cells is through modulation of apoptotic pathway. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 2008, 47(1), 22-33.,
[http://dx.doi.org/10.1002/mc.20359]
[36]
Nair, R.S.; Potti, M.E.; Thankappan, R.; Chandrika, S.K.; Kurup, M.R.; Srinivas, P. Molecular trail for the anticancer behavior of a novel copper carbohydrazone complex in BRCA1 mutated breast cancer. Mol. Carcinog., 2017, 56(5), 1501-1514.
[http://dx.doi.org/10.1002/mc.22610] [PMID: 28052399]
[37]
Nazeem, S.; Azmi, A.S.; Hanif, S.; Ahmad, A.; Mohammad, R.M.; Hadi, S.M.; Kumar, K.S. Plumbagin induces cell death through a copper-redox cycle mechanism in human cancer cells. Mutagenesis, 2009, 24(5), 413-418.
[http://dx.doi.org/10.1093/mutage/gep023] [PMID: 19505895]
[38]
Padhye, S.; Dandawate, P.; Yusufi, M.; Ahmad, A.; Sarkar, F.H. Perspectives on medicinal properties of plumbagin and its analogs. Med. Res. Rev., 2012, 32(6), 1131-1158.
[http://dx.doi.org/10.1002/med.20235] [PMID: 23059762]
[39]
Pan, M.; Li, W.; Yang, J.; Li, Z.; Zhao, J.; Xiao, Y.; Xing, Y.; Zhang, X.; Ju, W. Plumbagin-loaded aptamer-targeted poly D,L-lactic-co-glycolic acid-b-polyethylene glycol nanoparticles for prostate cancer therapy. Medicine (Baltimore), 2017, 96(30)e7405
[http://dx.doi.org/10.1097/MD.0000000000007405] [PMID: 28746182]
[40]
Pandey, K.; Tripathi, S.K.; Panda, M.; Biswal, B.K. Prooxidative activity of plumbagin induces apoptosis in human pancreatic ductal adenocarcinoma cells via intrinsic apoptotic pathway. Toxicol. In Vitro, 2020, 65104788
[http://dx.doi.org/10.1016/j.tiv.2020.104788] [PMID: 32027944]
[41]
Powolny, A.A.; Singh, S.V. Plumbagin-induced apoptosis in human prostate cancer cells is associated with modulation of cellular redox status and generation of reactive oxygen species. Pharm. Res., 2008, 25(9), 2171-2180.
[http://dx.doi.org/10.1007/s11095-008-9533-3] [PMID: 18213451]
[42]
Reshma, R.S.; Sreelatha, K.H.; Somasundaram, V.; Satheesh Kumar, S.; Nadhan, R.; Nair, R.S.; Srinivas, P. Plumbagin, a naphthaquinone derivative induces apoptosis in BRCA 1/2 defective castrate resistant prostate cancer cells as well as prostate cancer stem-like cells. Pharmacol. Res., 2016, 105, 134-145.
[http://dx.doi.org/10.1016/j.phrs.2016.01.012] [PMID: 26808083]
[43]
Raghu, D.; Karunagaran, D. Plumbagin downregulates Wnt signaling independent of p53 in human colorectal cancer cells. J. Nat. Prod., 2014, 77(5), 1130-1134.
[http://dx.doi.org/10.1021/np4010085] [PMID: 24828199]
[44]
Roy, A. A review on anti-cancerous activity of a bioactive compound Plumbagin. SciFed. J. Plant Physiol., 2017, 1(1) 78,79.,
[45]
Roy, A.; Bharadvaja, N. Medicinal plants in the management of cancer: A review. Int. J. Complement. Alternat. Med., 2017, 9(2), 00291.
[46]
Roy, A.; Bharadvaja, N. A review on pharmaceutically important medical plant: Plumbago zeylanica. J. Ayu. Her. Med., 2017, 3(4), 225-228.
[47]
Roy, A.; Bharadvaja, N. Biotechnological approaches for the production of pharmaceutically important compound. Plumbagin. Curr. Pharm. Biotechnol., 2018, 19(5), 372-381.
[http://dx.doi.org/10.2174/1389201019666180629143842] [PMID: 29956626]
[48]
Roy, A.; Jauhari, N.; Bharadvaja, N. Medicinal plants as a potential source of chemopreventive agents. Anticancer Plants: Natural Products and Biotechnological Implements 2018; Springer: Singapore, 2018, pp. 109-139.
[http://dx.doi.org/10.1007/978-981-10-8064-7_6]
[49]
Roy, A.; Bharadvaja, N. Effect of various culture conditions on shoot multiplication and GC–MS analysis of Plumbago zeylanica accessions for plumbagin production. Acta Physiol. Plant., 2018, 40(11), 190.
[http://dx.doi.org/10.1007/s11738-018-2766-9]
[50]
Roy, A.; Bharadvaja, N. Establishment of root suspension culture of Plumbago zeylanica and enhanced production of plumbagin. Ind. Crops Prod., 2019, 137, 419-427.
[http://dx.doi.org/10.1016/j.indcrop.2019.05.007]
[51]
Russo, G.L. Ins and outs of dietary phytochemicals in cancer chemoprevention. Biochem. Pharmacol., 2007, 74(4), 533-544.
[http://dx.doi.org/10.1016/j.bcp.2007.02.014] [PMID: 17382300]
[52]
Sandur, S.K.; Ichikawa, H.; Sethi, G.; Ahn, K.S.; Aggarwal, B.B. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) suppresses NF-kappaB activation and NF-kappaB-regulated gene products through modulation of p65 and IkappaBalpha kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. J. Biol. Chem., 2006, 281(25), 17023-17033.
[http://dx.doi.org/10.1074/jbc.M601595200] [PMID: 16624823]
[53]
Shih, Y.W.; Lee, Y.C.; Wu, P.F.; Lee, Y.B.; Chiang, T.A. Plumbagin inhibits invasion and migration of liver cancer HepG2 cells by decreasing productions of matrix metalloproteinase-2 and urokinase- plasminogen activator. Hepatol. Res., 2009, 39(10), 998-1009.
[http://dx.doi.org/10.1111/j.1872-034X.2009.00540.x] [PMID: 19624766]
[54]
Srinivas, G; Annab, LA; Gopinath, G; Banerji, A Srinivas, P Antisense blocking of BRCA1 enhances sensitivity to plumbagin but not tamoxifen in BG‐1 ovarian cancer cells. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 2004, 39(1), 15-25.
[55]
Subramaniya, B.R.; Srinivasan, G.; Sadullah, S.S.M.; Davis, N.; Subhadara, L.B.R.; Halagowder, D.; Sivasitambaram, N.D. Apoptosis inducing effect of plumbagin on colonic cancer cells depends on expression of COX-2. PLoS One, 2011, 6(4)e18695
[http://dx.doi.org/10.1371/journal.pone.0018695] [PMID: 21559086]
[56]
Tian, L.; Yin, D.; Ren, Y.; Gong, C.; Chen, A.; Guo, F.J. Plumbagin induces apoptosis via the p53 pathway and generation of reactive oxygen species in human osteosarcoma cells. Mol. Med. Rep., 2012, 5(1), 126-132.
[PMID: 21993662]
[57]
Wang, C.C.; Chiang, Y.M.; Sung, S.C.; Hsu, Y.L.; Chang, J.K.; Kuo, P.L. Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375.S2 cells. Cancer Lett., 2008, 259(1), 82-98.
[http://dx.doi.org/10.1016/j.canlet.2007.10.005] [PMID: 18023967]
[58]
Wang, F.; Wang, Q.; Zhou, Z.W.; Yu, S.N.; Pan, S.T.; He, Z.X.; Zhang, X.; Wang, D.; Yang, Y.X.; Yang, T.; Sun, T.; Li, M.; Qiu, J.X.; Zhou, S.F. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells. Drug Des. Devel. Ther., 2015, 9, 537-560.
[PMID: 25632222]
[59]
Xu, K.H.; Lu, D.P. Plumbagin induces ROS-mediated apoptosis in human promyelocytic leukemia cells in vivo. Leuk. Res., 2010, 34(5), 658-665.
[http://dx.doi.org/10.1016/j.leukres.2009.08.017] [PMID: 19748668]
[60]
Xue, Y.L.; Meng, X.Q.; Ma, L.J.; Yuan, Z. Plumbagin exhibits an anti-proliferative effect in human osteosarcoma cells by downregulating FHL2 and interfering with Wnt/β-catenin signalling. Oncol. Lett., 2016, 12(2), 1095-1100.
[http://dx.doi.org/10.3892/ol.2016.4725] [PMID: 27446400]
[61]
Yan, C.H.; Li, F.; Ma, Y.C. Plumbagin shows anticancer activity in human osteosarcoma (MG-63) cells via the inhibition of S-Phase checkpoints and down-regulation of c-myc. Int. J. Clin. Exp. Med., 2015, 8(8), 14432-14439.
[PMID: 26550431]
[62]
Yu, T.; Xu, Y.Y.; Zhang, Y.Y.; Li, K.Y.; Shao, Y.; Liu, G. Plumbagin suppresses the human large cell lung cancer cell lines by inhibiting IL-6/STAT3 signaling in vitro. Int. Immunopharmacol., 2018, 55, 290-296.
[http://dx.doi.org/10.1016/j.intimp.2017.12.021] [PMID: 29294439]
[63]
Zhou, Z.W.; Li, X.X.; He, Z.X.; Pan, S.T.; Yang, Y.; Zhang, X.; Chow, K.; Yang, T.; Qiu, J.X.; Zhou, Q.; Tan, J.; Wang, D.; Zhou, S.F. Induction of apoptosis and autophagy via sirtuin1- and PI3K/Akt/mTOR-mediated pathways by plumbagin in human prostate cancer cells. Drug Des. Devel. Ther., 2015, 9, 1511-1554.
[http://dx.doi.org/10.2147/DDDT.S75976] [PMID: 25834399]
[64]
Zhang, X.Q.; Yang, C.Y.; Rao, X.F.; Xiong, J.P. Plumbagin shows anti-cancer activity in human breast cancer cells by the upregulation of p53 and p21 and suppression of G1 cell cycle regulators. Eur. J. Gynaecol. Oncol., 2016, 37(1), 30-35.
[PMID: 27048106]
[65]
Zhang, J.; Peng, S.; Li, X.; Liu, R.; Han, X.; Fang, J. Targeting thioredoxin reductase by plumbagin contributes to inducing apoptosis of HL-60 cells. Arch. Biochem. Biophys., 2017, 619, 16-26.
[http://dx.doi.org/10.1016/j.abb.2017.02.007] [PMID: 28249720]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy