Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article (Mini-Review)

Marine Alkaloid Pityriacitrin and Its Analogues: Discovery, Structures, Synthetic Methods and Biological Properties

Author(s): Shaoyong Ke*, Tingting Xu, Yong Min, Zhongyi Wan, Ziwen Yang and Kaimei Wang*

Volume 21 , Issue 2 , 2021

Published on: 16 November, 2020

Page: [233 - 244] Pages: 12

DOI: 10.2174/1389557520666201116144156

Price: $65

Abstract

Pityriacitrin is a natural marine alkaloid with a typical β-carboline scaffold, and which has been demonstrated to exhibit diverse biological functions. The special structural features for pityriacitrin lead to the increasing research interest and the emergence of versatile derivatives, and many pityriacitrin analogues have been isolated or synthesized over the past decades. The structural diversity and evolved biological activity of these natural alkaloids can offer opportunities for the development of highly potential novel drugs with a new mechanism of action, and therefore, the aim of this brief review is to describe the discovery, synthesis, and biological properties of natural pityriacitrin and its derivatives, as well as the isolation source.

Keywords: Marine alkaloid, pityriacitrin, analogues, structure, synthesis, biological properties.

Graphical Abstract
[1]
Schrittwieser, J.H.; Resch, V. The role of biocatalysis in the asymmetric synthesis of alkaloids. RSC Advances, 2013, 3(39), 17602-17632.
[http://dx.doi.org/10.1039/c3ra42123f] [PMID: 25580241]
[2]
Mondal, A.; Gandhi, A.; Fimognari, C.; Atanasov, A.G.; Bishayee, A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur. J. Pharmacol., 2019.858172472
[http://dx.doi.org/10.1016/j.ejphar.2019.172472] [PMID: 31228447]
[3]
Mishra, S.K.; Tripathi, G.; Kishore, N.; Singh, R.K.; Singh, A.; Tiwari, V.K. Drug development against tuberculosis: Impact of alkaloids. Eur. J. Med. Chem., 2017, 137, 504-544.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.005] [PMID: 28628823]
[4]
Kim, C-K.; Riswanto, R.; Won, T.H.; Kim, H.; Elya, B.; Sim, C.J.; Oh, D-C.; Oh, K-B.; Shin, J. Manzamine alkaloids from an Acanthostrongylophora sp. sponge. J. Nat. Prod., 2017, 80(5), 1575-1583.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00121] [PMID: 28452477]
[5]
Wang, K-B.; Li, D-H.; Bao, Y.; Cao, F.; Wang, W-J.; Lin, C.; Bin, W.; Bai, J.; Pei, Y-H.; Jing, Y-K.; Yang, D.; Li, Z-L.; Hua, H-M. Structurally diverse alkaloids from the seeds of Peganum harmala. J. Nat. Prod., 2017, 80(2), 551-559.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01146] [PMID: 28128938]
[6]
Otto, R.; Penzis, R.; Gaube, F.; Winckler, T.; Appenroth, D.; Fleck, C.; Tränkle, C.; Lehmann, J.; Enzensperger, C. Beta and gamma carboline derivatives as potential anti-Alzheimer agents: A comparison. Eur. J. Med. Chem., 2014, 87, 63-70.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.048] [PMID: 25240096]
[7]
Dai, J-K.; Dan, W-J.; Li, N.; Du, H-T.; Zhang, J-W.; Wang, J-R. Synthesis, in vitro antibacterial activities of a series of 3-N-substituted canthin-6-ones. Bioorg. Med. Chem. Lett., 2016, 26(2), 580-583.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.070] [PMID: 26681509]
[8]
Liu, Y.; Song, H.; Huang, Y.; Li, J.; Zhao, S.; Song, Y.; Yang, P.; Xiao, Z.; Liu, Y.; Li, Y.; Shang, H.; Wang, Q. Design, synthesis, and antiviral, fungicidal, and insecticidal activities of tetrahydro-β-carboline-3-carbohydrazide derivatives. J. Agric. Food Chem., 2014, 62(41), 9987-9999.
[http://dx.doi.org/10.1021/jf503794g] [PMID: 25280351]
[9]
Ashok, P.; Chander, S.; Balzarini, J.; Pannecouque, C.; Murugesan, S. Design, synthesis of new β-carboline derivatives and their selective anti-HIV-2 activity. Bioorg. Med. Chem. Lett., 2015, 25(6), 1232-1235.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.058] [PMID: 25682562]
[10]
Tang, S.; Wang, J.; Xiong, Z.; Xie, Z.; Li, D.; Huang, J.; Zhu, Q. Palladium-catalyzed imidoylative cyclization of tryptophan-derived isocyanides: Access to β-carbolines. Org. Lett., 2017, 19(20), 5577-5580.
[http://dx.doi.org/10.1021/acs.orglett.7b02725] [PMID: 28981293]
[11]
Kumar, S.; Singh, A.; Kumar, K.; Kumar, V. Recent insights into synthetic β-carbolines with anti-cancer activities. Eur. J. Med. Chem., 2017, 142, 48-73.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.059] [PMID: 28583770]
[12]
Nagao, T.; Adachi, K.; Nishida, F.; Nishishima, M.; Mochida, K. The new ultraviolet ray absorbing material and its manufacturing method JP 11269175 A2, 1999.
[13]
Mayser, P.; Schäfer, U.; Krämer, H.J.; Irlinger, B.; Steglich, W. Pityriacitrin -- an ultraviolet-absorbing indole alkaloid from the yeast Malassezia furfur. Arch. Dermatol. Res., 2002, 294(3), 131-134.
[http://dx.doi.org/10.1007/s00403-002-0294-2] [PMID: 12029500]
[14]
Irlinger, B.; Bartsch, A.; Krämer, H-J.; Mayser, P.; Steglich, W. New tryptophan metabolites from cultures of the lipophilic yeast Malassezia furfur. Helv. Chim. Acta, 2005, 8, 1472-1485.
[http://dx.doi.org/10.1002/hlca.200590118]
[15]
Machowinski, A.; Krämer, H-J.; Hort, W.; Mayser, P. Pityriacitrin--a potent UV filter produced by Malassezia furfur and its effect on human skin microflora. Mycoses, 2006, 49(5), 388-392.
[http://dx.doi.org/10.1111/j.1439-0507.2006.01265.x] [PMID: 16922790]
[16]
Gambichler, T.; Krämer, H-J.; Boms, S.; Skrygan, M.; Tomi, N.S.; Altmeyer, P.; Mayser, P. Quantification of ultraviolet protective effects of pityriacitrin in humans. Arch. Dermatol. Res., 2007, 299(10), 517-520.
[http://dx.doi.org/10.1007/s00403-007-0793-2] [PMID: 17960404]
[17]
Gaitanis, G.; Magiatis, P.; Stathopoulou, K.; Bassukas, I.D.; Alexopoulos, E.C.; Velegraki, A.; Skaltsounis, A-L. AhR ligands, malassezin, and indolo[3,2-b]carbazole are selectively produced by Malassezia furfur strains isolated from seborrheic dermatitis. J. Invest. Dermatol., 2008, 128(7), 1620-1625.
[http://dx.doi.org/10.1038/sj.jid.5701252] [PMID: 18219281]
[18]
Magiatis, P.; Pappas, P.; Gaitanis, G.; Mexia, N.; Melliou, E.; Galanou, M.; Vlachos, C.; Stathopoulou, K.; Skaltsounis, A.L.; Marselos, M.; Velegraki, A.; Denison, M.S.; Bassukas, I.D. Malassezia yeasts produce a collection of exceptionally potent activators of the Ah (dioxin) receptor detected in diseased human skin. J. Invest. Dermatol., 2013, 133(8), 2023-2030.
[http://dx.doi.org/10.1038/jid.2013.92] [PMID: 23448877]
[19]
Mexia, N.; Gaitanis, G.; Velegraki, A.; Soshilov, A.; Denison, M.S.; Magiatis, P. Pityriazepin and other potent AhR ligands isolated from Malassezia furfur yeast. Arch. Biochem. Biophys., 2015, 571, 16-20.
[http://dx.doi.org/10.1016/j.abb.2015.02.023] [PMID: 25721496]
[20]
Gaitanis, G.; Magiatis, P.; Hantschke, M.; Bassukas, I.D.; Velegraki, A. The Malassezia genus in skin and systemic diseases. Clin. Microbiol. Rev., 2012, 25(1), 106-141.
[http://dx.doi.org/10.1128/CMR.00021-11] [PMID: 22232373]
[21]
Magiatis, P.; Melliou, E.; Mexia, N.; Denison, M.; Bassukas, I.; Gaitanis, G. Isolation of malassezia metabolites with powerful AHR activity from human skin. is there implication in skin cancer development? Planta Med., 2012, 78, 1071.
[http://dx.doi.org/10.1055/s-0032-1320351]
[22]
Gaitanis, G.; Magiatis, P.; Mexia, N.; Melliou, E.; Efstratiou, M.A.; Bassukas, I.D.; Velegraki, A. Antifungal activity of selected Malassezia indolic compounds detected in culture. Mycoses, 2019, 62(7), 597-603.
[http://dx.doi.org/10.1111/myc.12893] [PMID: 30636018]
[23]
Kindler, B.L.J.; Krämer, H-J.; Nies, S.; Gradicsky, P.; Haase, G.; Mayser, P.; Spiteller, M.; Spiteller, P. Generation of indole alkaloids in the human-pathogenic fungus Exophiala dermatitidis. Eur. J. Org. Chem., 2010, 2084-2090.
[http://dx.doi.org/10.1002/ejoc.200901311]
[24]
Chen, Y.X.; Xu, M.Y.; Li, H.J.; Zeng, K.J.; Ma, W.Z.; Tian, G.B.; Xu, J.; Yang, D.P.; Lan, W.J. Diverse secondary metabolites from the marine-derived fungus Dichotomomyces cejpii F31-1. Mar. Drugs, 2017, 15(11), 339.
[http://dx.doi.org/10.3390/md15110339] [PMID: 29104243]
[25]
Salmoun, M.; Devijver, C.; Daloze, D.; Braekman, J-C.; van Soest, R.W.M. 5-hydroxytryptamine-derived alkaloids from two marine sponges of the genus Hyrtios. J. Nat. Prod., 2002, 65(8), 1173-1176.
[http://dx.doi.org/10.1021/np020009+] [PMID: 12193025]
[26]
Li, S.F.; Zhang, Y.; Li, Y.; Li, X.R.; Kong, L.M.; Tan, C.J.; Li, S.L.; Di, Y.T.; He, H.P.; Hao, X.J. β-Carboline alkaloids from the leaves of Trigonostemon lii Y.T. Chang. Bioorg. Med. Chem. Lett., 2012, 22(6), 2296-2299.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.106] [PMID: 22342628]
[27]
Tan, C.; Zhang, Y.; Kong, N.; Di, Y.; Hao, X. Further alkaloids from the leaves of Trigonostemon lii. Helv. Chim. Acta, 2015, 98, 72-77.
[http://dx.doi.org/10.1002/hlca.201400129]
[28]
Zuther, K.; Mayser, P.; Hettwer, U.; Wu, W.; Spiteller, P.; Kindler, B.L.J.; Karlovsky, P.; Basse, C.W.; Schirawski, J. The tryptophan aminotransferase Tam1 catalyses the single biosynthetic step for tryptophan-dependent pigment synthesis in Ustilago maydis. Mol. Microbiol., 2008, 68(1), 152-172.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06144.x] [PMID: 18312268]
[29]
Sun, X. Synthesis and anti-tumor activity of the marine alkaloid pityriacitrin and its derivatives, emodin glycoside analogues., Master Dissertation of Ocean University of China (Supervised by Prof. T. Jiang, Qingdao, China), 2008.
[30]
Zhang, P.; Sun, X.; Xu, B.; Bijian, K.; Wan, S.; Li, G.; Alaoui-Jamali, M.; Jiang, T. Total synthesis and bioactivity of the marine alkaloid pityriacitrin and some of its derivatives. Eur. J. Med. Chem., 2011, 46(12), 6089-6097.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.036] [PMID: 22047643]
[31]
Liew, L.P.P.; Fleming, J.M.; Longeon, A.; Mouray, E.; Florent, I.; Bourguet-Kondracki, M-L.; Copp, B.R. Synthesis of 1-indolyl substituted β-carboline natural products and discovery of antimalarial and cytotoxic activities. Tetrahedron, 2014, 70, 4910-4920.
[http://dx.doi.org/10.1016/j.tet.2014.05.068]
[32]
Manda, S.; Sharma, S.; Wani, A.; Joshi, P.; Kumar, V.; Guru, S.K.; Bharate, S.S.; Bhushan, S.; Vishwakarma, R.A.; Kumar, A.; Bharate, S.B. Discovery of a marine-derived bis-indole alkaloid fascaplysin, as a new class of potent P-glycoprotein inducer and establishment of its structure-activity relationship. Eur. J. Med. Chem., 2016, 107, 1-11.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.049] [PMID: 26560048]
[33]
Bharate, S. B.; Kumar, A.; Manda, S.; Joshi, P.; Bharate, S. S.; Vishwakarma, R. A. N-Substituted beta-carbolinium compounds as potent P-glycoprotein inducers WO 201663303 A1,. 2016.
[34]
Xu, T.; Shi, L.; Zhang, Y.; Wang, K.; Yang, Z.; Ke, S. Synthesis and biological evaluation of marine alkaloid-oriented β-carboline analogues. Eur. J. Med. Chem., 2019, 168, 293-300.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.060] [PMID: 30826506]
[35]
Torisawa, Y.; Hashimoto, A.; Nakagawa, M.; Seki, H.; Hara, R.; Hino, T. A total synthesis of manzamine C and its geometrical isomer. Tetrahedron, 1991, 47, 8067-8078.
[http://dx.doi.org/10.1016/S0040-4020(01)91003-8]
[36]
Condie, G.C.; Bergman, J. Reactivity of β-carbolines and cyclopenta[b]indolones prepared from the intramolecular cyclization of 5(4H)-oxazolones derived from L-tryptophan. Eur. J. Org. Chem., 2004, 2004, 1286-1297.
[http://dx.doi.org/10.1002/ejoc.200300673]
[37]
Domínguez, G.; Pérez-Castells, J. Chemistry of β-carbolines as synthetic intermediates. Eur. J. Org. Chem., 2011, 2011, 7243-7253.
[http://dx.doi.org/10.1002/ejoc.201100931]
[38]
Zhu, Y.P.; Liu, M.C.; Cai, Q.; Jia, F.C.; Wu, A.X. A cascade coupling strategy for one-pot total synthesis of β-carboline and isoquinoline-containing natural products and derivatives. Chemistry, 2013, 19(31), 10132-10137.
[http://dx.doi.org/10.1002/chem.201301734] [PMID: 23788489]
[39]
Pulka, K. Pictet-Spengler reactions for the synthesis of pharmaceutically relevant heterocycles. Curr. Opin. Drug Discov. Devel., 2010, 13(6), 669-684.
[PMID: 21061230]
[40]
Jin, H. Study on the synthesis and antitumor activity of marine β-carboline alkaloids., Master Dissertation of Ocean University of China (Supervised by Prof. T. Jiang, Qingdao, China). 2013.
[41]
Zhang, P.; Wan, S.; Ren, S.; Jiang, T. First total synthesis of marine alkaloid hyrtiosulawesine. Chin. Chem. Lett., 2010, 21, 1307-1309.
[http://dx.doi.org/10.1016/j.cclet.2010.05.012]
[42]
Xu, G.; Zheng, L.; Dang, Q.; Bai, X. Total synthesis of 4-azaeudistomin Y1 and analogues by inverse-electron¬ demand Diels–Alder reactions of 3-aminoindoles with 1,3,5-triazines. Synthesis, 2013, 45, 743-752.
[http://dx.doi.org/10.1055/s-0032-1316857]
[43]
Battini, N.; Padala, A.K.; Mupparapu, N.; Vishwakarma, R.A.; Ahmed, Q.N. Unexplored reactivity of 2-oxoaldehydes towards Pictet–Spengler conditions: Concise approach to β-carboline based marine natural products. RSC Advances, 2014, 4, 26258-26263.
[http://dx.doi.org/10.1039/c4ra01387e]
[44]
Zu, L.; He, X. The preparation method for 1-carbonyl-β-carbolines compounds CN 201610804154.5,. 2016.
[45]
Szabó, T.; Hazai, V.; Volk, B.; Simig, G.; Milen, M. First total synthesis of the β-carboline alkaloids trigonostemine A, trigonostemine B and a new synthesis of pityriacitrin and hyrtiosulawesine. Tetrahedron Lett., 2019, 60, 1471-1475.
[http://dx.doi.org/10.1016/j.tetlet.2019.04.044]
[46]
Yang, M.L.; Kuo, P.C.; Damu, A.G.; Chang, R.J.; Chiou, W.F.; Wu, T.S. A versatile route to the synthesis of 1-substituted β-carbolines by a single step Pictet-Spengler cyclization. Tetrahedron, 2006, 62, 10900-10906.
[http://dx.doi.org/10.1016/j.tet.2006.08.081]
[47]
Kulkarni, A.; Abid, M.; Török, B.; Huang, X. A direct synthesis of β-carbolines via a three-step one-pot domino approach with a bifunctional Pd/C/K-10 catalyst. Tetrahedron Lett., 2009, 50, 1791-1794.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.143]
[48]
Dighe, S.U.; Samanta, S.K.; Kolle, S.; Batra, S. Iodine-mediated oxidative Pictet-Spengler reaction using terminal alkyne as the 2-oxoaldehyde surrogate for the synthesis of 1-aroyl-β-carbolines and fused-nitrogen heterocycles. Tetrahedron, 2017, 73, 2455-2467.
[http://dx.doi.org/10.1016/j.tet.2017.03.031]
[49]
Reddy, P.O.V.; Malik, B.; Kumar, D. Sequential one-pot synthesis of β-carboline analogs: an efficient strategy to prepare pityriacitrin and alangiobussinie natural products. Indian J. Heterocycl. Chem., 2018, 28, 133-142.
[50]
Kolle, S.; Batra, S. Pd(OAc)2-catalysed regioselective alkoxylation of aryl (β-carbolin-1-yl)methanones via β-carboline directed ortho-C(sp(2))-H activation of an aryl ring. Org. Biomol. Chem., 2015, 13(41), 10376-10385.
[http://dx.doi.org/10.1039/C5OB01500F] [PMID: 26324764]
[51]
Kollea, S.; Batra, S. β-Carboline-directed decarboxylative acylation of ortho-C(sp2)-H of the aryl ring of aryl(β-carbolin-1-yl)methanones with α-ketoacids under palladium catalysis. RSC Advances, 2016, 6, 50658-50665.
[http://dx.doi.org/10.1039/C6RA11811A]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy