Generic placeholder image

Current Drug Delivery


ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

A Low-Cost Method to Prepare Biocompatible Filaments with Enhanced Physico-Mechanical Properties for FDM 3D Printing

Author(s): Deck Khong Tan, Niko Münzenrieder, Mohammed Maniruzzaman and Ali Nokhodchi*

Volume 18, Issue 6, 2021

Published on: 03 November, 2020

Page: [700 - 711] Pages: 12

DOI: 10.2174/1567201817999201103195456

Price: $65


Background: Fused Deposition Modelling (FDM) 3D printing has received much interest as a fabrication method in the medical and pharmaceutical industry due to its accessibility and cost-effectiveness. A low-cost method to produce biocompatible and biodegradable filaments can improve the usability of FDM 3D printing for biomedical applications.

Objectives: The feasibility of producing low-cost filaments suitable for FDM 3D printing via single screw and twin-screw hot melt extrusion was explored.

Methods: A single-screw extruder and a twin-screw extruder were used to produce biocompatible filaments composed of varying concentrations of polyethylene glycol (PEG) at 10%, 20%, 30% w/w and polylactic acid (PLA) 90%, 80% and 70% w/w, respectively. DSC, TGA and FTIR were employed to investigate the effect of PEG on the PLA filaments.

Results: The presence of PEG lowered the processing temperature of the formulation compositions via melt-extrusion, making it suitable for pharmaceutical applications. The use of PEG can lower the melting point of the PLA polymer to 170°C, hence lowering the printing temperature. PEG can also improve the plasticity of the filaments, as the rupture strain of twin-screw extruded filaments increased up to 10-fold as compared to the commercial filaments. Advanced application of FTIR analysis confirmed the compatibility and miscibility of PEG with PLA.

Conclusion: Twin-screw extrusion is more effective in producing a polymeric mixture of filaments as the mixing is more homogenous. The PEG/PLA filament is suitable to be used in 3D printing of medical or pharmaceutical applications such as medical implants, drug delivery systems, or personalised tablets.

Keywords: Biocompatible, biopolymers, filaments, FDM 3D printing, hot melt extrusion, polyethylene glycol (PEG).

Graphical Abstract
Murr, L.E. Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication. J. Mater. Sci. Technol., 2016, 32(10), 987-995.
Vialva, T. Kolmar korea and samyoung machinery develop 3d printed skin care cream. Available from:
Lin, K-W.; Hu, C-J.; Yang, W-W.; Chou, L-W.; Wei, S-H.; Chen, C-S.; Sun, P-C. Biomechanical evaluation and strength test of 3D-printed foot orthoses. Appl. Bionics Biomech, 2019, 2019, 4989534.
[] [PMID: 31885687]
Gosselin, C.; Duballet, R.; Roux, P.; Gaudillière, N.; Dirrenberger, J.; Morel, P. Large-scale 3D printing of ultra-high performance concrete - a new processing route for architects and builders. Mater. Des., 2016, 100, 102-109.
Ventola, C.L. Medical applications for 3D printing: current and projected uses. P&T, 2014, 39(10), 704-711.
[PMID: 25336867]
3D Printing Market by Offering (Printer, Material, Software, Service), Process (Binder Jetting, Direct Energy Deposition, Material Extrusion, Material Jetting, Powder Bed Fusion), Application, Vertical, Technology, and Geography - Global Forecast to 2024 Available from:
Roopavath, U.K.; Kalaskar, D.M. Introduction to 3D Printing in Medicine. In: 3D Printing in Medicine; Elsevier Ltd; , 2017; pp. 1-20.
Goyanes, A.; Wang, J.; Buanz, A.; Martínez-Pacheco, R.; Telford, R.; Gaisford, S.; Basit, A.W. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol. Pharm., 2015, 12(11), 4077-4084.
[] [PMID: 26473653]
Joung, Y-H. Development of implantable medical devices: from an engineering perspective. Int. Neurourol. J., 2013, 17(3), 98-106.
[] [PMID: 24143287]
McAlister, C.; Wood, J. The potential of 3D printing to reduce the environmental impacts of production. ECEEE 2014 Ind. Summer Study Proc., 2014, 213-221.
Wenyang, A.; Provinch, A.; Uppstu, P.; Kronlund, D.; Moritz, N. Three dimensional printing of Polylactic Acid ( PLA ) -wood polysaccharide composite.
Sungyeap Hong, C. L. An overview of the synthesis and synthetic mechanism of Poly (Lactic Acid). Mod. Chem. Appl., 2014, 2(04)
Obayemi, J.D.; Jusu, S.M.; Salifu, A.A.; Ghahremani, S.; Tadesse, M.; Uzonwanne, V.O.; Soboyejo, W.O. Degradable porous drug-loaded polymer scaffolds for localized cancer drug delivery and breast cell/tissue growth. Mater. Sci. Eng. C, 2020, 112, 110794.
[] [PMID: 32409024]
Ren, Y.; Shen, M.; Ding, Y.; Yuan, M.; Jiang, L.; Li, H.; Yuan, M. Study on preparation and controlled release in vitro of bergenin-amino polylactic acid polymer. Int. J. Biol. Macromol., 2020, 153, 650-660.
[] [PMID: 32092425]
Ge, H.; Lin, P.; Luo, T.; Yan, Z.; Xiao, J.; Miao, S.; Chen, J. Fabrication of Ligusticum chuanxiong polylactic acid microspheres: A promising way to enhance the hepatoprotective effect on bioactive ingredients. Food Chem., 2020, 317, 126377.
[] [PMID: 32113137]
Serra, T.; Mateos-Timoneda, M.A.; Planell, J.A.; Navarro, M. 3D printed PLA-based scaffolds: A versatile tool in regenerative medicine. Organogenesis, 2013, 9(4), 239-244.
[] [PMID: 23959206]
Poly(DL-Lactic Acid). Handbook of Pharmaceutical Excipients; Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. Pharmaceutical Press, 2009, pp. 515-517.
Savioli Lopes, M.; Jardini, A.L.; Maciel Filho, R. Poly (Lactic Acid) production for tissue engineering applications. Procedia Eng., 2012, 42(August), 1402-1413.
Lasprilla, A.J.R.; Martinez, G.A.R.; Lunelli, B.H.; Jardini, A.L.; Filho, R.M. Poly-lactic acid synthesis for application in biomedical devices - a review. Biotechnol. Adv., 2012, 30(1), 321-328.
[] [PMID: 21756992]
Ljungberg, N.; Wesslén, B. Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules, 2005, 6(3), 1789-1796.
[] [PMID: 15877406]
Pivsa-Art, W.; Fujii, K.; Nomura, K.; Aso, Y.; Ohara, H.; Yamane, H. The effect of Poly(Ethylene Glycol) as plasticizer in blends of Poly(Lactic Acid) and Poly(Butylene Succinate). J. Appl. Polym. Sci., 2016, 133(8), e0193520.
Chieng, B.W.; Ibrahim, N.A.; Yunus, W.M.Z.W.; Hussein, M.Z. Plasticized Poly(Lactic Acid) with low molecular weight Poly(Ethylene Glycol): mechanical, thermal, and morphology properties. J. Appl. Polym. Sci., 2013, 130(6), 4576-4580.
Ljungberg, N.; Wesslén, B. Tributyl citrate oligomers as plasticizers for Poly (Lactic Acid): Thermo-mechanical film properties and aging. Polymer (Guildf.), 2003, 44(25), 7679-7688.
Vieira, M.G.A.; Da Silva, M.A.; Dos Santos, L.O.; Beppu, M.M. Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J., 2011, 47(3), 254-263.
Maru, S.M.; de Matas, M.; Kelly, A.; Paradkar, A. Characterization of thermal and rheological properties of zidovudine, lamivudine and plasticizer blends with ethyl cellulose to assess their suitability for hot melt extrusion. Eur. J. Pharm. Sci., 2011, 44(4), 471-478.
[] [PMID: 21925600]
Li, L.; Guan, S.; Yang, L.; Qin, X.; Feng, W. Mechanical and adhesive properties of Ploy(Ethylene Glycerol) diacrylate based hydrogels plasticized with PEG and glycerol. Chem. Res. Chin. Univ., 2018, 34(2), 311-317.
Sciences, P. Particle Sciences. Hot Melt Extrusion Available from: 2011_3.pdf
Martin, C. Twin Screw Extrusion for Pharmaceutical Processes. In: Melt Extrusion: Materials, Technology and Drug Product Design; Repka, M.A.; Langley, N.; DiNunzio, J., Eds.; Springer New York: New York, NY, USA, 2013; Vol. 9, pp. 47-79.
Repka, M.A.; Majumdar, S.; Kumar Battu, S.; Srirangam, R.; Upadhye, S.B. Applications of hot-melt extrusion for drug delivery. Expert Opin. Drug Deliv., 2008, 5(12), 1357-1376.
[] [PMID: 19040397]
Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. Polyethylene Glycol. In: Handbook of Pharmaceutical Excipients; Pharmaceutical Press, England, 2009, pp. 517-522.
Yuniarto, K.; Purwanto, Y.A.; Purwanto, S.; Welt, B.A.; Purwadaria, H.K.; Sunarti, T.C. Infrared and raman studies on Polylactide Acid and Polyethylene Glycol-400 blend. AIP Conf. Proc., 2016, 2016, 1725.
National Center for Biotechnology Information. Available from:
PerkinElmer. Tg and Melting Point of a Series of Polyethylene Glycols Using the Material Pocket Available from:
Faucher, J.A.; Koleske, J.V.; Santee, E.R.; Stratta, J.J.; Wilson, C.W. Glass transitions of ethylene oxide polymers. J. Appl. Phys., 1966, 37(11), 3962-3964.
Catoni, S.E.M.; Trindade, K.N.; Gomes, C.A.T.; Schneider, A.L.S.; Pezzin, A.P.T.; Soldi, V. Influence of Poly(Ethylene Grycol) - (PEG) on the properties of influence of Poly(3-Hydroxybutyrate-CO-3-Hydroxyvalerate) - PHBV. Polímeros, 2013, 23(3), 320-325.
Bijarimi, M.; Ahmad, S.; Rasid, R.; Khushairi, M.A.; Zakir, M. Poly(Lactic Acid)/Poly(Ethylene Glycol) blends: mechanical, thermal and morphological properties. AIP Conf. Proc., 2016, 1727.
Zhang, J-F.; Sun, X. Poly(Lactic Acid)-Based Bioplastics. In: Biodegradable Polymers for Industrial Applications; Elsevier, 2005; Vol. 1, pp. 251-288.
Tsuji, H.; Tezuka, Y.; Saha, S.K.; Suzuki, M.; Itsuno, S. Spherulite growth of L-Lactide copolymers: effects of tacticity and comonomers. Polymer (Guildf.), 2005, 46(13), 4917-4927.
Lizundia, E.; Petisco, S.; Sarasua, J.R. Phase-structure and mechanical properties of isothermally melt-and cold-crystallized poly (L-lactide). J. Mech. Behav. Biomed. Mater., 2013, 17, 242-251.
[] [PMID: 23131793]
Septevani, A.A.; Bhakri, S. Plasticization of Poly(Lactic Acid) using different molecular weight of Poly(Ethylene Glycol). AIP Conf. Proc., 2017, 1904(November), 0230038.
Mohapatra, A.K.; Mohanty, S.; Nayak, S.K. Effect of PEG on PLA/PEG blend and its nanocomposites: A study of thermo-mechanical and morphological characterization. Polym. Compos., 2014, 35(2), 283-293.
Athanasoulia, I.G.; Tarantili, P.A. Preparation and characterization of Polyethylene Glycol/Poly(L-Lactic Acid). Blends. Pure Appl. Chem., 2017, 89(1), 141-152.
Xu, R.; Xie, J.; Lei, C. Influence of melt-draw ratio on the crystalline behaviour of a polylactic acid cast film with a chi structure. RSC Advances, 2017, 7(63), 39914-39921.
Schruben, D.L.; Gonzalez, P. Dispersity improvement in solvent casting particle/polymer composite. Polym. Eng. Sci., 2000, 40(1), 139-142.
Claisse, P.A. Strength of Materials. In: Civil Engineering Materials; Elsevier, 2016; pp. 9-22.
Singh, G.; Bhunia, H.; Rajor, A.; Jana, R.N.; Choudhary, V. Mechanical properties and morphology of polylactide, linear low-density polyethylene, and their blends. J. Appl. Polym. Sci., 2010, 118(1), 496-502.

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy