Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Injectable In-Situ Forming Depot of Doxycycline Hyclate/α-Cyclodextrin Complex Using PLGA for Periodontitis Treatment: Preparation, Characterization, and In-Vitro Evaluation

Author(s): Elham Khodaverdi, Farhad Eisvand, Mohammad Sina Nezami, Seyedeh Nesa Rezaeian Shiadeh, Hossein Kamali* and Farzin Hadizadeh*

Volume 18, Issue 6, 2021

Published on: 03 November, 2020

Page: [729 - 740] Pages: 12

DOI: 10.2174/1567201817999201103195104

Price: $65

Abstract

Background: Doxycycline (DOX) is used in treating a bacterial infection, especially for periodontitis treatment.

Objective: To reduce irritation of DOX for subgingival administration and increase the chemical stability and against enzymatic, the complex of α-cyclodextrin with DOX was prepared and loaded into injectable in situ forming implant based on PLGA.

Methods: FTIR, molecular docking studies, X-ray diffraction, and differential scanning calorimetry was performed to characterize the DOX/α-cyclodextrin complex. Finally, the in-vitro drug release and modeling, morphological properties, and cellular cytotoxic effects were also evaluated.

Results: The stability of DOX was improved with complex than pure DOX. The main advantage of the complex is the almost complete release (96.31 ± 2.56 %) of the drug within 14 days of the implant, whereas in the formulation containing the pure DOX and the physical mixture the DOX with α-cyclodextrin release is reached to 70.18 ± 3.61 % and 77.03 ± 3.56 %, respectively. This trend is due to elevate of DOX stability in the DOX/ α-cyclodextrin complex form within PLGA implant that confirmed by the results of stability.

Conclusion: Our results were indicative that the formulation containing DOX/α-cyclodextrin complex was biocompatible and sustained-release with minimum initial burst release.

Keywords: Doxycycline hyclate, α-cyclodextrin, complex, initial burst release, in-situ implant, molecular docking.

Graphical Abstract
[1]
Phaechamud, T.; Mahadlek, J.; Chuenbarn, T. In Situ forming gel comprising bleached shellac loaded with antimicrobial drugs for periodontitis treatment. Mater. Des., 2016, 89, 294-303.
[http://dx.doi.org/10.1016/j.matdes.2015.09.138]
[2]
Wormser, G.P. Doxycycline for Prevention of Spirochetal Infections-Status Report. Clin. Infect. Dis., 2020, 71(8), 2014-2017.
[http://dx.doi.org/10.1093/cid/ciaa240] [PMID: 32157268]
[3]
Christ, A.P.; Biscaino, P.T.; Lourenço, R.L.; de Souza, A.B.; Zimmermann, E.S.; Adams, A.I.H. Development of doxycycline hyclate suppositories and pharmacokinetic study in rabbits. Eur. J. Pharm. Sci., 2020, 142, 105141.
[http://dx.doi.org/10.1016/j.ejps.2019.105141] [PMID: 31706017]
[4]
Singh, G.; Nenavathu, B.P. Development of rGO encapsulated polymeric beads as drug delivery system for improved loading and controlled release of doxycycline drug. Drug Dev. Ind. Pharm., 2020, 46(3), 462-470.
[http://dx.doi.org/10.1080/03639045.2020.1724137] [PMID: 31999212]
[5]
Zhang, X.; Xiao, Y.; Huang, Z.; Chen, J.; Cui, Y.; Niu, B.; Huang, Y.; Pan, X.; Wu, C. Smart phase transformation system based on lyotropic liquid crystalline@hard capsules for sustained release of hydrophilic and hydrophobic drugs. Drug Deliv., 2020, 27(1), 449-459.
[http://dx.doi.org/10.1080/10717544.2020.1736210] [PMID: 32157918]
[6]
Liang, J.; Peng, X.; Zhou, X.; Zou, J.; Cheng, L. Emerging applications of drug delivery systems in oral infectious diseases prevention and treatment. Molecules, 2020, 25(3), 516.
[http://dx.doi.org/10.3390/molecules25030516] [PMID: 31991678]
[7]
Abdel Hady, M.; Sayed, O.M.; Akl, M.A. Brain uptake and accumulation of new levofloxacin-doxycycline combination through the use of solid lipid nanoparticles: Formulation; Optimization and in vivo evaluation. Colloids Surf. B Biointerfaces, 2020, 193, 111076.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111076] [PMID: 32408259]
[8]
Patlolla, V.G.R.; Holbrook, W.P.; Gizurarson, S.; Kristmundsdottir, P. Evaluation of in vitro mucoadhesiveness and texture profile analysis of doxycycline in situ hydrogels. Pharmazie, 2020, 75(1), 7-12.
[PMID: 32033626]
[9]
Yu, M.; Dong, A.; Chen, C.; Xu, S.; Cao, Y.; Liu, S.; Zhang, Q.; Qi, R. Thermosensitive hydrogel containing doxycycline exerts inhibitory effects on abdominal aortic aneurysm induced by pancreatic elastase in mice. Adv. Healthc. Mater., 2017, 6(22), 1700671.
[http://dx.doi.org/10.1002/adhm.201700671] [PMID: 28885781]
[10]
Roberge, C.; Cros, J-M.; Serindoux, J.; Cagnon, M-E.; Samuel, R.; Vrlinic, T.; Berto, P.; Rech, A.; Richard, J.; Lopez-Noriega, A. BEPO®: Bioresorbable diblock mPEG-PDLLA and triblock PDLLA-PEG-PDLLA based in situ forming depots with flexible drug delivery kinetics modulation. J. Control. Release, 2020, 319, 416-427.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.022] [PMID: 31931049]
[11]
Kuo, E.E. Dental implant positioning. Google Patents; , 2020.
[12]
Bode, C.; Kranz, H.; Siepmann, F.; Siepmann, J. In situ forming PLGA implants for intraocular dexamethasone delivery. Int. J. Pharm., 2018, 548(1), 337-348.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.013] [PMID: 29981408]
[13]
Sun, Y.; Jensen, H.; Petersen, N.J.; Larsen, S.W.; Østergaard, J. Concomitant monitoring of implant formation and drug release of in situ forming poly (lactide-co-glycolide acid) implants in a hydrogel matrix mimicking the subcutis using UV-vis imaging. J. Pharm. Biomed. Anal., 2018, 150, 95-106.
[http://dx.doi.org/10.1016/j.jpba.2017.11.065] [PMID: 29216591]
[14]
Elkasabgy, N.A.; Abdel-Salam, F.S.; Mahmoud, A.A.; Basalious, E.B.; Amer, M.S.; Mostafa, A.A.; Elkheshen, S.A. Long lasting in situ forming implant loaded with raloxifene HCl: An injectable delivery system for treatment of bone injuries. Int. J. Pharm., 2019, 571, 118703.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118703] [PMID: 31536761]
[15]
Rahimi, M.; Mobedi, H.; Behnamghader, A. In situ-forming PLGA implants loaded with leuprolide acetate/β-cyclodextrin complexes: Mathematical modelling and degradation. J. Microencapsul., 2016, 33(4), 355-364.
[http://dx.doi.org/10.1080/02652048.2016.1194905] [PMID: 27530523]
[16]
Sun, Y.; Jensen, H.; Petersen, N.J.; Larsen, S.W.; Østergaard, J. Phase separation of in situ forming poly (lactide-co-glycolide acid) implants investigated using a hydrogel-based subcutaneous tissue surrogate and UV-vis imaging. J. Pharm. Biomed. Anal., 2017, 145, 682-691.
[http://dx.doi.org/10.1016/j.jpba.2017.07.056] [PMID: 28803207]
[17]
Copeland, D. Optimization of an in situ forming implant system for long-acting Human Immunodeficiency Virus (HIV); Prevention, 2017.
[18]
Bode, C.; Kranz, H.; Kruszka, A.; Siepmann, F.; Siepmann, J. In situ forming PLGA implants: How additives affect swelling and drug release. J. Drug Deliv. Sci. Technol., 2019, 53, 101180.
[http://dx.doi.org/10.1016/j.jddst.2019.101180]
[19]
Phaechamud, T.; Lertsuphotvanit, N.; Praphanwittaya, P. Viscoelastic and thermal properties of doxycycline hyclate-loaded bleached shellac in situ-forming gel and–microparticle. J. Drug Deliv. Sci. Technol., 2018, 44, 448-456.
[http://dx.doi.org/10.1016/j.jddst.2018.01.021]
[20]
Phaechamud, T.; Thurein, S. M.; Chantadee, T. Role of clove oil in solvent exchange-induced doxycycline hyclate-loaded Eudragit RS in situ forming gel. Asian J. Pharm. Sci, 2018, 13(2), 131-142..
[21]
Lwin, W.W.; Puyathorn, N.; Senarat, S.; Mahadlek, J.; Phaechamud, T. Emerging role of polyethylene glycol on doxycycline hyclate-incorporated Eudragit RS in situ forming gel for periodontitis treatment. J. Pharm. Investig., 2020, 50(1), 81-94.
[http://dx.doi.org/10.1007/s40005-019-00430-6]
[22]
Phaechamud, T.; Setthajindalert, O. Cholesterol in situ forming gel loaded with doxycycline hyclate for intra-periodontal pocket delivery. Eur. J. Pharm. Sci., 2017, 99, 258-265.
[http://dx.doi.org/10.1016/j.ejps.2016.12.023] [PMID: 28027940]
[23]
Wang, X.; Ma, J.; Zhu, X.; Wang, F.; Zhou, L. Minocycline-loaded in situ hydrogel for periodontitis treatment. Curr. Drug Deliv., 2018, 15(5), 664-671.
[http://dx.doi.org/10.2174/1567201814666171120120421] [PMID: 29165071]
[24]
Li, Y.; Shi, X. In vitro and in vivo Evaluation of Lidocaine Hydrochloride-loaded Injectable Poly(Lactic-co-glycolic Acid) Implants. Curr. Drug Deliv., 2018, 15(10), 1411-1416.
[http://dx.doi.org/10.2174/1567201815666180912123137] [PMID: 30207229]
[25]
Ayoub, M.M.; Jasti, B.; Elantouny, N.G.; Elnahas, H.; Ghazy, F-e. Comparative study of PLGA in situ implant and nanoparticle formulations of entecavir; in vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol., 2020, 56, 101585.
[http://dx.doi.org/10.1016/j.jddst.2020.101585]
[26]
Graves, R.A.; Freeman, T.; Mandal, T.K. In vitro dissolution method for evaluation of buprenorphine in situ gel formulation: A technical note. AAPS PharmSciTech, 2007, 8(3), E62.
[http://dx.doi.org/10.1208/pt0803062] [PMID: 17915812]
[27]
Koocheki, S.; Madaeni, S.S.; Niroomandi, P. Development of an enhanced formulation for delivering sustained release of buprenorphine hydrochloride. Saudi Pharm. J., 2011, 19(4), 255-262.
[http://dx.doi.org/10.1016/j.jsps.2011.05.001] [PMID: 23960766]
[28]
Liu, H.; Venkatraman, S.S. Cosolvent effects on the drug release and depot swelling in injectable in situ depot-forming systems. J. Pharm. Sci., 2012, 101(5), 1783-1793.
[http://dx.doi.org/10.1002/jps.23065] [PMID: 22318766]
[29]
Yehia, S.A.; Halim, S.A.A.; Aziz, M.Y. Polymeric and non polymeric injectable in situ forming implant systems for sustained delivery of lornoxicam: In vitro and in vivo evaluation. Curr. Drug Deliv., 2018, 15(8), 1193-1203.
[http://dx.doi.org/10.2174/1567201815666180320101125] [PMID: 29557743]
[30]
Mashayekhi, R.; Mobedi, H.; Najafi, J.; Enayati, M. In-vitro/In-vivo comparison of leuprolide acetate release from an in situ forming plga system. Daru, 2013, 21(1), 57.
[http://dx.doi.org/10.1186/2008-2231-21-57] [PMID: 23856431]
[31]
Vargas-Estrada, D.; Gracia-Mora, J.; Sumano, H. Pharmacokinetic study of an injectable long-acting parenteral formulation of doxycycline hyclate in calves. Res. Vet. Sci., 2008, 84(3), 477-482.
[http://dx.doi.org/10.1016/j.rvsc.2007.07.003] [PMID: 17720208]
[32]
Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin drug carrier systems. Chem. Rev., 1998, 98(5), 2045-2076.
[http://dx.doi.org/10.1021/cr970025p] [PMID: 11848959]
[33]
Lahiani-Skiba, M.; Boulet, Y.; Youm, I.; Bounoure, F.; Vérité, P.; Arnaud, P.; Skiba, M. Interaction between hydrophilic drug and α- cyclodextrins: Physico-chemical aspects. J. Incl. Phenom. Macrocycl. Chem., 2007, 57(1-4), 211-217.
[http://dx.doi.org/10.1007/s10847-006-9194-y]
[34]
Brewster, M.E.; Loftsson, T. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev., 2007, 59(7), 645-666.
[http://dx.doi.org/10.1016/j.addr.2007.05.012] [PMID: 17601630]
[35]
Kawaguchi, Y.; Nishiyama, T.; Okada, M.; Kamachi, M.; Harada, A. Complex formation of poly (ε-caprolactone) with cyclodextrins. Macromolecules, 2000, 33(12), 4472-4477.
[http://dx.doi.org/10.1021/ma992103b]
[36]
Correia, I.; Bezzenine, N.; Ronzani, N.; Platzer, N.; Beloeil, J.C.; Doan, B.T. Study of inclusion complexes of acridine with β-and (2, 6-di-O-methyl)-β-cyclodextrin by use of solubility diagrams and NMR spectroscopy. J. Phys. Org. Chem., 2002, 15(9), 647-659.
[http://dx.doi.org/10.1002/poc.528]
[37]
Choi, H.S.; Ooya, T.; Sasaki, S.; Yui, N. Control of rapid phase transition induced by supramolecular complexation of β-cyclodextrin-conjugated poly (ε-lysine) with a specific guest. Macromolecules, 2003, 36(14), 5342-5347.
[http://dx.doi.org/10.1021/ma034259o]
[38]
Rahimi, M.; Mobedi, H.; Behnamghader, A. In Situ forming poly (lactic acid-co-glycolic acid) implants containing leuprolide acetate/β-cyclodextrin complexes: Preparation, characterization, and in vitro drug release. Int. J. Polym. Mater., 2016, 65(2), 75-84.
[http://dx.doi.org/10.1080/00914037.2015.1055633]
[39]
Hafezi Moghaddam, R.; Dadfarnia, S.; Shabani, A.M.H.; Amraei, R.; Hafezi Moghaddam, Z. Doxycycline drug delivery using hydrogels of O-carboxymethyl chitosan conjugated with caffeic acid and its composite with polyacrylamide synthesized by electron beam irradiation. Int. J. Biol. Macromol., 2020, 154, 962-973.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.165] [PMID: 32205109]
[40]
Fan, G.; Zhang, L.; Shen, Y.; Shu, G.; Yuan, Z.; Lin, J.; Zhang, W.; Peng, G.; Zhong, Z.; Yin, L. Comparative muscle irritation and pharmacokinetics of florfenicol-hydroxypropyl-β-cyclodextrin inclusion complex freeze-dried powder injection and florfenicol commercial injection in beagle dogs. Sci. Rep., 2019, 9(1), 1-9.
[http://dx.doi.org/10.1038/s41598-019-53304-0] [PMID: 30626917]
[41]
Weng, C-J.; Lee, D.; Ho, J.; Liu, S-J. Doxycycline-embedded nanofibrous membranes help promote healing of tendon rupture. Int. J. Nanomedicine, 2020, 15, 125-136.
[http://dx.doi.org/10.2147/IJN.S217697] [PMID: 32021169]
[42]
Siddiqui, A.; Anwar, H.; Ahmed, S.W.; Naqvi, S.; Shah, M.R.; Ahmed, A.; Ali, S.A. Synthesis and sensitive detection of doxycycline with sodium bis 2-ethylhexylsulfosuccinate based silver nanoparticle. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 225, 117489.
[http://dx.doi.org/10.1016/j.saa.2019.117489] [PMID: 31476646]
[43]
Entezari Heravi, R.; Hadizadeh, F.; Sankian, M.; Tavakol Afshari, J.; Taghdisi, S.M.; Jafarian, H.; Behravan, J. Novel selective Cox-2 inhibitors induce apoptosis in Caco-2 colorectal carcinoma cell line. Eur. J. Pharm. Sci., 2011, 44(4), 479-486.
[http://dx.doi.org/10.1016/j.ejps.2011.09.005] [PMID: 21939759]
[44]
Eskitoros-Togay, Ş.M.; Bulbul, Y.E.; Dilsiz, N. Controlled release of doxycycline within core/shell poly (ε-caprolactone)/poly (ethylene oxide) fibers via coaxial electrospinning. J. Appl. Polym. Sci., 2020, 137(42), 49273.
[http://dx.doi.org/10.1002/app.49273]
[45]
Parveen, S.; Arjmand, F.; Zhang, Q.; Ahmad, M.; Khan, A.; Toupet, L. Molecular docking, DFT and antimicrobial studies of Cu(II) complex as topoisomerase I inhibitor. J. Biomol. Struct. Dyn., 2020, 39(6), 2092-2105.
[http://dx.doi.org/10.1080/07391102.2020.1743365] [PMID: 32174234]
[46]
Dian Permana, A.; Mir, M.; Utomo, E.; Donnelly, R.F. WITHDRAWN: Bacterially sensitive nanoparticle-based dissolving microneedles of doxycycline for enhanced treatment of bacterial biofilm skin infection: A proof of concept study. Int. J. Pharm., 2020, 119220.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119220] [PMID: 32165225]
[47]
Alipanahpour Dil, E.; Ghaedi, M.; Asfaram, A.; Tayebi, L.; Mehrabi, F. A ferrofluidic hydrophobic deep eutectic solvent for the extraction of doxycycline from urine, blood plasma and milk samples prior to its determination by high-performance liquid chromatography-ultraviolet. J. Chromatogr. A, 2020, 1613, 460695.
[http://dx.doi.org/10.1016/j.chroma.2019.460695] [PMID: 31740033]
[48]
Abbas, R.; Hami, H.; Mahdi, N. Removal of doxycycline hyclate by adsorption onto cobalt oxide at three different temperatures: Isotherm, thermodynamic and error analysis. Int. J. Environ. Sci. Technol., 2019, 16(10), 5439-5446.
[http://dx.doi.org/10.1007/s13762-018-2079-y]
[49]
Gugleva, V.; Titeva, S.; Rangelov, S.; Momekova, D. Design and in vitro evaluation of doxycycline hyclate niosomes as a potential ocular delivery system. Int. J. Pharm., 2019, 567, 118431.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.022] [PMID: 31207279]
[50]
Bakhshi, R.; Vasheghani-Farahani, E.; Mobedi, H.; Jamshidi, A.; Khakpour, M. The effect of additives on naltrexone hydrochloride release and solvent removal rate from an injectable in situ forming PLGA implant. Polym. Adv. Technol., 2006, 17(5), 354-359.
[http://dx.doi.org/10.1002/pat.717]
[51]
Lizambard, M.; Menu, T.; Fossart, M.; Bassand, C.; Agossa, K.; Huck, O.; Neut, C.; Siepmann, F. In situ forming implants for the treatment of periodontal diseases: Simultaneous controlled release of an antiseptic and an anti-inflammatory drug. Int. J. Pharm., 2019, 572, 118833.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118833] [PMID: 31715363]
[52]
Kamali, H.; Khodaverdi, E.; Kaffash, E.; Saffari, A.S.; Shiadeh, S.N.R.; Nokhodchi, A.; Hadizadeh, F. Optimization and in vitro evaluation of injectable sustained-release of levothyroxine using PLGA-PEG-PLGA. J. Pharm. Innov., 2020, 1-11.
[http://dx.doi.org/10.1007/s12247-020-09480-y]
[53]
Kamali, H.; Khodaverdi, E.; Hadizadeh, F.; Mohajeri, S.A. In vitro, ex vivo, and in vivo evaluation of buprenorphine HCl release from an in situ forming gel of PLGA-PEG-PLGA using N-methyl-2-pyrrolidone as solvent. Mater. Sci. Eng. C, 2019, 96, 561-575.
[http://dx.doi.org/10.1016/j.msec.2018.11.058] [PMID: 30606566]
[54]
Sheshala, R.; Hong, G.C.; Yee, W.P.; Meka, V.S.; Thakur, R.R.S. In situ forming phase-inversion implants for sustained ocular delivery of triamcinolone acetonide. Drug Deliv. Transl. Res., 2019, 9(2), 534-542.
[http://dx.doi.org/10.1007/s13346-018-0491-y] [PMID: 29484530]
[55]
Shapourgan, M.; Mobedi, H.; Sheikh, N.; Behnamghader, A.; Mashak, A. Leuprolide acetate release study from γ-irradiated PLGA-based in situ forming system. Curr. Drug Deliv., 2017, 14(8), 1170-1177.
[http://dx.doi.org/10.2174/1567201814666170329104047] [PMID: 28530536]
[56]
Huang, Y.; Huang, Z.; Wu, M.; Liu, Y.; Ma, C.; Zhang, X.; Zhao, Z.; Bai, X.; Liu, H.; Wang, L.; Pan, X.; Wu, C. Modified-release oral pellets for duodenum delivery of doxycycline hyclate. Drug Dev. Res., 2019, 80(7), 958-969.
[http://dx.doi.org/10.1002/ddr.21575] [PMID: 31359488]
[57]
Eliaz, R.E.; Kost, J. Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins. J. Biomed. Mater. Res., 2000, 50(3), 388-396.
[http://dx.doi.org/10.1002/(SICI)1097-4636(20000605)50:3<388::AID-JBM13>3.0.CO;2-F] [PMID: 10737881]
[58]
Semnani, K.; Shams-Ghahfarokhi, M.; Afrashi, M.; Fakhrali, A.; Semnani, D. Antifungal activity of eugenol loaded electrospun PAN nanofiber mats against Candida albicans. Curr. Drug Deliv., 2018, 15(6), 860-866.
[http://dx.doi.org/10.2174/1567201815666180226120436] [PMID: 29484994]
[59]
Tayebi, M.; Bizari, D.; Hassanzade, Z. Investigation of mechanical properties and biocorrosion behavior of in situ and ex situ Mg composite for orthopedic implants. Mater. Sci. Eng. C, 2020, 113, 110974.
[http://dx.doi.org/10.1016/j.msec.2020.110974] [PMID: 32487391]
[60]
Abdel-Salam, F.S.; Elkheshen, S.A.; Mahmoud, A.A.; Basalious, E.B.; Amer, M.S.; Mostafa, A.A.; Elkasabgy, N.A. In situ forming chitosan implant-loaded with raloxifene hydrochloride and bioactive glass nanoparticles for treatment of bone injuries: Formulation and biological evaluation in animal model. Int. J. Pharm., 2020, 580, 119213.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119213] [PMID: 32165229]
[61]
Sahu, A.; Agrawal, R.K.; Pandey, R. Synthesis and systemic toxicity assessment of quinine-triazole scaffold with antiprotozoal potency. Bioorg. Chem., 2019, 88, 102939.
[http://dx.doi.org/10.1016/j.bioorg.2019.102939] [PMID: 31028993]
[62]
Houdkova, M.; Rondevaldova, J.; Doskocil, I.; Kokoska, L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia, 2017, 118, 56-62.
[http://dx.doi.org/10.1016/j.fitote.2017.02.008] [PMID: 28223069]
[63]
Mosafer, J.; Abnous, K.; Tafaghodi, M.; Jafarzadeh, H.; Ramezani, M. Preparation and characterization of uniform-sized PLGA nanospheres encapsulated with oleic acid-coated magnetic-Fe3O4 nanoparticles for simultaneous diagnostic and therapeutic applications. Colloids Surf. A Physicochem. Eng. Asp., 2017, 514, 146-154.
[http://dx.doi.org/10.1016/j.colsurfa.2016.11.056]
[64]
Rahimi, M.; Mobedi, H.; Behnamghader, A. Aqueous stability of leuprolide acetate: Effect of temperature, dissolved oxygen, pH and complexation with β-cyclodextrin. Pharm. Dev. Technol., 2016, 21(1), 108-115.
[http://dx.doi.org/10.3109/10837450.2014.971377] [PMID: 25331295]
[65]
Astaneh, R.; Erfan, M.; Moghimi, H.; Mobedi, H. Changes in morphology of in situ forming PLGA implant prepared by different polymer molecular weight and its effect on release behavior. J. Pharm. Sci., 2009, 98(1), 135-145.
[http://dx.doi.org/10.1002/jps.21415] [PMID: 18493999]
[66]
Rhee, J.H. Current and new approaches for mucosal vaccine delivery. In: Mucosal Vaccines; Elsevier, USA, 2020; pp. 325-356.
[http://dx.doi.org/10.1016/B978-0-12-811924-2.00019-5]
[67]
Khodaverdi, E.; Tafaghodi, M.; Ganji, F.; Abnoos, K.; Naghizadeh, H. In vitro insulin release from thermosensitive chitosan hydrogel. AAPS PharmSciTech, 2012, 13(2), 460-466.
[http://dx.doi.org/10.1208/s12249-012-9764-9] [PMID: 22391886]
[68]
Khodaverdi, E.; Farhadi, F.; Jalali, A.; Mirzazadeh Tekie, F.S. Preparation and investigation of poly (N-isopropylacrylamide-acrylamide) membranes in temperature responsive drug delivery. Iran. J. Basic Med. Sci., 2010, 13(3), 102-110.
[69]
Jensen, C.E.; dos Santos, R.A.S.; Denadai, A.M.L.; Santos, C.F.F.; Braga, A.N.G.; Sinisterra, R.D. Pharmaceutical composition of valsartan: β-cyclodextrin: Physico-chemical characterization and anti-hypertensive evaluation. Molecules, 2010, 15(6), 4067-4084.
[http://dx.doi.org/10.3390/molecules15064067] [PMID: 20657427]
[70]
Wong, C.Y.; Al-Salami, H.; Dass, C.R. Cellular assays and applied technologies for characterisation of orally administered protein nanoparticles: A systematic review. J. Drug Target., 2020, 28(6), 585-599.
[http://dx.doi.org/10.1080/1061186X.2020.1726356] [PMID: 32013626]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy