Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Nanotheranostics for Cancer Therapy and Detection: State of the Art

Author(s): Shivani Rai Paliwal, Rameshroo Kenwat, Sabyasachi Maiti and Rishi Paliwal*

Volume 26 , Issue 42 , 2020

Page: [5503 - 5517] Pages: 15

DOI: 10.2174/1381612826666201116120422

Price: $65

Abstract

Nanotheranostics, an approach of combining both diagnosis and therapy, is one of the latest advances in cancer therapy particularly. Nanocarriers designed and derived from inorganic materials such as like gold nanoparticles, silica nanoparticles, magnetic nanoparticles and carbon nanotubes have been explored for tremendous applications in this area. Similarly, nanoparticles composed of some organic material alone or in combination with inorganic nano-cargos have been developed pre-clinically and possess excellent features desired. Photothermal therapy, MRI, simultaneous imaging and delivery, and combination chemotherapy with a diagnosis are a few of the known methods exploring cancer therapy and detection at organ/tissue/molecular/sub-cellular level. This review comprises an overview of the recent reports meant for nano theranostics purposes. Targeted cancer nanotheranostics have been included for understating tumor micro-environment or cell-specific targeting approach employed. A brief account of various strategies is also included for the readers highlighting the mechanism of cancer therapy.

Keywords: Nanotheranostics, nanoparticles, cancer, imaging, therapy, carbon nanotubes.

[1]
Sawyers C. Targeted cancer therapy. Nature 2004; 432(7015): 294-7.
[http://dx.doi.org/10.1038/nature03095] [PMID: 15549090]
[2]
Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 2007; 9(2): E128-47.
[http://dx.doi.org/10.1208/aapsj0902015] [PMID: 17614355]
[3]
Tekchandani P, Kurmi BD, Paliwal SR. Nanomedicine to deal with cancer cell biology in multi-drug resistance. Mini Rev Med Chem 2017; 17(18): 1793-810.
[http://dx.doi.org/10.2174/1389557516666160219123222] [PMID: 26891930]
[4]
Paliwal SR, Tekchandani P, Kurmi BD, Paliwal R. Designing nanocargos for multi-drug resistant cancerous cells: strategies and applications NanoBioEngineering. CRC Press 2018; pp. 67-91.
[http://dx.doi.org/10.1201/9781351138901-4]
[5]
Fukumori Y, Ichikawa H. Nanoparticles for cancer therapy and diagnosis. Adv Powder Technol 2006; 17: 1-28.
[http://dx.doi.org/10.1163/156855206775123494]
[6]
Paliwal R, Paliwal SR, Vyas SP. Editorial: Nanotherapeutics for Cancer Imaging and Therapy. Mini Rev Med Chem 2017; 17(18): 1686-7.
[http://dx.doi.org/10.2174/138955751718171107142220] [PMID: 29182896]
[7]
Qian Y, Yuan WE, Cheng Y, Yang Y, Qu X, Fan C. Concentrically integrative bioassembly of a three-dimensional black phosphorus nanoscaffold for restoring neurogenesis, angiogenesis, and immune homeostasis. Nano Lett 2019; 19(12): 8990-9001.
[http://dx.doi.org/10.1021/acs.nanolett.9b03980] [PMID: 31790262]
[8]
Qian Y, Song J, Zhao X, et al. 3D fabrication with integration molding of a graphene oxide/polycaprolactone nanoscaffold for neurite regeneration and angiogenesis. Adv Sci (Weinh) 2018; 5(4)1700499
[http://dx.doi.org/10.1002/advs.201700499] [PMID: 29721407]
[9]
Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004; 56(11): 1649-59.
[http://dx.doi.org/10.1016/j.addr.2004.02.014] [PMID: 15350294]
[10]
Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today 2010; 15(19-20): 842-50.
[http://dx.doi.org/10.1016/j.drudis.2010.08.006] [PMID: 20727417]
[11]
Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat 2020; 30(3): 179-94.
[http://dx.doi.org/10.1080/13543776.2020.1720649] [PMID: 32003260]
[12]
Vasir JK, Labhasetwar V. Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 2005; 4(4): 363-74.
[http://dx.doi.org/10.1177/153303460500400405] [PMID: 16029056]
[13]
Paliwal SR, Paliwal R, Agrawal GP, Vyas SP. Hyaluronic acid modified pH-sensitive liposomes for targeted intracellular delivery of doxorubicin. J Liposome Res 2016; 26(4): 276-87.
[http://dx.doi.org/10.3109/08982104.2015.1117489] [PMID: 26784587]
[14]
Emerich DF, Thanos CG. Nanotechnology and medicine. Expert Opin Biol Ther 2003; 3(4): 655-63.
[http://dx.doi.org/10.1517/14712598.3.4.655] [PMID: 12831370]
[15]
Vasir JK, Reddy MK, Labhasetwar VD. Nanosystems in drug targeting: opportunities and challenges. Curr Nanosci 2005; 1: 47-64.
[http://dx.doi.org/10.2174/1573413052953110]
[16]
Paliwal SR, Paliwal R, Vyas SP. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv 2015; 22(3): 231-42.
[http://dx.doi.org/10.3109/10717544.2014.882469] [PMID: 24524308]
[17]
Moussaron A, Youssef Z, Ben-Mihoub A, Vanderesse R, Frochot C, Acherar S. Dual imaging and photodynamic therapy anticancer theranostic nanoparticles Photonanotechnology for Therapeutics and Imaging. Elsevier 2020; pp. 105-46.
[http://dx.doi.org/10.1016/B978-0-12-817840-9.00005-9]
[18]
Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 2010; 62(11): 1052-63.
[http://dx.doi.org/10.1016/j.addr.2010.08.004] [PMID: 20709124]
[19]
Paliwal SR, Paliwal R, Vyas SP. Ligand-appended liposomes: targeted breast cancer therapy Encyclopedia of biomedical polymers and polymeric biomaterials, 11 Volume Set. CRC Press 2015; pp. 4316-27.
[http://dx.doi.org/10.1081/E-EBPP-120049265]
[20]
Ma X, Zhao Y, Liang XJ. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res 2011; 44(10): 1114-22.
[http://dx.doi.org/10.1021/ar2000056] [PMID: 21732606]
[21]
Dreaden EC, Austin LA, Mackey MA, El-Sayed MA. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv 2012; 3(4): 457-78.
[http://dx.doi.org/10.4155/tde.12.21] [PMID: 22834077]
[22]
Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 2013; 4(1): 81-9.
[http://dx.doi.org/10.7150/thno.7193] [PMID: 24396516]
[23]
Baptista PV. Could gold nanoprobes be an important tool in cancer diagnostics? Expert Rev Mol Diagn 2012; 12(6): 541-3.
[http://dx.doi.org/10.1586/erm.12.50] [PMID: 22845471]
[24]
Shah M, Badwaik VD, Dakshinamurthy R. Biological applications of gold nanoparticles. J Nanosci Nanotechnol 2014; 14(1): 344-62.
[http://dx.doi.org/10.1166/jnn.2014.8900] [PMID: 24730267]
[25]
Li HJ, Du JZ, Du XJ, et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc Natl Acad Sci USA 2016; 113(15): 4164-9.
[http://dx.doi.org/10.1073/pnas.1522080113] [PMID: 27035960]
[26]
Zhang Q, Yang M, Zhu Y, Mao C. Metallic nanoclusters for cancer imaging and therapy. Curr Med Chem 2018; 25(12): 1379-96.
[http://dx.doi.org/10.2174/0929867324666170331122757] [PMID: 28393695]
[27]
Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 2010; 62(11): 1064-79.
[http://dx.doi.org/10.1016/j.addr.2010.07.009] [PMID: 20691229]
[28]
Melancon M, Lu W, Li C. Gold-based magneto/optical nanostructures: challenges for in vivo applications in cancer diagnostics and therapy. Mater Res Bull 2009; 34(6): 415-21.
[http://dx.doi.org/10.1557/mrs2009.117] [PMID: 20582234]
[29]
Das R, Naskar MK. Cauliflower-like hierarchical silicalite-1 supported AuNPs toward improved catalytic reduction of p-nitrophenol. New J Chem 2018; 42: 6621-5.
[http://dx.doi.org/10.1039/C8NJ00506K]
[30]
Fu N, Hu Y, Shi S, et al. Au nanoparticles on two-dimensional MoS2 nanosheets as a photoanode for efficient photoelectrochemical miRNA detection. Analyst (Lond) 2018; 143(7): 1705-12.
[http://dx.doi.org/10.1039/C8AN00105G] [PMID: 29517787]
[31]
Gerber A, Bundschuh M, Klingelhofer D, Groneberg DA. Gold nanoparticles: recent aspects for human toxicology. J Occup Med Toxicol 2013; 8(1): 32.
[http://dx.doi.org/10.1186/1745-6673-8-32] [PMID: 24330512]
[32]
Zhao J, Wallace M, Melancon MP. Cancer theranostics with gold nanoshells. Nanomedicine (Lond) 2014; 9(13): 2041-57.
[http://dx.doi.org/10.2217/nnm.14.136] [PMID: 25343352]
[33]
Ke H, Wang J, Tong S, et al. Gold nanoshelled liquid perfluorocarbon magnetic nanocapsules: a nanotheranostic platform for bimodal ultrasound/magnetic resonance imaging guided photothermal tumor ablation. Theranostics 2013; 4(1): 12-23.
[http://dx.doi.org/10.7150/thno.7275] [PMID: 24396512]
[34]
Huang P, Rong P, Lin J, et al. Triphase interface synthesis of plasmonic gold bellflowers as near-infrared light mediated acoustic and thermal theranostics. J Am Chem Soc 2014; 136(23): 8307-13.
[http://dx.doi.org/10.1021/ja503115n] [PMID: 24842342]
[35]
Shi P, Liu Z, Dong K, et al. A smart “sense-act-treat” system: combining a ratiometric pH sensor with a near infrared therapeutic gold nanocage. Adv Mater 2014; 26(38): 6635-41.
[http://dx.doi.org/10.1002/adma.201402522] [PMID: 25124557]
[36]
Qi L, Gao X. Emerging application of quantum dots for drug delivery and therapy. Expert Opin Drug Deliv 2008; 5(3): 263-7.
[http://dx.doi.org/10.1517/17425247.5.3.263] [PMID: 18318649]
[37]
Samokhvalov P, Artemyev M, Nabiev I. Basic principles and current trends in colloidal synthesis of highly luminescent semiconductor nanocrystals. Chemistry 2013; 19(5): 1534-46.
[http://dx.doi.org/10.1002/chem.201202860] [PMID: 23307399]
[38]
Wu X, Tian F, Zhao JX, Wu M. Evaluating pharmacokinetics and toxicity of luminescent quantum dots. Expert Opin Drug Metab Toxicol 2013; 9(10): 1265-77.
[http://dx.doi.org/10.1517/17425255.2013.807797] [PMID: 24033281]
[39]
Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 2004; 4(1): 11-8.
[http://dx.doi.org/10.1021/nl0347334] [PMID: 28890669]
[40]
Kalangi SK, Sathyavathi R, Rao DN, Pallu R. Bioimagingof 5 fluorouracil conjugated to CdTe quantum dots in MCF-7 breast cancer cells. J Bionanosci 2012; 6: 17-22.
[http://dx.doi.org/10.1166/jbns.2012.1069]
[41]
Yang X, Zhang W, Zhao Z, et al. Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J Inorg Biochem 2017; 167: 36-48.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.11.023] [PMID: 27898345]
[42]
Johari-Ahar M, Barar J, Alizadeh AM, Davaran S, Omidi Y, Rashidi MR. Methotrexate-conjugated quantum dots: synthesis, characterisation and cytotoxicity in drug resistant cancer cells. J Drug Target 2016; 24(2): 120-33.
[http://dx.doi.org/10.3109/1061186X.2015.1058801] [PMID: 26176269]
[43]
Cai X, Luo Y, Zhang W, Du D, Lin Y. pH-Sensitive ZnO quantum dot-oxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl Mater Interfaces 2016; 8(34): 22442-50.
[http://dx.doi.org/10.1021/acsami.6b04933] [PMID: 27463610]
[44]
Sonali, Singh RP, Singh N, et al. Muthu MS. Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics. Drug Deliv 2016; 23: 1261-71.
[http://dx.doi.org/10.3109/10717544.2016.1162878]
[45]
Chen H, Li B, Zhang M, et al. Characterization of tumor-targeting Ag2S quantum dots for cancer imaging and therapy in vivo. Nanoscale 2014; 6(21): 12580-90.
[http://dx.doi.org/10.1039/C4NR03613A] [PMID: 25184523]
[46]
Olerile LD, Liu Y, Zhang B, et al. Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surf B Biointerfaces 2017; 150: 121-30.
[http://dx.doi.org/10.1016/j.colsurfb.2016.11.032] [PMID: 27907859]
[47]
Zhao T, Liu X, Li Y, et al. Fluorescence and drug loading properties of ZnSe:Mn/ZnS-Paclitaxel/SiO2 nanocapsules templated by F127 micelles. J Colloid Interface Sci 2017; 490: 436-43.
[http://dx.doi.org/10.1016/j.jcis.2016.11.079] [PMID: 27914343]
[48]
Wu W, Aiello M, Zhou T, Berliner A, Banerjee P, Zhou S. In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials 2010; 31(11): 3023-31.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.011] [PMID: 20106519]
[49]
Han H, Valdepérez D, Jin Q, et al. Dual enzymatic reaction-assisted gemcitabine delivery systems for programmed pancreatic cancer therapy. ACS Nano 2017; 11(2): 1281-91.
[http://dx.doi.org/10.1021/acsnano.6b05541] [PMID: 28071891]
[50]
Zayed DG, Ebrahim SM, Helmy MW, et al. Combining hydrophilic chemotherapy and hydrophobic phytotherapy via tumor-targeted albumin-QDs nano-hybrids: covalent coupling and phospholipid complexation approaches. J Nanobiotechnology 2019; 17(1): 7.
[http://dx.doi.org/10.1186/s12951-019-0445-7] [PMID: 30660179]
[51]
Muthu MS, Kulkarni SA, Raju A, Feng SS. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials 2012; 33(12): 3494-501.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.036] [PMID: 22306020]
[52]
Vyas SP, Sihorkar V. Endogenous carriers and ligands in non-immunogenic site-specific drug delivery. Adv Drug Deliv Rev 2000; 43(2-3): 101-64.
[http://dx.doi.org/10.1016/S0169-409X(00)00067-3] [PMID: 10967224]
[53]
Hersam MC. Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol 2008; 3(7): 387-94.
[http://dx.doi.org/10.1038/nnano.2008.135] [PMID: 18654561]
[54]
Hedman D, Reza Barzegar H, Rosén A, Wågberg T, Andreas Larsson J. On the stability and abundance of single walled carbon nanotubes. Sci Rep 2015; 5: 16850.
[http://dx.doi.org/10.1038/srep16850] [PMID: 26581125]
[55]
de Faria PC, dos Santos LI, Coelho JP, et al. Oxidized multiwalled carbon nanotubes as antigen delivery system to promote superior CD8(+) T cell response and protection against cancer. Nano Lett 2014; 14(9): 5458-70.
[http://dx.doi.org/10.1021/nl502911a] [PMID: 25115645]
[56]
Robinson JT, Hong G, Liang Y, Zhang B, Yaghi OK, Dai H. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J Am Chem Soc 2012; 134(25): 10664-9.
[http://dx.doi.org/10.1021/ja303737a] [PMID: 22667448]
[57]
Liu J, Wang C, Wang X, et al. Mesoporous silica coated single‐walled carbon nanotubes as a multifunctional light‐responsive platform for cancer combination therapy. Adv Funct Mater 2015; 25: 384-92.
[http://dx.doi.org/10.1002/adfm.201403079]
[58]
Bhise K, Sau S, Alsaab H, Kashaw SK, Tekade RK, Iyer AK. Nanomedicine for cancer diagnosis and therapy: advancement, success and structure-activity relationship. Ther Deliv 2017; 8(11): 1003-18.
[http://dx.doi.org/10.4155/tde-2017-0062] [PMID: 29061101]
[59]
Wang S, Lin Q, Chen J, Gao H, Fu D, Shen S. Biocompatible polydopamine-encapsulated gadolinium-loaded carbon nanotubes for MRI and color mapping guided photothermal dissection of tumor metastasis. Carbon 2017; 112: 53-62.
[http://dx.doi.org/10.1016/j.carbon.2016.10.096]
[60]
Zhang M, Wang W, Wu F, Yuan P, Chi C, Zhou N. Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon 2017; 123: 70-83.
[http://dx.doi.org/10.1016/j.carbon.2017.07.032]
[61]
Carvalho SM, Leonel AG, Mansur AAP, Carvalho IC, Krambrock K, Mansur HS. Bifunctional magnetopolymersomes of iron oxide nanoparticles and carboxymethylcellulose conjugated with doxorubicin for hyperthermo-chemotherapy of brain cancer cells. Biomater Sci 2019; 7(5): 2102-22.
[http://dx.doi.org/10.1039/C8BM01528G] [PMID: 30869664]
[62]
Chen W, Wang X, Zhao B, et al. CuS-MnS2 nano-flowers for magnetic resonance imaging guided photothermal/photodynamic therapy of ovarian cancer through necroptosis. Nanoscale 2019; 11(27): 12983-9.
[http://dx.doi.org/10.1039/C9NR03114F] [PMID: 31264665]
[63]
Han Y, Ouyang J, Li Y, Wang F, Jiang JH. Engineering H2O2 self-supplying nanotheranostic platform for targeted and imaging-guided chemodynamic therapy. ACS Appl Mater Interfaces 2020; 12(1): 288-97.
[http://dx.doi.org/10.1021/acsami.9b18676] [PMID: 31834761]
[64]
Guo Y, Ran Y, Wang Z, et al. Magnetic-responsive and targeted cancer nanotheranostics by PA/MR bimodal imaging-guided photothermally triggered immunotherapy. Biomaterials 2019; 219119370
[http://dx.doi.org/10.1016/j.biomaterials.2019.119370] [PMID: 31357006]
[65]
Hu H, Yang Q, Baroni S, Yang H, Aime S, Steinmetz NF. Polydopamine-decorated tobacco mosaic virus for photoacoustic/magnetic resonance bimodal imaging and photothermal cancer therapy. Nanoscale 2019; 11(19): 9760-8.
[http://dx.doi.org/10.1039/C9NR02065A] [PMID: 31066418]
[66]
Shan X, Chen Q, Yin X, et al. Polypyrrole-based double rare earth hybrid nanoparticles for multimodal imaging and photothermal therapy. J Mater Chem B Mater Biol Med 2020; 8(3): 426-37.
[http://dx.doi.org/10.1039/C9TB02254F] [PMID: 31833528]
[67]
Syu WJ, Huang CC, Hsiao JK, et al. Co-precipitation synthesis of near-infrared iron oxide nanocrystals on magnetically targeted imaging and photothermal cancer therapy via photoablative protein denature. Nanotheranostics 2019; 3(3): 236-54.
[http://dx.doi.org/10.7150/ntno.24124] [PMID: 31263656]
[68]
Sun X, Zhang G, Du R, et al. A biodegradable MnSiO3@Fe3O4 nanoplatform for dual-mode magnetic resonance imaging guided combinatorial cancer therapy. Biomaterials 2019; 194: 151-60.
[http://dx.doi.org/10.1016/j.biomaterials.2018.12.004] [PMID: 30594744]
[69]
Yang HY, Jang MS, Li Y, et al. Hierarchical tumor acidity-responsive self-assembled magnetic nanotheranostics for bimodal bioimaging and photodynamic therapy. J Control Release 2019; 301: 157-65.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.019] [PMID: 30905667]
[70]
Wu C, Guan X, Xu J, et al. Highly efficient cascading synergy of cancer photo-immunotherapy enabled by engineered graphene quantum dots/photosensitizer/CpG oligonucleotides hybrid nanotheranostics. Biomaterials 2019; 205: 106-19.
[http://dx.doi.org/10.1016/j.biomaterials.2019.03.020] [PMID: 30913486]
[71]
Wang S, You Q, Wang J, et al. MSOT/CT/MR imaging-guided and hypoxia-maneuvered oxygen self-supply radiotherapy based on one-pot MnO2-mSiO2@Au nanoparticles. Nanoscale 2019; 11(13): 6270-84.
[http://dx.doi.org/10.1039/C9NR00918C] [PMID: 30882830]
[72]
Hu X, Tang Y, Hu Y, et al. Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/NIR-II fluorescence imaging-guided cancer photothermal therapy. Theranostics 2019; 9(14): 4168-81.
[http://dx.doi.org/10.7150/thno.34390] [PMID: 31281539]
[73]
Fu LH, Hu YR, Qi C, et al. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano 2019; 13(12): 13985-94.
[http://dx.doi.org/10.1021/acsnano.9b05836] [PMID: 31833366]
[74]
Feng T, Zhou L, Wang Z, et al. Dual-stimuli responsive nanotheranostics for mild hyperthermia enhanced inhibition of Wnt/β-catenin signaling. Biomaterials 2020; 232119709
[http://dx.doi.org/10.1016/j.biomaterials.2019.119709] [PMID: 31896513]
[75]
Dong L, Li K, Wen D, et al. A highly active (102) surface-induced rapid degradation of a CuS nanotheranostic platform for in situ T1-weighted magnetic resonance imaging-guided synergistic therapy. Nanoscale 2019; 11(27): 12853-7.
[http://dx.doi.org/10.1039/C9NR03830B] [PMID: 31265050]
[76]
Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech 2014; 15(6): 1527-34.
[http://dx.doi.org/10.1208/s12249-014-0177-9] [PMID: 25047256]
[77]
Fan W, Bu W, Zhang Z, et al. X-ray radiation controlled NO Release for on demand depth-independent hypoxic adiosensitization. In: Angee Chem Int Ed. 2015; 54: pp. 14026-30.
[78]
Chen H, Sun X, Wang GD, et al. LiGa5O8: Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors. Mater Horiz 2017; 4(6): 1092-101.
[http://dx.doi.org/10.1039/C7MH00442G] [PMID: 31528350]
[79]
Qian Y, Qiu M, Wu Q, et al. Enhanced cytotoxic activity of cetuximab in EGFR-positive lung cancer by conjugating with gold nanoparticles. Sci Rep 2014; 4: 7490.
[http://dx.doi.org/10.1038/srep07490] [PMID: 25502402]
[80]
Lee J, Lee YM, Kim J, Kim WJ. Doxorubicin/Ce6-loaded nanoparticle coated with polymer via singlet oxygen-sensitive linker for photodynamically assisted chemotherapy. Nanotheranostics 2017; 1(2): 196-207.
[http://dx.doi.org/10.7150/ntno.18576] [PMID: 29071188]
[81]
Gao H, Liu X, Tang W, et al. 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery. Nanoscale 2016; 8(47): 19573-80.
[http://dx.doi.org/10.1039/C6NR07062K] [PMID: 27874119]
[82]
Lin SL, Chen ZR, Chang CA. Nd3+ sensitized core-shell-shell nanocomposites loaded with IR806 dye for photothermal therapy and up-conversion luminescence imaging by a single wavelength NIR light irradiation. Nanotheranostics 2018; 2(3): 243-57.
[http://dx.doi.org/10.7150/ntno.25901] [PMID: 29868349]
[83]
Ren S, Yang J, Ma L, et al. Ternary-responsive drug delivery with activatable dual mode contrast-enhanced in vivo imaging. ACS Appl Mater Interfaces 2018; 10(38): 31947-58.
[http://dx.doi.org/10.1021/acsami.8b10564] [PMID: 30179443]
[84]
Xu J, Han W, Cheng Z, et al. Bioresponsive and near infrared photon co-enhanced cancer theranostic based on upconversion nanocapsules. Chem Sci (Camb) 2018; 9(12): 3233-47.
[http://dx.doi.org/10.1039/C7SC05414A] [PMID: 29844897]
[85]
Yang G, Gong H, Liu T, Sun X, Cheng L, Liu Z. Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials 2015; 60: 62-71.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.053] [PMID: 25985153]
[86]
Wang J, Xu M, Wang K, Chen Z. Stable mesoporous silica nanoparticles incorporated with MoS2 and AIE for targeted fluorescence imaging and photothermal therapy of cancer cells. Colloids Surf B Biointerfaces 2019; 174: 324-32.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.030] [PMID: 30472618]
[87]
Yang J, Dai D, Lou X, Ma L, Wang B, Yang YW. Supramolecular nanomaterials based on hollow mesoporous drug carriers and macrocycle-capped CuS nanogates for synergistic chemo-photothermal therapy. Theranostics 2020; 10(2): 615-29.
[http://dx.doi.org/10.7150/thno.40066] [PMID: 31903141]
[88]
Lin L, Liang X, Xu Y, Yang Y, Li X, Dai Z. Doxorubicin and indocyanine green loaded hybrid bicelles for fluorescence imaging guided synergetic chemo/photothermal therapy. Bioconjug Chem 2017; 28(9): 2410-9.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00407] [PMID: 28810733]
[89]
Vyas SP, Rai S, Paliwal R, et al. Solid lipid nanoparticles (SLNs) as a rising tool in drug delivery science: one step up in nanotechnology. Curr Nanosci 2008; 4: 30-44.
[http://dx.doi.org/10.2174/157341308783591816]
[90]
Paliwal R, Rai S, Vaidya B, et al. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine (Lond) 2009; 5(2): 184-91.
[http://dx.doi.org/10.1016/j.nano.2008.08.003] [PMID: 19095502]
[91]
Kim MW, Jeong HY, Kang SJ, et al. Anti-EGF receptor aptamer-guided co-delivery of anti-cancer siRNAs and quantum dots for theranostics of triple-negative breast cancer. Theranostics 2019; 9(3): 837-52.
[http://dx.doi.org/10.7150/thno.30228] [PMID: 30809312]
[92]
Paliwal SR, Paliwal R, Agrawal GP, Vyas SP. Liposomal nanomedicine for breast cancer therapy. Nanomedicine (Lond) 2011; 6(6): 1085-100.
[http://dx.doi.org/10.2217/nnm.11.72] [PMID: 21955078]
[93]
Paliwal SR, Paliwal R, Pal HC, et al. Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy. Mol Pharm 2012; 9(1): 176-86.
[http://dx.doi.org/10.1021/mp200439z] [PMID: 22091702]
[94]
Wang L, Habib AA, Mintz A, Li KC, Zhao D. Phosphatidylserine-targeted nanotheranostics for brain tumor imaging and therapeutic potential. Mol Imaging 2017; 161536012117708722
[http://dx.doi.org/10.1177/1536012117708722] [PMID: 28654387]
[95]
Muthu MS, Kulkarni SA, Xiong J, Feng SS. Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells. Int J Pharm 2011; 421(2): 332-40.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.045] [PMID: 22001537]
[96]
Choi KY, Liu G, Lee S, Chen X. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 2012; 4(2): 330-42.
[http://dx.doi.org/10.1039/C1NR11277E] [PMID: 22134683]
[97]
Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 2011; 44(10): 1094-104.
[http://dx.doi.org/10.1021/ar200105p] [PMID: 21812415]
[98]
Yang C, Ding N, Xu Y, et al. Folate receptor-targeted quantum dot liposomes as fluorescence probes. J Drug Target 2009; 17(7): 502-11.
[http://dx.doi.org/10.1080/10611860903013248] [PMID: 19489689]
[99]
Wen CJ, Zhang LW, Al-Suwayeh SA, Yen TC, Fang JY. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int J Nanomedicine 2012; 7: 1599-611.
[PMID: 22619515]
[100]
Grange C, Geninatti-Crich S, Esposito G, et al. Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi’s sarcoma. Cancer Res 2010; 70(6): 2180-90.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2821] [PMID: 20215497]
[101]
Al-Jamal WT, Al-Jamal KT, Tian B. Lipid-quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano 2008; 2: 408-18.
[http://dx.doi.org/10.1021/nn700176a]
[102]
Lajunen T, Kontturi LS, Viitala L, et al. Indocyanine green-loaded liposomes for light-triggered drug release. Mol Pharm 2016; 13(6): 2095-107.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00207] [PMID: 27097108]
[103]
Paliwal R, Rai S, Vaidya B, et al. Cell-selective mitochondrial targeting: progress in mitochondrial medicine. Curr Drug Deliv 2007; 4(3): 211-24.
[http://dx.doi.org/10.2174/156720107781023910] [PMID: 17627495]
[104]
Paliwal SR, Paliwal R, Mishra N, Mehta A, Vyas SP. A novel cancer targeting approach based on estrone anchored stealth liposome for site-specific breast cancer therapy. Curr Cancer Drug Targets 2010; 10(3): 343-53.
[http://dx.doi.org/10.2174/156800910791190210] [PMID: 20370682]
[105]
Rai S, Paliwal R, Vaidya B, et al. Estrogen(s) and analogs as a non-immunogenic endogenous ligand in targeted drug/DNA delivery. Curr Med Chem 2007; 14(19): 2095-109.
[http://dx.doi.org/10.2174/092986707781368432] [PMID: 17691950]
[106]
Rai S, Paliwal R, Vaidya B, et al. Targeted delivery of doxorubicin via estrone-appended liposomes. J Drug Target 2008; 16(6): 455-63.
[http://dx.doi.org/10.1080/10611860802088481] [PMID: 18604658]
[107]
Rawat A, Vaidya B, Khatri K, et al. Targeted intracellular delivery of therapeutics: an overview. Pharmazie 2007; 62(9): 643-58.
[PMID: 17944316]
[108]
Vaidya B, Paliwal R, Rai S, et al. Cell-selective mitochondrial targeting: A new approach for cancer therapy. Cancer Ther 2009; 7: 141-8.
[109]
Quadir MA, Radowski MR, Kratz F, Licha K, Hauff P, Haag R. Dendritic multishell architectures for drug and dye transport. J Control Release 2008; 132(3): 289-94.
[http://dx.doi.org/10.1016/j.jconrel.2008.06.016] [PMID: 18639596]
[110]
Lammers T, Subr V, Peschke P, et al. Image-guided and passively tumour-targeted polymeric nanomedicines for radiochemotherapy. Br J Cancer 2008; 99(6): 900-10.
[http://dx.doi.org/10.1038/sj.bjc.6604561] [PMID: 19238631]
[111]
Guthi JS, Yang SG, Huang G, et al. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol Pharm 2010; 7(1): 32-40.
[http://dx.doi.org/10.1021/mp9001393] [PMID: 19708690]
[112]
Zheng X-C, Ren W, Zhang S, et al. The theranostic efficiency of tumor-specific, pH-responsive, peptide-modified, liposome-containing paclitaxel and superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2018; 13: 1495-504.
[http://dx.doi.org/10.2147/IJN.S157082] [PMID: 29559778]
[113]
He Y, Zhang L, Zhu D, Song C. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy. Int J Nanomedicine 2014; 9: 4055-66.
[http://dx.doi.org/10.2147/IJN.S61880] [PMID: 25187709]
[114]
Dai W, Yang F, Ma L, et al. Combined mTOR inhibitor rapamycin and doxorubicin-loaded cyclic octapeptide modified liposomes for targeting integrin α3 in triple-negative breast cancer. Biomaterials 2014; 35(20): 5347-58.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.036] [PMID: 24726747]
[115]
Balzeau J, Pinier M, Berges R, Saulnier P, Benoit J-P, Eyer J. The effect of functionalizing lipid nanocapsules with NFL-TBS.40-63 peptide on their uptake by glioblastoma cells. Biomaterials 2013; 34(13): 3381-9.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.068] [PMID: 23391494]
[116]
Saesoo S, Sathornsumetee S, Anekwiang P, et al. Characterization of liposome-containing SPIONs conjugated with anti-CD20 developed as a novel theranostic agent for central nervous system lymphoma. Colloids Surf B Biointerfaces 2018; 161: 497-507.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.003] [PMID: 29128836]
[117]
Munster P, Krop IE, LoRusso P, et al. Safety and pharmacokinetics of MM-302, a HER2-targeted antibody-liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer: a phase 1 dose-escalation study. Br J Cancer 2018; 119(9): 1086-93.
[http://dx.doi.org/10.1038/s41416-018-0235-2] [PMID: 30361524]
[118]
Ni D, Zhang J, Bu W, et al. Dual-targeting upconversion nanoprobes across the blood-brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma. ACS Nano 2014; 8(2): 1231-42.
[http://dx.doi.org/10.1021/nn406197c] [PMID: 24397730]
[119]
Santra S, Kaittanis C, Perez JM, Cytochrome C. Cytochrome C encapsulating theranostic nanoparticles: a novel bifunctional system for targeted delivery of therapeutic membrane-impermeable proteins to tumors and imaging of cancer therapy. Mol Pharm 2010; 7(4): 1209-22.
[http://dx.doi.org/10.1021/mp100043h] [PMID: 20536259]
[120]
Kalli KR, Oberg AL, Keeney GL, et al. Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecol Oncol 2008; 108(3): 619-26.
[http://dx.doi.org/10.1016/j.ygyno.2007.11.020] [PMID: 18222534]
[121]
Hu XL, Wang R, Yue J, Liu S, Xie ZG, Jing XB. Targeting and anti-tumor effect of folic acid-labeled polymer-doxorubicin conjugates with ph-sensitive hydrazone linker. J Mater Chem 2012; 22: 13303-10.
[http://dx.doi.org/10.1039/c2jm31130e]
[122]
Li D, Zhang Y, Yang P, et al. An optical sensing strategy leading to in situ monitoring of the degradation of mesoporous magnetic supraparticles in cells. ACS Appl Mater Interfaces 2013; 5(23): 12329-39.
[http://dx.doi.org/10.1021/am4043596] [PMID: 24274577]
[123]
Li D, Zhang YT, Yu M, Guo J, Chaudhary D, Wang CC. Cancer therapy and fluorescence imaging using the active release of doxorubicin from MSPs/Ni-LDH folate targeting nanoparticles. Biomaterials 2013; 34(32): 7913-22.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.046] [PMID: 23886730]
[124]
Zhou F, Feng B, Yu H, et al. Cisplatin prodrug-conjugated gold nanocluster for fluorescence imaging and targeted therapy of the breast cancer. Theranostics 2016; 6(5): 679-87.
[http://dx.doi.org/10.7150/thno.14556] [PMID: 27022415]
[125]
Choi CH, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci USA 2010; 107(3): 1235-40.
[http://dx.doi.org/10.1073/pnas.0914140107] [PMID: 20080552]
[126]
Zhan C, Gu B, Xie C, Li J, Liu Y, Lu W. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J Control Release 2010; 143(1): 136-42.
[http://dx.doi.org/10.1016/j.jconrel.2009.12.020] [PMID: 20056123]
[127]
Muthu MS, Kutty RV, Luo Z, Xie J, Feng SS. Theranostic vitamin E TPGS micelles of transferrin conjugation for targeted co-delivery of docetaxel and ultra bright gold nanoclusters. Biomaterials 2015; 39: 234-48.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.008] [PMID: 25468374]
[128]
Dixit S, Novak T, Miller K, Zhu Y, Kenney ME, Broome AM. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale 2015; 7(5): 1782-90.
[http://dx.doi.org/10.1039/C4NR04853A] [PMID: 25519743]
[129]
Mitra A, Nan A, Papadimitriou JC, Ghandehari H, Line BR. Polymer-peptide conjugates for angiogenesis targeted tumor radiotherapy. Nucl Med Biol 2006; 33(1): 43-52.
[http://dx.doi.org/10.1016/j.nucmedbio.2005.09.005] [PMID: 16459258]
[130]
Chen H, Zhang X, Dai S, et al. Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics 2013; 3(9): 633-49.
[http://dx.doi.org/10.7150/thno.6630] [PMID: 24019851]
[131]
Ruan S, He Q, Gao H. Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma. Nanoscale 2015; 7(21): 9487-96.
[http://dx.doi.org/10.1039/C5NR01408E] [PMID: 25909483]
[132]
Chen D, Li B, Cai S, et al. Dual targeting luminescent gold nanoclusters for tumor imaging and deep tissue therapy. Biomaterials 2016; 100: 1-16.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.017] [PMID: 27236844]
[133]
Yang J, Lee CH, Ko HJ, et al. Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed Engl 2007; 46(46): 8836-9.
[http://dx.doi.org/10.1002/anie.200703554] [PMID: 17943947]
[134]
Ahmed M, Pan DW, Davis ME. Lack of in vivo antibody dependent cellular cytotoxicity with antibody containing gold nanoparticles. Bioconjug Chem 2015; 26(5): 812-6.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00139] [PMID: 25879583]
[135]
Van de Broek B, Devoogdt N, D’Hollander A, et al. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 2011; 5(6): 4319-28.
[http://dx.doi.org/10.1021/nn1023363] [PMID: 21609027]
[136]
Parhi P, Sahoo SK. Trastuzumab guided nanotheranostics: A lipid based multifunctional nanoformulation for targeted drug delivery and imaging in breast cancer therapy. J Colloid Interface Sci 2015; 451: 198-211.
[http://dx.doi.org/10.1016/j.jcis.2015.03.049] [PMID: 25897856]
[137]
Song H, He R, Wang K, et al. Anti-HIF-1alpha antibody-conjugated pluronic triblock copolymers encapsulated with Paclitaxel for tumor targeting therapy. Biomaterials 2010; 31(8): 2302-12.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.067] [PMID: 20004970]
[138]
Melancon MP, Lu W, Zhong M, et al. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials 2011; 32(30): 7600-8.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.039] [PMID: 21745689]
[139]
Oni Y, Hao K, Dozie-Nwachukwu SD, et al. Gold nanoparticles for cancer detection and treatment: The role of adhesion. J Appl Phys 2014; 115084305
[http://dx.doi.org/10.1063/1.4863541]
[140]
Chanda N, Kattumuri V, Shukla R, et al. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc Natl Acad Sci USA 2010; 107(19): 8760-5.
[http://dx.doi.org/10.1073/pnas.1002143107] [PMID: 20410458]
[141]
Steinmetz NF, Ablack AL, Hickey JL, et al. Intravital imaging of human prostate cancer using viral nanoparticles targeted to gastrin-releasing Peptide receptors. Small 2011; 7(12): 1664-72.
[http://dx.doi.org/10.1002/smll.201000435] [PMID: 21520408]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy