Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Bioactive Isolates of Morus Species as Antibacterial Agents and their In Silico Profiling

Author(s): Aditya Shimoga Janakirama Rao, Venugopal Thegur Mudduraj Urs, Jayanna Nayakarahatty Devanna, Paramesha Mahadevappa and Ramesh Chapeyil Kumaran*

Volume 18, Issue 5, 2021

Published on: 04 November, 2020

Page: [445 - 453] Pages: 9

DOI: 10.2174/1570180817999201104120815

Price: $65

Abstract

Background: The genus Morus is one of the rich sources of phytomedicine and considered a beneficial natural source for drugs with potential antimicrobial effect under the traditional system of medicine.

Introduction: In the present study, three bioactive compounds isolated from the leaves of two species of genus Morus and their antibacterial effect against selective pathogens were assessed.

Methods: The inhibitory effects of the three molecules isolated were assessed for their minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) against selected pathogens. The in-silico studies provided the toxicity profile and the binding interactions with glucosamine- 6-phosphate synthase for all the isolates.

Results: Among the three compounds tested, cathafuran-B showed a prominent bacteriostatic and bactericidal effect, which is supported by the results of in-silico analysis suggesting that cathafuran- B could be a potential glucosamine-6-phosphate synthase inhibitor.

Conclusion: The biomolecule isolated from less explored Morus laevigata exhibiting higher antibacterial effect among the compounds tested warranted opening a new prospect in phytomedicinal research for exploring its pharmacological properties and lowering the utilization load present on highly explored Morus alba.

Keywords: Bacteriostatic, docking, natural products, CHARMm, glucosamine-6-phosphate synthase, Morus.

Graphical Abstract
[1]
Verdine, G.L. The combinatorial chemistry of nature. Nature, 1996, 384(6604)(Suppl.), 11-13.
[http://dx.doi.org/10.1038/384011a0] [PMID: 8895593]
[2]
Zhang, L.; Demain, A. L. Natural Products: Drug Discovery and Therapeutic Medicine. 2005.
[http://dx.doi.org/10.1007/978-1-59259-976-9]
[3]
David, B.; Wolfender, J-L.; Dias, D.A. The pharmaceutical industry and natural products: Historical status and new trends. Phytochem. Rev., 2014, 14(2), 299-315.
[http://dx.doi.org/10.1007/s11101-014-9367-z]
[4]
Iqbal, S.; Younas, U. Sirajuddin; Chan, K.W.; Sarfraz, R.A.; Uddin, K. Proximate composition and antioxidant potential of leaves from three varieties of Mulberry (Morus sp.): A comparative study. Int. J. Mol. Sci., 2012, 13(6), 6651-6664.
[http://dx.doi.org/10.3390/ijms13066651] [PMID: 22837655]
[5]
Katsube, T.; Imawaka, N.; Kawano, Y.; Yamazaki, Y.; Shiwaku, K.; Yamane, Y. Antioxidant flavonol glycosides in mulberry (Morus Alba L.) leaves isolated based on ldl antioxidant activity. Food Chem., 2006, 97(1), 25-31.
[http://dx.doi.org/10.1016/j.foodchem.2005.03.019]
[6]
Song, H.P.; Wang, H.; Liang, J.X.; Qian, C.; Wu, S.Q.; Xu, W.J.; Wu, B.; Liu, X.G.; Li, P.; Yang, H. Integration of multiple analytical and computational tools for the discovery of high-potency enzyme inhibitors from herbal medicines. ChemMedChem, 2016, 11(23), 2588-2597.
[http://dx.doi.org/10.1002/cmdc.201600489] [PMID: 27863030]
[7]
Bailey, D.; Brown, D. High-throughput chemistry and structure-based design: Survival of the smartest. Drug Discov. Today, 2001, 6(2), 57-59.
[http://dx.doi.org/10.1016/S1359-6446(00)01596-8] [PMID: 11166243]
[8]
Beutler, J.A. Natural products as a foundation for drug discovery. Curr. Protocols Pharmacol., 2009, 46(1), 9.11.1-9.11.21.
[http://dx.doi.org/10.1002/0471141755.ph0911s46]
[9]
Aouad, M.R.; Mayaba, M.M.; Naqvi, A.; Bardaweel, S.K.; Al-Blewi, F.F.; Messali, M.; Rezki, N. Design, synthesis, in silico and in vitro antimicrobial screenings of novel 1,2,4-triazoles carrying 1,2,3-triazole scaffold with lipophilic side chain tether. Chem. Cent. J., 2017, 11(1), 117.
[http://dx.doi.org/10.1186/s13065-017-0347-4] [PMID: 29159721]
[10]
Aditya Rao, S.J.; Jeevitha, B.; Smitha, R.; Ramesh, C.K.; Paramesha, M.; Jamuna, K.S. Wound healing activity from the leaf extracts of morus laevigata and in silico binding studies from Its isolates with Gsk 3-β. Int. J. Res. Dev. Pharm. Life Sci., 2015, 4(4), 1686-1696.
[11]
Aditya Rao, S.J.; Ramesh, C.K.; Kuppast, I.J.; Mahmood, R. CNS Depressant activity in two species of mulberry. J. Pharm. Res. Vol, 2012, 5(9), 4879-4880.
[12]
Aditya Rao, S.J.; Ramesh, C.K.; Padmashali, B.; Jamuna, K.S. Evaluation of anti-inflammatory and analgesic activity in three morus species. Res. J. Pharm. Biol. Chem. Sci., 2013, 4(3), 822.
[13]
Wen, P.; Hu, T.G.; Linhardt, R.J.; Liao, S.T.; Wu, H.; Zou, Y.X. Mulberry: A review of bioactive compounds and advanced processing technology. Trends Food Sci. Technol., 2019, 83, 138-158.
[http://dx.doi.org/10.1016/j.tifs.2018.11.017]
[14]
Kumar, V.R.; Chauhan, S. Mulberry: Life Enhancer. J. Med. Plants Res., 2008, 2(10), 271-278.
[15]
Hussain, F.; Rana, Z.; Shafique, H.; Malik, A.; Hussain, Z. Phytopharmacological potential of different species of Morus alba and their bioactive phytochemicals: A review. Asian Pac. J. Trop. Biomed., 2017, 7(10), 950-956.
[http://dx.doi.org/10.1016/j.apjtb.2017.09.015]
[16]
Chan, E.W-C.; Lye, P-Y.; Wong, S-K. Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin. J. Nat. Med., 2016, 14(1), 17-30.
[http://dx.doi.org/10.3724/SP.J.1009.2016.00017] [PMID: 26850343]
[17]
Butt, M.S.; Nazir, A.; Sultan, M.T.; Schroën, K. Morus Alba L. nature’s functional tonic. Trends Food Sci. Technol., 2008, 19(10), 505-512.
[http://dx.doi.org/10.1016/j.tifs.2008.06.002]
[18]
Jaiswal, S.G.; Patel, M.; Saxena, D.K.; Naik, S.N. Antioxidant Properties of Piper Betel (L.) leaf extracts from six different geographical domain of India. J. Bioresour. Eng. Technol., 2014, 2(2), 12-20.
[19]
Aditya Rao, S.J.; Ramesh, C.K.; Mahmood, R.; Prabhakar, B.T. Anthelmintic and Antimicrobial Activities in Some Species of Mulberry. Int. J. Pharm. Pharm. Sci., 2012, 4(5), 335-338.
[20]
Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 9th ed; , 2012, Vol. 32, .
[21]
Akinyemi, K.O.; Oladapo, O.; Okwara, C.E.; Ibe, C.C.; Fasure, K.A. Screening of crude extracts of six medicinal plants used in South-West Nigerian unorthodox medicine for anti-methicillin resistant Staphylococcus aureus activity. BMC Complement. Altern. Med., 2005, 5(1), 6.
[http://dx.doi.org/10.1186/1472-6882-5-6] [PMID: 15762997]
[22]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Drug delivery. Adv. Drug Deliv. Rev., 1997, 23, 3-25.
[http://dx.doi.org/10.1016/S0169-409X(96)00423-1]
[23]
Oprea, T.I. Virtual screening in lead discovery: A viewpoint. Molecules, 2002, 7(1), 51-62.
[http://dx.doi.org/10.3390/70100051]
[24]
Santos, G.B.; Ganesan, A.; Emery, F.S. Oral administration of peptide-based drugs: Beyond lipinski’s rule. ChemMedChem, 2016, 11(20), 2245-2251.
[http://dx.doi.org/10.1002/cmdc.201600288] [PMID: 27596610]
[25]
Jarrahpour, A.; Motamedifar, M.; Zarei, M.; Youssoufi, M.H.; Mimouni, M.; Chohan, Z.H.; Ben Hadda, T. Petra, osiris, and molinspiration together as a guide in drug design: predictions and correlation structure/antibacterial activity relationships of new n-sulfonyl monocyclic β-lactams. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185(2), 491-497.
[http://dx.doi.org/10.1080/10426500902953953]
[26]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a] [PMID: 23092397]
[27]
Aditya Rao, S.J.; Ramesh, C.K.; Raghavendra, S.; Paramesha, M. Dehydroabietylamine, a diterpene from Carthamus tinctorious L. showing antibacterial and anthelmintic effects with computational evidence. Curr. Comput. Aided. Drug Des., 2019, 16(3), 231-237.
[http://dx.doi.org/10.2174/1573409915666190301142811]
[28]
Gasteiger, J.; Marsili, M. Iterative Partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron, 1980, 36(22), 3219-3228.
[http://dx.doi.org/10.1016/0040-4020(80)80168-2]
[29]
Paramesha, M.; Manivannan, S.; Aditya Rao, S. J.; Srikanth, K. S.; Neelwarne, B.; Shetty, N. P. Augmentation of pyrethrins content in callus of Chrysanthemum cinerariaefolium and establishing its insecticidal activity by molecular docking of navms sodium channel pore receptor. 3 Biotech., 2018, 8(8), 367.
[30]
Raghavendra, S.; Aditya Rao, S.J.; Kumar, V.; Ramesh, C.K. Multiple ligand simultaneous docking (MLSD): A novel approach to study the effect of inhibitors on substrate binding to PPO. Comput. Biol. Chem., 2015, 59(Pt A), 81-86.
[http://dx.doi.org/10.1016/j.compbiolchem.2015.09.008] [PMID: 26414950]
[31]
Sanner, M.F.; Olson, A.J.; Spehner, J.C. Reduced surface: An efficient way to compute molecular surfaces. Biopolymers, 1996, 38(3), 305-320.
[http://dx.doi.org/10.1002/(SICI)1097-0282(199603)38:3<305:AID-BIP4>3.0.CO;2-Y] [PMID: 8906967]
[32]
Ni, G.; Zhang, Q.J.; Zheng, Z.F.; Chen, R.Y.; Yu, D.Q. 2-arylbenzofuran derivatives from Morus cathayana. J. Nat. Prod., 2009, 72(5), 966-968.
[http://dx.doi.org/10.1021/np800789y] [PMID: 19338315]
[33]
Babalola, I.T.; Shode, F.O. Ubiquitous ursolic acid: A potential pentacyclic triterpene natural product. IC J. J. Pharmacogn. Phytochem., 2013, 8192(2), 2668735-5.
[34]
Yang, Y.; Yang, X.; Xu, B.; Zeng, G.; Tan, J.; He, X.; Hu, C.; Zhou, Y. Chemical constituents of Morus alba L. and their inhibitory effect on 3T3-L1 preadipocyte proliferation and differentiation. Fitoterapia, 2014, 98, 222-227.
[http://dx.doi.org/10.1016/j.fitote.2014.08.010] [PMID: 25128426]
[35]
Husain, A.; Ahmad, A.; Khan, S.A.; Asif, M.; Bhutani, R.; Al-Abbasi, F.A. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents. Saudi Pharm. J., 2016, 24(1), 104-114.
[http://dx.doi.org/10.1016/j.jsps.2015.02.008] [PMID: 26903774]
[36]
Rao, S.N.; Head, M.S.; Kulkarni, A.; LaLonde, J.M. Validation studies of the site-directed docking program LibDock. J. Chem. Inf. Model., 2007, 47(6), 2159-2171.
[http://dx.doi.org/10.1021/ci6004299] [PMID: 17985863]
[37]
Rustaiyan, A. A. F. and M. B. The third review on the constituents and biological activities of Iranian artemisia species. Eur. J. Pharm. Med. Res., 2016, 3(11), 20-30.
[38]
Kim, Y.J.; Sohn, M-J.; Kim, W-G. Chalcomoracin and moracin C, new inhibitors of Staphylococcus aureus enoyl-acyl carrier protein reductase from Morus alba. Biol. Pharm. Bull., 2012, 35(5), 791-795.
[http://dx.doi.org/10.1248/bpb.35.791] [PMID: 22687419]
[39]
Sohn, H.Y.; Son, K.H.; Kwon, C.S.; Kwon, G.S.; Kang, S.S. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine, 2004, 11(7-8), 666-672.
[http://dx.doi.org/10.1016/j.phymed.2003.09.005] [PMID: 15636183]
[40]
Grienke, U.; Richter, M.; Walther, E.; Hoffmann, A.; Kirchmair, J.; Makarov, V.; Nietzsche, S.; Schmidtke, M.; Rollinger, J.M. Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae. Sci. Rep., 2016, 6, 27156.
[http://dx.doi.org/10.1038/srep27156] [PMID: 27257160]
[41]
Pethakamsetty, L.; Ganapaty, S.; Mary Bharathi, K. Phytochemical and antimicrobial examination of the root extracts of Morus Indica. Int. J. Pharm. Sci. Rev. Res., 2013, 21(2), 75-80.
[42]
Ni, G.; Zhang, Q-J.; Wang, Y-H.; Chen, R-Y.; Zheng, Z-F.; Yu, D-Q. Chemical constituents of the stem bark of Morus cathayana. J. Asian Nat. Prod. Res., 2010, 12(6), 505-515.
[http://dx.doi.org/10.1080/10286020.2010.489817] [PMID: 20552491]
[43]
Kuete, V.; Fozing, D.C.; Kapche, W.F.G.D.; Mbaveng, A.T.; Kuiate, J.R.; Ngadjui, B.T.; Abegaz, B.M. Antimicrobial activity of the methanolic extract and compounds from Morus mesozygia stem bark. J. Ethnopharmacol., 2009, 124(3), 551-555.
[http://dx.doi.org/10.1016/j.jep.2009.05.004] [PMID: 19450674]
[44]
Bellik, Y.; Boukraâ, L.; Alzahrani, H.A.; Bakhotmah, B.A.; Abdellah, F.; Hammoudi, S.M.; Iguer-Ouada, M. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: An update. Molecules, 2012, 18(1), 322-353.
[http://dx.doi.org/10.3390/molecules18010322] [PMID: 23271469]
[45]
Fontanay, S.; Grare, M.; Mayer, J.; Finance, C.; Duval, R.E. Ursolic, oleanolic and betulinic acids: Antibacterial spectra and selectivity indexes. J. Ethnopharmacol., 2008, 120(2), 272-276.
[http://dx.doi.org/10.1016/j.jep.2008.09.001] [PMID: 18835348]
[46]
Nascimento, P.G.G.; Lemos, T.L.G.; Bizerra, A.M.C.; Arriaga, Â.M.C.; Ferreira, D. Antibacterial and antioxidant activities of ursolic Acid. Molecules, 2014, 19, 1317-1327.
[47]
Lee, C.; Chun, J.; Hwang, S.W.; Kang, S.J. Im, J.P.; Kim, J.S. Enalapril inhibits nuclear factor-κB signaling in intestinal epithelial cells and peritoneal macrophages and attenuates experimental colitis in mice. Life Sci., 2014, 95(1), 29-39.
[http://dx.doi.org/10.1016/j.lfs.2013.11.005] [PMID: 24239644]
[48]
Woźniak, Ł.; Skąpska, S.; Marszałek, K. Ursolic acid--a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules, 2015, 20(11), 20614-20641.
[http://dx.doi.org/10.3390/molecules201119721] [PMID: 26610440]
[49]
Milewski, S.; Chmara, H.; Borowski, E. Antibiotic tetaine--a selective inhibitor of chitin and mannoprotein biosynthesis in Candida albicans. Arch. Microbiol., 1986, 145(3), 234-240.
[http://dx.doi.org/10.1007/BF00443651] [PMID: 3532988]
[50]
Wojciechowski, M.; Milewski, S.; Mazerski, J.; Borowski, E. Glucosamine-6-phosphate synthase, a novel target for antifungal agents. Molecular modelling studies in drug design. Acta Biochim. Pol., 2005, 52(3), 647-653.
[http://dx.doi.org/10.18388/abp.2005_3425] [PMID: 16082410]
[51]
Chmara, H.; Borowski, E. Bacteriolytic effect of cessation of glucosamine supply, induced by specific inhibition of glucosamine-6-phosphate synthetase. Acta Microbiol. Pol., 1986, 35(1-2), 15-27.
[PMID: 2426923]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy