Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Diabetic Cardiomyopathy: Clinical and Metabolic Approach

Author(s): Dragan B. Djordjevic*, Goran Koracevic, Aleksandar D. Djordjevic and Dragan B. Lovic*

Volume 19, Issue 5, 2021

Published on: 02 November, 2020

Page: [487 - 498] Pages: 12

DOI: 10.2174/1570161119999201102213214

Price: $65

conference banner
Abstract

Background: Having in mind that diabetes mellitus (DM) and obesity are some of the greatest health challenges of the modern era, diabetic cardiomyopathy (DCM) is becoming more and more recognized in clinical practice.

Main Text: Initially, DM is asymptomatic, but it may progress to diastolic and then systolic left ventricular dysfunction, which results in congestive heart failure. A basic feature of this DM complication is the absence of hemodynamically significant stenosis of the coronary blood vessels. Clinical manifestations are the result of several metabolic disorders that are present during DM progression. The complexity of metabolic processes, along with numerous regulatory mechanisms, has been the subject of research that aims at discovering new diagnostic (e.g. myocardial strain with echocardiography and cardiac magnetic resonance) and treatment options. Adequate glycaemic control is not sufficient to prevent or reduce the progression of DCM. Contemporary hypoglycemic medications, such as sodium-glucose transport protein 2 inhibitors, significantly reduce the frequency of cardiovascular complications in patients with DM. Several studies have shown that, unlike the above-stated medications, thiazolidinediones and dipeptidyl peptidase-4 inhibitors are associated with deterioration of heart failure.

Conclusion: Imaging procedures, especially myocardial strain with echocardiography and cardiac magnetic resonance, are useful to identify the early signs of DCM. Research and studies regarding new treatment options are still “in progress”.

Keywords: Cardiomyopathy, diabetes, mitochondria, metabolism, treatment, heart failure.

Graphical Abstract
[1]
Lorenzo-Almorós A, Tuñón J, Orejas M, Cortés M, Egido J, Lorenzo Ó. Diagnostic approaches for diabetic cardiomyopathy. Cardiovasc Diabetol 2017; 16(1): 28.
[http://dx.doi.org/10.1186/s12933-017-0506-x] [PMID: 28231848]
[2]
Williams LJ, Nye BG, Wende AR. Diabetes-related cardiac dysfunction. Endocrinol Metab (Seoul) 2017; 32(2): 171-9.
[http://dx.doi.org/10.3803/EnM.2017.32.2.171] [PMID: 28685508]
[3]
Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972; 30(6): 595-602.
[http://dx.doi.org/10.1016/0002-9149(72)90595-4] [PMID: 4263660]
[4]
Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia 2018; 61(1): 21-8.
[http://dx.doi.org/10.1007/s00125-017-4390-4] [PMID: 28776083]
[5]
Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000; 321(7258): 405-12.
[http://dx.doi.org/10.1136/bmj.321.7258.405] [PMID: 10938048]
[6]
Bowes DC, Lillian F, Lien FL, Butler J. Clinical aspects of heart failure in individuals with diabetes. Diabetologia 2019; 62: 1529-38.
[http://dx.doi.org/10.1007/s00125-019-4958-2]
[7]
Litwin SE. Diabetes and the heart: is there objective evidence of a human diabetic cardiomyopathy? Diabetes 2013; 62: 3329-30.
[http://dx.doi.org/10.2337/db13-0683]
[8]
Lovic D, Piperidou A, Zografou I, Grassos H, Pittaras A, Manolis A. The growing epidemic of diabetes mellitus. Curr Vasc Pharmacol 2020; 18(2): 104-9.
[http://dx.doi.org/10.2174/1570161117666190405165911] [PMID: 30961501]
[9]
MacDonald MR, Petrie MC, Varyani F, et al. CHARM Investigators. Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme. Eur Heart J 2008; 29(11): 1377-85.
[http://dx.doi.org/10.1093/eurheartj/ehn153] [PMID: 18413309]
[10]
Seferović PM, Petrie MC, Filippatos GS, et al. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2018; 20(5): 853-72.
[http://dx.doi.org/10.1002/ejhf.1170] [PMID: 29520964]
[11]
Cavender MA, Steg PG, Smith SC Jr, et al. REACH Registry Investigators. Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death: Outcomes at 4 years from the reduction of atherothrombosis for continued health (REACH) registry. Circulation 2015; 132(10): 923-31.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.014796] [PMID: 26152709]
[12]
Amato L, Paolisso G, Cacciatore F, et al. The Osservatorio Geriatrico Regione Campania Group. Congestive heart failure predicts the development of non-insulin-dependent diabetes mellitus in the elderly. Diabetes Metab 1997; 23(3): 213-8.
[PMID: 9233998]
[13]
Doehner W, Rauchhaus M, Ponikowski P, et al. Impaired insulin sensitivity as an independent risk factor for mortality in patients with stable chronic heart failure. J Am Coll Cardiol 2005; 46(6): 1019-26.
[http://dx.doi.org/10.1016/j.jacc.2005.02.093] [PMID: 16168285]
[14]
Roberts CK, Little JP, Thyfault JP. Modification of insulin sensitivity and glycemic control by activity and exercise. Med Sci Sports Exerc 2013; 45(10): 1868-77.
[http://dx.doi.org/10.1249/MSS.0b013e318295cdbb] [PMID: 24048318]
[15]
Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 2007; 369(9557): 201-7.
[http://dx.doi.org/10.1016/S0140-6736(07)60108-1] [PMID: 17240286]
[16]
Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 1974; 34(1): 29-34.
[http://dx.doi.org/10.1016/0002-9149(74)90089-7] [PMID: 4835750]
[17]
Khan H, Anker SD, Januzzi JL Jr, et al. Heart failure epidemiology in patients with diabetes mellitus without coronary heart disease. J Card Fail 2019; 25(2): 78-86.
[http://dx.doi.org/10.1016/j.cardfail.2018.10.015] [PMID: 30423457]
[18]
Velagaleti RS, Gona P, Chuang ML, et al. Relations of insulin resistance and glycemic abnormalities to cardiovascular magnetic resonance measures of cardiac structure and function: the Framingham Heart Study. Circ Cardiovasc Imaging 2010; 3(3): 257-63.
[http://dx.doi.org/10.1161/CIRCIMAGING.109.911438] [PMID: 20208015]
[19]
Samuelsson A-M, Bollano E, Mobini R, et al. Hyperinsulinemia: effect on cardiac mass/function, angiotensin II receptor expression, and insulin signaling pathways. Am J Physiol Heart Circ Physiol 2006; 291(2): H787-96.
[http://dx.doi.org/10.1152/ajpheart.00974.2005] [PMID: 16565309]
[20]
Seferović PM, Paulus WJ. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J 2015; 36(27): 1718-1727, 1727a-1727c.
[http://dx.doi.org/10.1093/eurheartj/ehv134] [PMID: 25888006]
[21]
Maisch B, Alter P, Pankuweit S. Diabetic cardiomyopathy--fact or fiction? Herz 2011; 36(2): 102-15.
[http://dx.doi.org/10.1007/s00059-011-3429-4] [PMID: 21424347]
[22]
Dei Cas A, Spigoni V, Ridolfi V, Metra M. Diabetes and chronic heart failure: from diabetic cardiomyopathy to therapeutic approach. Endocr Metab Immune Disord Drug Targets 2013; 13(1): 38-50.
[http://dx.doi.org/10.2174/1871530311313010006] [PMID: 23369136]
[23]
Lovic D, Erdine S, Catakoğlu AB. How to estimate left ventricular hypertrophy in hypertensive patients. Anadolu Kardiyol Derg 2014; 14(4): 389-95.
[http://dx.doi.org/10.5152/akd.2014.5115] [PMID: 24818777]
[24]
Yilmaz S, Canpolat U, Aydogdu S, Abboud HE. Diabetic cardiomyopathy; Summary of 41 years. Korean Circ J 2015; 45(4): 266-72.
[http://dx.doi.org/10.4070/kcj.2015.45.4.266] [PMID: 26240579]
[25]
Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016; 29(4): 277-314.
[http://dx.doi.org/10.1016/j.echo.2016.01.011] [PMID: 27037982]
[26]
Trachanas K, Sideris S, Aggeli C, et al. Diabetic cardiomyopathy: from pathophysiology to treatment. Hellenic J Cardiol 2014; 55(5): 411-21.
[PMID: 25243440]
[27]
Jellis CL, Stanton T, Leano R, Martin J, Marwick TH. Usefulness of at rest and exercise hemodynamics to detect subclinical myocardial disease in type 2 diabetes mellitus. Am J Cardiol 2011; 107(4): 615-21.
[http://dx.doi.org/10.1016/j.amjcard.2010.10.024] [PMID: 21195376]
[28]
Ernande L, Bergerot C, Rietzschel ER, et al. Diastolic dysfunction in patients with type 2 diabetes mellitus: is it really the first marker of diabetic cardiomyopathy? J Am Soc Echocardiogr 2011; 24(11): 1268-1275.e1.
[http://dx.doi.org/10.1016/j.echo.2011.07.017] [PMID: 21907542]
[29]
Gilca GE, Stefanescu G, Badulescu O, Tanase DM, Bararu I, Ciocoiu M. Diabetic cardiomyopathy: current approach and potential diagnostic and therapeutic targets. J Diabetes Res 2017; 20171310265
[http://dx.doi.org/10.1155/2017/1310265] [PMID: 28421204]
[30]
Scheuermann-Freestone M, Madsen PL, Manners D, et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 2003; 107(24): 3040-6.
[http://dx.doi.org/10.1161/01.CIR.0000072789.89096.10] [PMID: 12810608]
[31]
Rijzewijk LJ, Jonker JT, van der Meer RW, et al. Effects of hepatic triglyceride content on myocardial metabolism in type 2 diabetes. J Am Coll Cardiol 2010; 56(3): 225-33.
[http://dx.doi.org/10.1016/j.jacc.2010.02.049] [PMID: 20620743]
[32]
Ng ACT, Delgado V, Bertini M, et al. Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation 2010; 122(24): 2538-44.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.955542] [PMID: 21126971]
[33]
Chong CR, Clarke K, Levelt E. Metabolic remodelling in diabetic cardiomyopathy. Cardiovasc Res 2017; 113(4): 422-30.
[http://dx.doi.org/10.1093/cvr/cvx018] [PMID: 28177068]
[34]
Taegtmeyer H, Wilson CR, Razeghi P, Sharma S. Metabolic energetics and genetics in the heart. Ann N Y Acad Sci 2005; 1047: 208-18.
[http://dx.doi.org/10.1196/annals.1341.019] [PMID: 16093498]
[35]
Kolwicz SC Jr, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 2013; 113(5): 603-16.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.302095] [PMID: 23948585]
[36]
Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 2016; 12(3): 144-53.
[http://dx.doi.org/10.1038/nrendo.2015.216] [PMID: 26678809]
[37]
Banerjee SK, McGaffin KR, Pastor-Soler NM, Ahmad F. SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states. Cardiovasc Res 2009; 84(1): 111-8.
[http://dx.doi.org/10.1093/cvr/cvp190] [PMID: 19509029]
[38]
Varma U, Koutsifeli P, Benson VL, Mellor KM, Delbridge LMD, Delbridge DML. Molecular mechanisms of cardiac pathology in diabetes - Experimental insights. Biochim Biophys Acta Mol Basis Dis 2018; 1864(5 Pt B): 1949-59.
[http://dx.doi.org/10.1016/j.bbadis.2017.10.035] [PMID: 29109032]
[39]
Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab 2009; 297(3): E578-91.
[http://dx.doi.org/10.1152/ajpendo.00093.2009] [PMID: 19531645]
[40]
Finck BN, Lehman JJ, Leone TC, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 2002; 109(1): 121-30.
[http://dx.doi.org/10.1172/JCI0214080] [PMID: 11781357]
[41]
Atkinson LL, Kozak R, Kelly SE, Onay Besikci A, Russell JC, Lopaschuk GD. Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats. Am J Physiol Endocrinol Metab 2003; 284(5): E923-30.
[http://dx.doi.org/10.1152/ajpendo.00360.2002] [PMID: 12464581]
[42]
Chandramouli C, Varma U, Stevens EM, et al. Myocardial glycogen dynamics: new perspectives on disease mechanisms. Clin Exp Pharmacol Physiol 2015; 42(4): 415-25.
[http://dx.doi.org/10.1111/1440-1681.12370] [PMID: 25676548]
[43]
Delbridge LM, Mellor KM, Taylor DJ, Gottlieb RA. Myocardial autophagic energy stress responses--macroautophagy, mitophagy, and glycophagy. Am J Physiol Heart Circ Physiol 2015; 308(10): H1194-204.
[http://dx.doi.org/10.1152/ajpheart.00002.2015] [PMID: 25747748]
[44]
Delbridge LMD, Mellor KM, Taylor DJ, Gottlieb RA. Myocardial stress and autophagy: mechanisms and potential therapies. Nat Rev Cardiol 2017; 14(7): 412-25.
[http://dx.doi.org/10.1038/nrcardio.2017.35] [PMID: 28361977]
[45]
Faria A, Persaud SJ. Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential. Pharmacol Ther 2017; 172: 50-62.
[http://dx.doi.org/10.1016/j.pharmthera.2016.11.013] [PMID: 27916650]
[46]
Helou C, Gadonna-Widehem P, Robert N, et al. The impact of raw materials and baking conditions on Maillard reaction products, thiamine, folate, phytic acid and minerals in white bread. Food Funct 2016; 7(6): 2498-507.
[http://dx.doi.org/10.1039/C5FO01341K] [PMID: 26974195]
[47]
Aragno M, Mastrocola R, Medana C, et al. Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes. Endocrinology 2006; 147(12): 5967-74.
[http://dx.doi.org/10.1210/en.2006-0728] [PMID: 16935841]
[48]
Mishra PK, Ying W, Nandi SS, Bandyopadhyay GK, Patel KK, Mahata SK. Diabetic cardiomyopathy: An immunometabolic perspective. Front Endocrinol (Lausanne) 2017; 8: 72.
[http://dx.doi.org/10.3389/fendo.2017.00072] [PMID: 28439258]
[49]
Gu J, Wang S, Guo H, et al. Inhibition of p53 prevents diabetic cardiomyopathy by preventing early-stage apoptosis and cell senescence, reduced glycolysis, and impaired angiogenesis. Cell Death Dis 2018; 9(2): 82.
[http://dx.doi.org/10.1038/s41419-017-0093-5] [PMID: 29362483]
[50]
León LE, Rani S, Fernandez M, Larico M, Calligaris SD. Subclinical detection of diabetic cardiomyopathy with microRNAs: challenges and perspectives. J Diabetes Res 2016; 2016: 6143129.
[http://dx.doi.org/10.1155/2016/6143129] [PMID: 26770988]
[51]
Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9(2): 102-14.
[http://dx.doi.org/10.1038/nrg2290] [PMID: 18197166]
[52]
Rawal S, Munasinghe PE, Shindikar A, et al. Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy. Cardiovasc Res 2017; 113(1): 90-101.
[http://dx.doi.org/10.1093/cvr/cvw235] [PMID: 28065883]
[53]
De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP. Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links. Front Endocrinol (Lausanne) 2018; 9: 2.
[http://dx.doi.org/10.3389/fendo.2018.00002] [PMID: 29387042]
[54]
Paneni F, Volpe M, Lüscher TF, Cosentino F. SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes 2013; 62(6): 1800-7.
[http://dx.doi.org/10.2337/db12-1648] [PMID: 23704521]
[55]
Costantino S, Paneni F, Lüscher TF, Cosentino F. MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart. Eur Heart J 2016; 37(6): 572-6.
[http://dx.doi.org/10.1093/eurheartj/ehv599] [PMID: 26553540]
[56]
Chengji W, Xianjin F. Exercise protects against diabetic cardiomyopathy by the inhibition of the endoplasmic reticulum stress pathway in rats. J Cell Physiol 2019; 234(2): 1682-8.
[http://dx.doi.org/10.1002/jcp.27038] [PMID: 30076729]
[57]
Testa R, Bonfigli AR, Prattichizzo F, La Sala L, De Nigris V, Ceriello A. The “metabolic memory” theory and the early treatment of hyperglycemia in prevention of diabetic complication. Nutrients 2017; 9(5): 437.
[http://dx.doi.org/10.3390/nu9050437] [PMID: 28452927]
[58]
Udell JA, Cavender MA, Bhatt DL, Chatterjee S, Farkouh ME, Scirica BM. Glucose-lowering drugs or strategies and cardiovascular outcomes in patients with or at risk for type 2 diabetes: a meta-analysis of randomised controlled trials. Lancet Diabetes Endocrinol 2015; 3(5): 356-66.
[http://dx.doi.org/10.1016/S2213-8587(15)00044-3] [PMID: 25791290]
[59]
Kenny HC, Abel ED. Heart failure in type 2 diabetes mellitus impact of glucose-lowering agents, heart failure therapies, and novel therapeutic strategies. Circ Res 2019; 124(1): 121-41.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311371] [PMID: 30605420]
[60]
Zhang H, Zhang A, Kohan DE, Nelson RD, Gonzalez FJ, Yang T. Collecting duct-specific deletion of peroxisome proliferator-activated receptor gamma blocks thiazolidinedione-induced fluid retention. Proc Natl Acad Sci USA 2005; 102(26): 9406-11.
[http://dx.doi.org/10.1073/pnas.0501744102] [PMID: 15956187]
[61]
Shah M, Kolandaivelu A, Fearon WF. Pioglitazone-induced heart failure despite normal left ventricular function. Am J Med 2004; 117(12): 973-4.
[http://dx.doi.org/10.1016/j.amjmed.2004.10.010] [PMID: 15629744]
[62]
Dormandy J, Bhattacharya M, van Troostenburg de Bruyn AR. Proactive investigators. Safety and tolerability of pioglitazone in high-risk patients with type 2 diabetes: an overview of data from Proactive. Drug Saf 2009; 32(3): 187-202.
[http://dx.doi.org/10.2165/00002018-200932030-00002] [PMID: 19338377]
[63]
Kernan WN, Viscoli CM, Furie KL, et al. IRIS Trial Investigators. Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med 2016; 374(14): 1321-31.
[http://dx.doi.org/10.1056/NEJMoa1506930] [PMID: 26886418]
[64]
Lee M, Saver JL, Liao HW, Lin CH, Ovbiagele B. Pioglitazone for secondary stroke prevention: a systematic review and meta-analysis. Stroke 2017; 48(2): 388-93.
[http://dx.doi.org/10.1161/STROKEAHA.116.013977] [PMID: 27999139]
[65]
Liao HW, Saver JL, Wu YL, Chen TH, Lee M, Ovbiagele B. Pioglitazone and cardiovascular outcomes in patients with insulin resistance, pre-diabetes and type 2 diabetes: a systematic review and meta-analysis. BMJ Open 2017; 7(1)e013927
[http://dx.doi.org/10.1136/bmjopen-2016-013927] [PMID: 28057658]
[66]
Dziubak A, Wójcicka G, Wojtak A, Bełtowski J. Metabolic effects of metformin in the failing heart. Int J Mol Sci 2018; 19(10): 2869.
[http://dx.doi.org/10.3390/ijms19102869] [PMID: 30248910]
[67]
Crowley MJ, Diamantidis CJ, McDuffie JR, et al. Clinical outcomes of metformin use in populations with chronic kidney disease, congestive heart failure, or chronic liver disease: a systematic review. Ann Intern Med 2017; 166(3): 191-200.
[http://dx.doi.org/10.7326/M16-1901] [PMID: 28055049]
[68]
Horman S, Beauloye C, Vanoverschelde JL, Bertrand L. AMP-activated protein kinase in the control of cardiac metabolism and remodeling. Curr Heart Fail Rep 2012; 9(3): 164-73.
[http://dx.doi.org/10.1007/s11897-012-0102-z] [PMID: 22767403]
[69]
Xiao H, Ma X, Feng W, et al. Metformin attenuates cardiac fibrosis by inhibiting the TGFbeta1-Smad3 signalling pathway. Cardiovasc Res 2010; 87(3): 504-13.
[http://dx.doi.org/10.1093/cvr/cvq066] [PMID: 20200042]
[70]
Yang F, Qin Y, Wang Y, et al. Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent Effects in Diabetic Cardiomyopathy. Int J Biol Sci 2019; 15(5): 1010-9.
[http://dx.doi.org/10.7150/ijbs.29680] [PMID: 31182921]
[71]
Stang M, Wysowski DK, Butler-Jones D. Incidence of lactic acidosis in metformin users. Diabetes Care 1999; 22(6): 925-7.
[http://dx.doi.org/10.2337/diacare.22.6.925] [PMID: 10372243]
[72]
Swift Maddalone TM. Metformin use in patients with diabetes and heart failure: Cause for concern? Diabetes Spectr 2009; 22: 18-20.
[http://dx.doi.org/10.2337/diaspect.22.1.18]
[73]
Eurich DT, Weir DL, Majumdar SR, et al. Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: systematic review of observational studies involving 34,000 patients. Circ Heart Fail 2013; 6(3): 395-402.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.000162] [PMID: 23508758]
[74]
Henquin J-C. Pathways in beta-cell stimulus-secretion coupling as targets for therapeutic insulin secretagogues. Diabetes 2004; 53(Suppl. 3): S48-58.
[http://dx.doi.org/10.2337/diabetes.53.suppl_3.S48] [PMID: 15561921]
[75]
Li Y, Hu Y, Ley SH, Rajpathak S, Hu FB. Sulfonylurea use and incident cardiovascular disease among patients with type 2 diabetes: prospective cohort study among women. Diabetes Care 2014; 37(11): 3106-13.
[http://dx.doi.org/10.2337/dc14-1306] [PMID: 25150157]
[76]
Rados DV, Pinto LC, Remonti LR, Leitão CB, Gross JL. Correction: the association between sulfonylurea use and all-cause and cardiovascular mortality: a meta-analysis with trial sequential analysis of randomized clinical trials. PLoS Med 2016; 13(6): e1002091.
[http://dx.doi.org/10.1371/journal.pmed.1002091] [PMID: 27340828]
[77]
Roumie CL, Hung AM, Greevy RA, et al. Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann Intern Med 2012; 157(9): 601-10.
[http://dx.doi.org/10.7326/0003-4819-157-9-201211060-00003] [PMID: 23128859]
[78]
Sonesson C, Johansson PA, Johnsson E, Gause-Nilsson I. Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: a meta-analysis. Cardiovasc Diabetol 2016; 15: 37.
[http://dx.doi.org/10.1186/s12933-016-0356-y] [PMID: 26895767]
[79]
Scheen AJ. Cardiovascular effects of new oral glucose-lowering agents: DPP-4 and SGLT-2 inhibitors. Circ Res 2018; 122(10): 1439-59.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311588] [PMID: 29748368]
[80]
Scirica BM, Bhatt DL, Braunwald E, et al. SAVOR-TIMI 53 Steering Committee and Investigators. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013; 369(14): 1317-26.
[http://dx.doi.org/10.1056/NEJMoa1307684] [PMID: 23992601]
[81]
Zhao T, Chen H, Cheng C, et al. Liraglutide protects high-glucose-stimulated fibroblasts by activating the CD36-JNK-AP1 pathway to downregulate P4HA1. Biomed Pharmacother 2019; 118: 109224.
[http://dx.doi.org/10.1016/j.biopha.2019.109224] [PMID: 31349139]
[82]
Bizino MB, Jazet IM, Westenberg JJM, et al. Effect of liraglutide on cardiac function in patients with type 2 diabetes mellitus: randomized placebo-controlled trial. Cardiovasc Diabetol 2019; 18(1): 55.
[http://dx.doi.org/10.1186/s12933-019-0857-6] [PMID: 31039778]
[83]
Li L, Li S, Liu J, et al. Glucagon-like peptide-1 receptor agonists and heart failure in type 2 diabetes: systematic review and meta-analysis of randomized and observational studies. BMC Cardiovasc Disord 2016; 16: 91.
[http://dx.doi.org/10.1186/s12872-016-0260-0] [PMID: 27169565]
[84]
Margulies KB, Hernandez AF, Redfield MM, et al. NHLBI Heart Failure Clinical Research Network. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 2016; 316(5): 500-8.
[http://dx.doi.org/10.1001/jama.2016.10260] [PMID: 27483064]
[85]
Lovic D, Pittaras A, Kallistratos M, et al. Sodium-glucose cotransporter 2 inhibitors: Potential cardiovascular and mortality benefits. Cardiovasc Hematol Disord Drug Targets 2018; 18(2): 114-9.
[http://dx.doi.org/10.2174/1871529X18666180227102137] [PMID: 29485012]
[86]
Zinman B, Wanner C, Lachin JM, et al. EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22): 2117-28.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[87]
Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020; 383: 1413-24.https://www.nejm.org/doi/full/10.1056/NEJMoa2022190
[88]
McMurray JJV, Solomon SD, Inzucchi SE, et al. DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381(21): 1995-2008.
[http://dx.doi.org/10.1056/NEJMoa1911303] [PMID: 31535829]
[89]
Staels B. Cardiovascular protection by sodium glucose cotransporter 2 inhibitors: potential mechanisms. Am J Cardiol 2017; 120(1S): S28-36.
[http://dx.doi.org/10.1016/j.amjcard.2017.05.013]
[90]
Zhou Y, Wu W. The sodium-glucose co-transport 2 inhibitor, empaglifozin, protects against diabetic cardiomyopathy by inhibition of the endoplasmic reticulum stress pathway. Cell Physiol Biochem 2017; 41(6): 2503-12.
[http://dx.doi.org/10.1159/000475942] [PMID: 28472796]
[91]
Adingupu DD, Göpel SO, Grönros J, et al. SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob-/- mice. Cardiovasc Diabetol 2019; 18(1): 16.
[http://dx.doi.org/10.1186/s12933-019-0820-6] [PMID: 30732594]
[92]
Neal B, Perkovic V, Mahaffey KW, et al. CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377(7): 644-57.
[http://dx.doi.org/10.1056/NEJMoa1611925] [PMID: 28605608]
[93]
Davidson JA. SGLT2 inhibitors in patients with type 2 diabetes and renal disease: overview of current evidence. Postgrad Med 2019; 131(4): 251-60.
[http://dx.doi.org/10.1080/00325481.2019.1601404] [PMID: 30929540]
[94]
AstraZeneca. A study to evaluate the effect of dapagliflozin on renal outcomes and cardiovascular mortality in patients with chronic kidney disease (Dapa-CKD). Clinical Trials gov record NCT03036150, 2018. Available at: https://clinicaltrials.gov/ct2/show/NCT03036150?term=NCT03036150
[95]
Boehringer Ingelheim. EMPA-KIDNEY (the study of heart and kidney protection with empagliflozin). Clinical Trials gov record NCT03594110, 2018. Available at: https://www.clinicaltrials.gov/ct2/show/record/NCT03594110?view=record
[96]
Arnott C, Li Q, Kang A, et al. Sodium-glucose cotransporter 2 inhibition for the prevention of cardiovascular events in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. J Am Heart Assoc 2020; 9(3): e014908.
[http://dx.doi.org/10.1161/JAHA.119.014908] [PMID: 31992158]
[97]
Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 2000; 86(5): 580-8.
[http://dx.doi.org/10.1161/01.RES.86.5.580] [PMID: 10720420]
[98]
Zhang L, Ding WY, Wang Z-H, et al. Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis, reducing apoptosis and enhancing autophagy. J Transl Med 2016; 14(1): 109.
[http://dx.doi.org/10.1186/s12967-016-0849-1] [PMID: 27121077]
[99]
Varga ZV, Giricz Z, Liaudet L, Haskó G, Ferdinandy P, Pacher P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim Biophys Acta 2015; 1852(2): 232-42.
[http://dx.doi.org/10.1016/j.bbadis.2014.06.030] [PMID: 24997452]
[100]
Shi G-J, Li Y, Cao Q-H, et al. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed Pharmacother 2019; 109: 1085-99.
[http://dx.doi.org/10.1016/j.biopha.2018.10.130] [PMID: 30551359]
[101]
Kunasegaran T, Mustafa MR, Murugan DD, Achike FI. The bioflavonoid quercetin synergises with PPAR-γ agonist pioglitazone in reducing angiotensin-II contractile effect in fructose-streptozotocin induced diabetic rats. Biochimie 2016; 125: 131-9.
[http://dx.doi.org/10.1016/j.biochi.2016.03.008] [PMID: 27012965]
[102]
Kim JH, Kang MJ, Choi HN, Jeong SM, Lee YM, Kim JI. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutr Res Pract 2011; 5(2): 107-11.
[http://dx.doi.org/10.4162/nrp.2011.5.2.107] [PMID: 21556223]
[103]
Moreira L, Araújo I, Costa T, et al. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism. Exp Cell Res 2013; 319(12): 1784-95.
[http://dx.doi.org/10.1016/j.yexcr.2013.05.001] [PMID: 23664836]
[104]
Al Hroob AM, Abukhalil MH, Hussein OE, Mahmoud AM. Pathophysiological mechanisms of diabetic cardiomyopathy and the therapeutic potential of epigallocatechin-3-gallate. Biomed Pharmacother 2019; 109: 2155-72.
[http://dx.doi.org/10.1016/j.biopha.2018.11.086] [PMID: 30551473]
[105]
Ge Z-D, Lian Q, Mao X, Xia Z. Current status and challenges of NRF2 as a potential therapeutic target for diabetic cardiomyopathy. Int Heart J 2019; 60(3): 512-20.
[http://dx.doi.org/10.1536/ihj.18-476] [PMID: 30971629]
[106]
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058-70.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[107]
David JA, Rifkin WJ, Rabbani PS, Ceradini DJ. The Nrf2/Keap1/are pathway and oxidative stress as a therapeutic target in type II diabetes mellitus. J Diabetes Res 2017; 2017: 4826724.
[http://dx.doi.org/10.1155/2017/4826724] [PMID: 28913364]
[108]
Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997; 236(2): 313-22.
[http://dx.doi.org/10.1006/bbrc.1997.6943] [PMID: 9240432]
[109]
Tu W, Wang H, Li S, Liu Q, Sha H. The Anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis 2019; 10(3): 637-51.
[http://dx.doi.org/10.14336/AD.2018.0513] [PMID: 31165007]
[110]
Cipolletta E, Gambardella J, Fiordelisi A, et al. Antidiabetic and cardioprotective effects of pharmacological inhibition of GRK2 in db/db mice. Int J Mol Sci 2019; 20(6): 1492.
[http://dx.doi.org/10.3390/ijms20061492] [PMID: 30934608]
[111]
Wang X, Pan J, Liu D, et al. Nicorandil alleviates apoptosis in diabetic cardiomyopathy through PI3K/Akt pathway. J Cell Mol Med 2019; 23(8): 5349-59.
[http://dx.doi.org/10.1111/jcmm.14413] [PMID: 31131539]
[112]
West TM, Wang Q, Deng B, et al. Phosphodiesterase 5 associates with b2 adrenergic receptor to modulate cardiac function in type 2 diabetic hearts. J Am Heart Assoc 2019; 8(15): e012273.
[http://dx.doi.org/10.1161/JAHA.119.012273] [PMID: 31311394]
[113]
Yin L, Fang Y, Song T, et al. FBXL10 regulates cardiac dysfunction in diabetic cardiomyopathy via the PKC β2 pathway. J Cell Mol Med 2019; 23(4): 2558-67.
[http://dx.doi.org/10.1111/jcmm.14146] [PMID: 30701683]
[114]
Feng B, Chen S, George B, Feng Q, Chakrabarti S. miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev 2010; 26(1): 40-9.
[http://dx.doi.org/10.1002/dmrr.1054] [PMID: 20013939]
[115]
van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 2006; 103(48): 18255-60.
[http://dx.doi.org/10.1073/pnas.0608791103] [PMID: 17108080]
[116]
Rawal S, Nagesh PT, Coffey S, et al. Early dysregulation of cardiac-specific microRNA-208a is linked to maladaptive cardiac remodelling in diabetic myocardium. Cardiovasc Diabetol 2019; 18(1): 13.
[http://dx.doi.org/10.1186/s12933-019-0814-4] [PMID: 30696455]
[117]
Yin Z, Zhao Y, He M, et al. MiR-30c/PGC-1β protects against diabetic cardiomyopathy via PPARα. Cardiovasc Diabetol 2019; 18(1): 7.
[http://dx.doi.org/10.1186/s12933-019-0811-7] [PMID: 30635067]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy