Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Flavonoids and Polyphenolic Compounds as Potential Talented Agents for the Treatment of Alzheimer’s Disease and their Antioxidant Activities

Author(s): Rokeya Akter, Md. Arifur Rahman Chowdhury and Md. Habibur Rahman*

Volume 27, Issue 3, 2021

Published on: 02 November, 2020

Page: [345 - 356] Pages: 12

DOI: 10.2174/1381612826666201102102810

Price: $65

Abstract

Aging is a normal human cycle and the most important risk factor for neurodegenerative diseases. Alternations in cells due to aging contribute to loss of the nutrient-sensing, cell function, increased oxidative stress, loss of the homeostasis cell, genomic instability, the build-up of malfunctioning proteins, weakened cellular defenses, and a telomere split. Disturbance of these essential cellular processes in neuronal cells can lead to life threats including Alzheimer's disease (AD), Huntington's disease (HD), Lewy's disease, etc. The most common cause of death in the elderly population is AD. Specific therapeutic molecules were created to alleviate AD’s social, economic, and health burden. In clinical practice, almost every chemical compound was found to relieve symptoms only in palliative treatment. The reason behind these perfect medicines is that the current medicines are not effective in targeting the cause of this disease. In this paper, we explored the potential role of flavonoid and polyphenolic compounds, which could be the most effective preventative anti-Alzheimer 's strategy.

Keywords: Alzheimer's disease, flavonoids, amyloid-β, antioxidant, neuroprotection, tau protein, reactive oxygen species.

[1]
Whalen RM. Alzheimer disease and other dementias. Family Medicine: Principles and Practice. Fam Med 2016; 1-9.
[2]
Stege GJJ, Bosman GJCGM. The biochemistry of Alzheimer’s disease. Drugs Aging 1999; 14(6): 437-46.
[http://dx.doi.org/10.2165/00002512-199914060-00004] [PMID: 10408742]
[3]
Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron 1991; 6(4): 487-98.
[http://dx.doi.org/10.1016/0896-6273(91)90052-2] [PMID: 1673054]
[4]
Bhadbhade A, Cheng DW. Amyloid precursor protein processing in Alzheimer’s disease. Iran J Child Neurol 2012; 34: 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613]
[5]
Obulesu M, Venu R, Somashekhar R. Tau mediated neurodegeneration: an insight into Alzheimer’s disease pathology. Neurochem Res 2011; 36(8): 1329-35.
[http://dx.doi.org/10.1007/s11064-011-0475-5] [PMID: 21509508]
[6]
Sigal MJ, Levine N. Down’s syndrome and Alzheimer’s disease. J Can Dent Assoc 1993; 59(10): 823-5.
[http://dx.doi.org/10.1097/00006205-198608000-00012] [PMID: 8221282]
[7]
Zhang YW, Thompson R, Zhang H, Xu H. APP processing in Alzheimer’s disease. Mol Brain 2011; 4: 3.
[http://dx.doi.org/10.1186/1756-6606-4-3] [PMID: 21214928]
[8]
Resende R, Ferreiro E, Pereira C, Resende de Oliveira C. Neurotoxic effect of oligomeric and fibrillar species of amyloid-beta peptide 1-42: involvement of endoplasmic reticulum calcium release in oligomer-induced cell death. Neuroscience 2008; 155(3): 725-37.
[http://dx.doi.org/10.1016/j.neuroscience.2008.06.036] [PMID: 18621106]
[9]
Seals DR, Justice JN, LaRocca TJ. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. J Physiol 2016; 594(8): 2001-24.
[http://dx.doi.org/10.1113/jphysiol.2014.282665] [PMID: 25639909]
[10]
Yabluchanskiy A, Ungvari Z, Csiszar A, Tarantini S. Advances and challenges in geroscience research: An update. Physiol Int 2018; 105(4): 298-308.
[http://dx.doi.org/10.1556/2060.105.2018.4.32] [PMID: 30587027]
[11]
Chambers C. Oxford Handbook of Clinical Medicine. J. R. Soc. Med 1999.
[12]
Anekonda TS, Reddy PH. Can herbs provide a new generation of drugs for treating Alzheimer’s disease? Brain Res Brain Res Rev 2005; 50(2): 361-76.
[http://dx.doi.org/10.1016/j.brainresrev.2005.09.001] [PMID: 16263176]
[13]
Enns GM, Kinsman SL, Perlman SL, et al. Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Mol Genet Metab 2012; 105(1): 91-102.
[http://dx.doi.org/10.1016/j.ymgme.2011.10.009] [PMID: 22115768]
[14]
Skulachev VP, Anisimov VN, Antonenko YN, et al. An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta 2009; 1787(5): 437-61.
[http://dx.doi.org/10.1016/j.bbabio.2008.12.008] [PMID: 19159610]
[15]
Padurariu M, Ciobica A, Lefter R, Serban IL, Stefanescu C, Chirita R. The oxidative stress hypothesis in Alzheimer’s disease. Psychiatr Danub 2013; 25(4): 401-9.
[PMID: 24247053]
[16]
Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 2010; 345(1-2): 91-104.
[http://dx.doi.org/10.1007/s11010-010-0563-x] [PMID: 20730621]
[17]
Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53(4): 695-9.
[http://dx.doi.org/10.1111/j.1532-5415.2005.53221.x] [PMID: 15817019]
[18]
Torres LL, Quaglio NB, de Souza GT, et al. Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 2011; 26(1): 59-68.
[http://dx.doi.org/10.3233/JAD-2011-110284] [PMID: 21593563]
[19]
Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett 2008; 266(1): 6-11.
[http://dx.doi.org/10.1016/j.canlet.2008.02.026] [PMID: 18372104]
[20]
Venkateshappa C, Harish G, Mahadevan A, Srinivas Bharath MM, Shankar SK. Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: implications for neurodegeneration in Alzheimer’s disease. Neurochem Res 2012; 37(8): 1601-14.
[http://dx.doi.org/10.1007/s11064-012-0755-8] [PMID: 22461064]
[21]
Chassaing S, Collin F, Dorlet P, Gout J, Hureau C, Faller P. Copper and heme-mediated abeta toxicity: Redox chemistry, Abeta Oxidations and Anti-ROS compounds. Curr Top Med Chem 2013; 12(22): 2573-95.
[http://dx.doi.org/10.2174/15680266112129990080] [PMID: 23339309]
[22]
Greenough MA, Camakaris J, Bush AI. Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 2013; 62(5): 540-55.
[http://dx.doi.org/10.1016/j.neuint.2012.08.014] [PMID: 22982299]
[23]
Zeldich E, Chen CD, Colvin TA, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem 2014; 289(35): 24700-15.
[http://dx.doi.org/10.1074/jbc.M114.567321] [PMID: 25037225]
[24]
Lee JY, Mook-Jung I, Koh JY. Histochemically reactive zinc in plaques of the Swedish mutant beta-amyloid precursor protein transgenic mice. J Neurosci 1999; 19(11): RC10.
[http://dx.doi.org/10.1523/JNEUROSCI.19-11-j0002.1999] [PMID: 10341271]
[25]
Craddock TJA, Tuszynski JA, Chopra D, et al. The zinc dyshomeostasis hypothesis of Alzheimer’s disease. PLoS One 2012; 7(3)e33552
[http://dx.doi.org/10.1371/journal.pone.0033552] [PMID: 22457776]
[26]
Silva DF, Selfridge JE, Lu J. Mitochondrial abnormalities in Alzheimer ’s disease possible targets for therapeutic intervention. Adv Pharmacol 2012; 64: 83-126.
[http://dx.doi.org/10.1016/B978-0-12-394816-8.00003-9]]
[27]
Reddy PH, Tripathi R, Troung Q, et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: implications to mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta 2012; 1822(5): 639-49.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.011] [PMID: 22037588]
[28]
Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 2001; 60(8): 759-67.
[http://dx.doi.org/10.1093/jnen/60.8.759] [PMID: 11487050]
[29]
Mao P, Manczak M, Calkins MJ, et al. Mitochondria-targeted catalase reduces abnormal APP processing, amyloid β production and BACE1 in a mouse model of Alzheimer’s disease: implications for neuroprotection and lifespan extension. Hum Mol Genet 2012; 21(13): 2973-90.
[http://dx.doi.org/10.1093/hmg/dds128] [PMID: 22492996]
[30]
Hauptmann S, Scherping I, Dröse S, et al. Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging 2009; 30(10): 1574-86.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.12.005] [PMID: 18295378]
[31]
Caspersen C, Wang N, Yao J, et al. Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 2005; 19(14): 2040-1.
[http://dx.doi.org/10.1096/fj.05-3735fje] [PMID: 16210396]
[32]
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[33]
Luchsinger JA, Tang MX, Shea S, Mayeux R. Antioxidant vitamin intake and risk of Alzheimer disease. Arch Neurol 2003; 60(2): 203-8.
[http://dx.doi.org/10.1001/archneur.60.2.203] [PMID: 12580704]
[34]
Zandi PP, Anthony JC, Khachaturian AS, et al. Cache County Study Group. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Arch Neurol 2004; 61(1): 82-8.
[http://dx.doi.org/10.1001/archneur.61.1.82] [PMID: 14732624]
[35]
Morris MC, Evans DA, Bienias JL, et al. Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. JAMA 2002; 287(24): 3230-7.
[http://dx.doi.org/10.1001/jama.287.24.3230] [PMID: 12076219]
[36]
Gilgun-Sherki Y, Melamed E, Offen D. Antioxidant treatment in Alzheimer’s disease: current state. J Mol Neurosci 2003; 21(1): 1-11.
[http://dx.doi.org/10.1385/JMN:21:1:1] [PMID: 14500988]
[37]
Gurung RB, Kim EH, Oh TJ, Sohng JK. Enzymatic synthesis of apigenin glucosides by glucosyltransferase (YjiC) from Bacillus licheniformis DSM 13. Mol Cells 2013; 36(4): 355-61.
[http://dx.doi.org/10.1007/s10059-013-0164-0] [PMID: 24170092]
[38]
Rendeiro C, Vauzour D, Rattray M, et al. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS One 2013; 8(5)e63535
[http://dx.doi.org/10.1371/journal.pone.0063535] [PMID: 23723987]
[39]
Scheepens A, Tan K, Paxton JW. Improving the oral bioavailability of beneficial polyphenols through designed synergies. Genes Nutr 2010; 5(1): 75-87.
[http://dx.doi.org/10.1007/s12263-009-0148-z] [PMID: 19841960]
[40]
Nijveldt RJ, van Nood E, van Hoorn DEC, Boelens PG, van Norren K, van Leeuwen PAM. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 2001; 74(4): 418-25.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[41]
Surguchov A, Emamzadeh FN, Surguchev AA. Amyloidosis and longevity: A lesson from plants. Biology (Basel) 2019; 8(2)E43
[http://dx.doi.org/10.3390/biology8020043] [PMID: 31137746]
[42]
Sandoval-Acuña C, Ferreira J, Speisky H. Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch Biochem Biophys 2014; 559: 75-90.
[http://dx.doi.org/10.1016/j.abb.2014.05.017] [PMID: 24875147]
[43]
Heleno SA, Barros L, Martins A, Queiroz MJRP, Santos-Buelga C, Ferreira ICFR. Phenolic, polysaccharidic, and lipidic fractions of mushrooms from northeastern Portugal: Chemical compounds with antioxidant properties. J Agric Food Chem 2012; 60(18): 4634-40.
[http://dx.doi.org/10.1021/jf300739m]
[44]
Zhang DD, Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 2003; 23(22): 8137-51.
[http://dx.doi.org/10.1128/MCB.23.22.8137-8151.2003] [PMID: 14585973]
[45]
Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 2018; 36(6): 1738-67.
[http://dx.doi.org/10.1016/j.biotechadv.2017.12.015] [PMID: 29289692]
[46]
Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018; 10(11)E1618
[http://dx.doi.org/10.3390/nu10111618] [PMID: 30400131]
[47]
Nayernia Z, Jaquet V, Krause KH. New insights on NOX enzymes in the central nervous system. Antioxid Redox Signal 2014; 20(17): 2815-37.
[http://dx.doi.org/10.1089/ars.2013.5703]
[48]
Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev 2012; 2012428010
[http://dx.doi.org/10.1155/2012/428010] [PMID: 22685618]
[49]
Cohen G, Kesler N. Monoamine oxidase and mitochondrial respiration. J Neurochem 1999; 73(6): 2310-5.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0732310.x] [PMID: 10582588]
[50]
Rajeswari A, Sabesan M. Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology 2008; 16(2): 96-9.
[http://dx.doi.org/10.1007/s10787-007-1614-0] [PMID: 18408903]
[51]
Wood Dos Santos T, Cristina Pereira Q, Teixeira L, Gambero A. A Villena J, Lima Ribeiro M. Effects of polyphenols on thermogenesis and mitochondrial biogenesis. Int J Mol Sci 2018; 19(9)E2757
[http://dx.doi.org/10.3390/ijms19092757] [PMID: 30217101]
[52]
Dong W, Wang F, Guo W, et al. Aβ25-35 suppresses mitochondrial biogenesis in primary hippocampal neurons. Cell Mol Neurobiol 2016; 36(1): 83-91.
[http://dx.doi.org/10.1007/s10571-015-0222-6] [PMID: 26055049]
[53]
Xu W, Barrientos T, Andrews NC. Iron and copper in mitochondrial diseases. Cell Metab 2013; 17(3): 319-28.
[http://dx.doi.org/10.1016/j.cmet.2013.02.004] [PMID: 23473029]
[54]
Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA. Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol 2006; 65(7): 631-41.
[http://dx.doi.org/10.1097/01.jnen.0000228136.58062.bf] [PMID: 16825950]
[55]
Resende R, Moreira PI, Proença T, et al. Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radic Biol Med 2008; 44(12): 2051-7.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.03.012] [PMID: 18423383]
[56]
Zhu X, Su B, Wang X, Smith MA, Perry G. Causes of oxidative stress in Alzheimer disease. Cell Mol Life Sci 2007; 64(17): 2202-10.
[http://dx.doi.org/10.1007/s00018-007-7218-4] [PMID: 17605000]
[57]
Zhang T, Upadhyaya G, Reinhardt A, Rajan H, Kim M. Are code examples on an online QA forum reliable?: A study of API misuse on stack overflow Proceedings - International Conference on Software Engineering.
[http://dx.doi.org/10.1145/3180155.3180260]
[58]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8(6): 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[59]
Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 270-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.008] [PMID: 21514249]
[60]
Thambisetty M, Simmons A, Velayudhan L, et al. Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry 2010; 67(7): 739-48.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.78] [PMID: 20603455]
[61]
Chen HK, Fernandez-Funez P, Acevedo SF, et al. Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell 2003; 113(4): 457-68.
[http://dx.doi.org/10.1016/S0092-8674(03)00349-0] [PMID: 12757707]
[62]
Bhat SA, Kamal MA, Yarla NS, Ashraf GM. Synopsis on managment strategies for neurodegenerative disorders: Challenges from bench to bedside in successful drug discovery and development. Curr Top Med Chem 2017; 17(12): 1371-8.
[http://dx.doi.org/10.2174/1568026616666161222121229] [PMID: 28017151]
[63]
Singh S, Dikshit M. Apoptotic neuronal death in Parkinson’s disease: involvement of nitric oxide. Brain Res Brain Res Rev 2007; 54(2): 233-50.
[http://dx.doi.org/10.1016/j.brainresrev.2007.02.001] [PMID: 17408564]
[64]
More SV, Kumar H, Kim I-S, Koppulla S, Kim B-W, Choi D-K. Strategic selection of neuroinflammatory models in Parkinson’s disease: evidence from experimental studies. CNS Neurol Disord Drug Targets 2013; 12(5): 680-97.
[http://dx.doi.org/10.2174/18715273113129990059] [PMID: 23469840]
[65]
Hicke L. Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2001; 2(3): 195-201.
[http://dx.doi.org/10.1038/35056583] [PMID: 11265249]
[66]
Wang ZY, Liu JY, Yang CB, et al. Neuroprotective natural products for the treatment of Parkinson’s disease by targeting the autophagy-lysosome pathway: a systematic review. Phytother Res 2017; 31(8): 1119-27.
[http://dx.doi.org/10.1002/ptr.5834] [PMID: 28504367]
[67]
Bagli E, Goussia A, Moschos MM, Agnantis N, Kitsos G. Natural compounds and neuroprotection: Mechanisms of action and novel delivery systems. In Vivo 2016; 30(5): 535-47.
[PMID: 27566070]
[68]
Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90(3): 405-13.
[http://dx.doi.org/10.1016/S0092-8674(00)80501-2] [PMID: 9267021]
[69]
Harvey AL, Clark RL, Mackay SP, Johnston BF. Current strategies for drug discovery through natural products. Expert Opin Drug Discov 2010; 5(6): 559-68.
[http://dx.doi.org/10.1517/17460441.2010.488263] [PMID: 22823167]
[70]
Kimura I. Medical benefits of using natural compounds and their derivatives having multiple pharmacological actions. Yakugaku Zasshi 2006; 126(3): 133-43.
[http://dx.doi.org/10.1248/yakushi.126.133] [PMID: 16508237]
[71]
Häberlein H, Tschiersch KP, Boonen G, Hiller KO. Chelidonium majus L.: components with in vitro affinity for the GABAA receptor. Positive cooperation of alkaloids. Planta Med 1996; 62(3): 227-31.
[http://dx.doi.org/10.1055/s-2006-957865] [PMID: 8693034]
[72]
Leung WC, Zheng H, Huen M, Law SL, Xue H. Anxiolytic-like action of orally administered dl-tetrahydropalmatine in elevated plus-maze. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27(5): 775-9.
[http://dx.doi.org/10.1016/S0278-5846(03)00108-8] [PMID: 12921909]
[73]
Farimani MM, Sarvestani NN, Ansari N, Khodagholi F. Calycopterin promotes survival and outgrowth of neuron-like PC12 cells by attenuation of oxidative- and ER-stress-induced apoptosis along with inflammatory response. Chem Res Toxicol 2011; 24(12): 2280-92.
[http://dx.doi.org/10.1021/tx200420a] [PMID: 22081883]
[74]
Khodagholi F, Ansari N, Amini M, Tusi SK. Involvement of molecular chaperones and the transcription factor Nrf2 in neuroprotection mediated by para-substituted-4,5-diaryl-3-thiomethyl-1,2,4-triazines. Cell Stress Chaperones 2012; 17(4): 409-22.
[http://dx.doi.org/10.1007/s12192-011-0316-0] [PMID: 22212523]
[75]
Liao JF, Wang HH, Chen MC, Chen CC, Chen CF. Benzodiazepine binding site-interactive flavones from Scutellaria baicalensis root. Planta Med 1998; 64(6): 571-2.
[http://dx.doi.org/10.1055/s-2006-957517] [PMID: 9776664]
[76]
Spencer JPE. The impact of flavonoids on memory: physiological and molecular considerations. Chem Soc Rev 2009; 38(4): 1152-61.
[http://dx.doi.org/10.1039/b800422f] [PMID: 19421586]
[77]
Lin RD, Hou WC, Yen KY, Lee MH. Inhibition of monoamine oxidase B (MAO-B) by Chinese herbal medicines. Phytomedicine 2003; 10(8): 650-6.
[http://dx.doi.org/10.1078/0944-7113-00324] [PMID: 14692725]
[78]
Lin X, Zhang N. Berberine: Pathways to protect neurons. Phytother Res 2018; 32(8): 1501-10.
[http://dx.doi.org/10.1002/ptr.6107] [PMID: 29732634]
[79]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75(3): 311-35.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[80]
Dadhania VP, Trivedi PP, Vikram A, Tripathi DN. Nutraceuticals against neurodegeneration: A mechanistic insight. Curr Neuropharmacol 2016; 14(6): 627-40.
[http://dx.doi.org/10.2174/1570159x14666160104142223] [PMID: 26725888]
[81]
Kumar GP, Anilakumar KR, Naveen S. Phytochemicals having neuroprotective properties from dietary sources and medicinal herbs. Pharmacogn J 2015; 1(1)
[http://dx.doi.org/10.5530/pj.2015.1.1]
[82]
Lopez-Lazaro M. “Distribution and biological activities of the flavonoid luteolin,” mini-reviews. Med Chem 2008; 9(1): 31-59.
[http://dx.doi.org/10.2174/138955709787001712] [PMID: 19149659]
[83]
Shimoi K, Okada H, Furugori M, et al. Intestinal absorption of luteolin and luteolin 7-O-β-glucoside in rats and humans. FEBS Lett 1998; 438(3): 220-4.
[http://dx.doi.org/10.1016/S0014-5793(98)01304-0] [PMID: 9827549]
[84]
Seelinger G, Merfort I, Schempp CM. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med 2008; 74(14): 1667-77.
[http://dx.doi.org/10.1055/s-0028-1088314] [PMID: 18937165]
[85]
Zhou F, Chen S, Xiong J, Li Y, Qu L. Luteolin reduces zinc-induced tau phosphorylation at Ser262/356 in an ROS-dependent manner in SH-SY5Y cells. Biol Trace Elem Res 2012; 149(2): 273-9.
[http://dx.doi.org/10.1007/s12011-012-9411-z] [PMID: 22528780]
[86]
Liu R, Meng F, Zhang L, et al. Luteolin isolated from the medicinal plant Elsholtzia rugulosa (Labiatae) prevents copper-mediated toxicity in β-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. Molecules 2011; 16(3): 2084-96.
[http://dx.doi.org/10.3390/molecules16032084] [PMID: 21368720]
[87]
Wruck CJ, Claussen M, Fuhrmann G, et al. Luteolin protects rat PC12 and C6 cells against MPP+ induced toxicity via an ERK dependent Keap1-Nrf2-ARE pathway. J Neural Transm Suppl 2007; (72): 57-67.
[http://dx.doi.org/10.1007/978-3-211-73574-9-9] [PMID: 17982879]
[88]
Zhao G, Yao-Yue C, Qin GW, Guo LH. Luteolin from Purple Perilla mitigates ROS insult particularly in primary neurons. Neurobiol Aging 2012; 33(1): 176-86.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.02.013] [PMID: 20382451]
[89]
Kelly GS. Quercetin. Monograph. Altern Med Rev 2011; 16(2): 172-94.
[PMID: 21649459]
[90]
Ossola B, Kääriäinen TM, Männistö PT. The multiple faces of quercetin in neuroprotection. Expert Opin Drug Saf 2009; 8(4): 397-409.
[http://dx.doi.org/10.1517/14740330903026944] [PMID: 19538101]
[91]
Kelly GS. Quercetin monograph. Altern Med Rev 1998; 3(2): 140-3.
[http://dx.doi.org/10.1146/annurev.pharmtox.38.1.375]
[92]
Bischoff SC. Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care 2008; 11(6): 733-40.
[http://dx.doi.org/10.1097/MCO.0b013e32831394b8] [PMID: 18827577]
[93]
Russo M, Spagnuolo C, Tedesco I, Bilotto S, Russo GL. The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem Pharmacol 2012; 83(1): 6-15.
[http://dx.doi.org/10.1016/j.bcp.2011.08.010] [PMID: 21856292]
[94]
Hollman PCH, van Trijp JM, Buysman MN, et al. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett 1997; 418(1-2): 152-6.
[http://dx.doi.org/10.1016/S0014-5793(97)01367-7] [PMID: 9414116]
[95]
Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA. Protective effect of quercetin in primary neurons against Abeta(1-42): relevance to Alzheimer’s disease. J Nutr Biochem 2009; 20(4): 269-75.
[http://dx.doi.org/10.1016/j.jnutbio.2008.03.002] [PMID: 18602817]
[96]
Jiménez-Aliaga K, Bermejo-Bescós P, Benedí J, Martín-Aragón S. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci 2011; 89(25-26): 939-45.
[http://dx.doi.org/10.1016/j.lfs.2011.09.023] [PMID: 22008478]
[97]
Bhat KPL, Kosmeder JW, Pezzuto JM. Biological effects of resveratrol. Antioxid Redox Signal 2001; 3(6): 1041-64.
[http://dx.doi.org/10.1089/152308601317203567]
[98]
Burns J, Yokota T, Ashihara H, Lean MEJ, Crozier A. Plant foods and herbal sources of resveratrol. J Agric Food Chem 2002; 50(11): 3337-40.
[http://dx.doi.org/10.1021/jf0112973] [PMID: 12010007]
[99]
Shen T, Wang XN, Lou HX. Natural stilbenes: an overview. Nat Prod Rep 2009; 26(7): 916-35.
[http://dx.doi.org/10.1039/b905960a] [PMID: 19554241]
[100]
Almeida L, Vaz-da-Silva M, Falcão A, et al. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res 2009; 53(Suppl. 1): S7-S15.
[http://dx.doi.org/10.1002/mnfr.200800177] [PMID: 19194969]
[101]
Resveratrol. Monograph. Altern Med Rev 2010; 15(2): 152-8.
[PMID: 20807000]
[102]
Li F, Gong Q, Dong H, Shi J. Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr Pharm Des 2012; 18(1): 27-33.
[http://dx.doi.org/10.2174/138161212798919075] [PMID: 22211686]
[103]
Li H, Xia N, Förstermann U. Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide 2012; 26(2): 102-10.
[http://dx.doi.org/10.1016/j.niox.2011.12.006] [PMID: 22245452]
[104]
Kumar A, Dogra S, Prakash A. Neuroprotective effects of Centella asiatica against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress. Int J Alzheimers Dis 2009; 2009972178
[http://dx.doi.org/10.4061/2009/972178] [PMID: 20798885]
[105]
Frozza RL, Bernardi A, Paese K, et al. Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J Biomed Nanotechnol 2010; 6(6): 694-703.
[http://dx.doi.org/10.1166/jbn.2010.1161] [PMID: 21361135]
[106]
Neves AR, Lucio M, Lima JLC, Reis S. Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Curr Med Chem 2012; 19(11): 1663-81.
[http://dx.doi.org/10.2174/092986712799945085] [PMID: 22257059]
[107]
Ge JF, Qiao JP, Qi CC, Wang CW, Zhou JN. The binding of resveratrol to monomer and fibril amyloid beta. Neurochem Int 2012; 61(7): 1192-201.
[http://dx.doi.org/10.1016/j.neuint.2012.08.012] [PMID: 22981725]
[108]
Vingtdeux V, Dreses-Werringloer U, Zhao H, Davies P, Marambaud P. Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci 2008; 9(Suppl. 2): S6.
[http://dx.doi.org/10.1186/1471-2202-9-S2-S6]
[109]
Lee EO, Park HJ, Kang JL, Kim HS, Chong YH. Resveratrol reduces glutamate-mediated monocyte chemotactic protein-1 expression via inhibition of extracellular signal-regulated kinase 1/2 pathway in rat hippocampal slice cultures. J Neurochem 2010; 112(6): 1477-87.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06564.x] [PMID: 20050970]
[110]
Wight RD, Tull CA, Deel MW, et al. Resveratrol effects on astrocyte function: relevance to neurodegenerative diseases. Biochem Biophys Res Commun 2012; 426(1): 112-5.
[http://dx.doi.org/10.1016/j.bbrc.2012.08.045] [PMID: 22917537]
[111]
Capiralla H, Vingtdeux V, Zhao H, et al. Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem 2012; 120(3): 461-72.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07594.x] [PMID: 22118570]
[112]
Pallàs M, Casadesús G, Smith MA, et al. Resveratrol and neurodegenerative diseases: activation of SIRT1 as the potential pathway towards neuroprotection. Curr Neurovasc Res 2009; 6(1): 70-81.
[http://dx.doi.org/10.2174/156720209787466019] [PMID: 19355928]
[113]
Kwon KJ, Kim HJ, Shin CY, Han SH. Melatonin potentiates the neuroprotective properties of resveratrol against beta-amyloid-induced neurodegeneration by modulating AMP-activated protein Kinase pathways. J Clin Neurol 2010; 6(3): 127-37.
[http://dx.doi.org/10.3988/jcn.2010.6.3.127] [PMID: 20944813]
[114]
Shukla S, Gupta S. Apigenin: a promising molecule for cancer prevention. Pharm Res 2010; 27(6): 962-78.
[http://dx.doi.org/10.1007/s11095-010-0089-7] [PMID: 20306120]
[115]
Gradolatto A, Canivenc-Lavier MC, Basly JP, Siess MH, Teyssier C. Metabolism of apigenin by rat liver phase I and phase ii enzymes and by isolated perfused rat liver. Drug Metab Dispos 2004; 32(1): 58-65.
[http://dx.doi.org/10.1124/dmd.32.1.58] [PMID: 14709621]
[116]
Zhang J, Liu D, Huang Y, Gao Y, Qian S. Biopharmaceutics classification and intestinal absorption study of apigenin. Int J Pharm 2012; 436(1-2): 311-7.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.002] [PMID: 22796171]
[117]
Choi AY, Choi JH, Lee JY, et al. Apigenin protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis. Neurochem Int 2010; 57(2): 143-52.
[http://dx.doi.org/10.1016/j.neuint.2010.05.006] [PMID: 20493918]
[118]
Kim H, Xia H, Li L, Gewin J. Attenuation of neurodegeneration-relevant modifications of brain proteins by dietary soy. Biofactors 2000; 12(1-4): 243-50.
[http://dx.doi.org/10.1002/biof.5520120137]
[119]
Ullah MF, Zubair H, Khan HY, Hadi SM. Soy isoflavone genistein in cancer chemoprevention. Isoflavones: Biosynthesis, Occurrence and Health Effects. Cancer Invest 2010; 21(5): 744-57.
[120]
Johnson KL, Vaillant F, Lawen A. Protein tyrosine kinase inhibitors prevent didemnin B-induced apoptosis in HL-60 cells. FEBS Lett 1996; 383(1-2): 1-5.
[http://dx.doi.org/10.1016/0014-5793(96)00203-7] [PMID: 8612773]
[121]
Zeng H, Chen Q, Zhao B. Genistein ameliorates β-amyloid peptide (25-35)-induced hippocampal neuronal apoptosis. Free Radic Biol Med 2004; 36(2): 180-8.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.10.018] [PMID: 14744630]
[122]
Wang D, Liu L, Zhu X, Wu W, Wang Y. Hesperidin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress in a mouse model of Alzheimer’s disease. Cell Mol Neurobiol 2014; 34(8): 1209-21.
[http://dx.doi.org/10.1007/s10571-014-0098-x] [PMID: 25135708]
[123]
Badalzadeh R, Mohammadi M, Yousefi B, Farajnia S, Najafi M, Mohammadi S. Involvement of glycogen synthase kinase-3s and oxidation status in the loss of cardioprotection by postconditioning in chronic diabetic male rats. Adv Pharm Bull 2015; 5(3): 321-7.
[http://dx.doi.org/10.15171/apb.2015.045] [PMID: 26504753]
[124]
DaRocha-Souto B, Coma M, Pérez-Nievas BG, et al. Activation of glycogen synthase kinase-3 beta mediates β-amyloid induced neuritic damage in Alzheimer’s disease. Neurobiol Dis 2012; 45(1): 425-37.
[http://dx.doi.org/10.1016/j.nbd.2011.09.002] [PMID: 21945540]
[125]
Auti ST, Kulkarni YA. Neuroprotective effect of cardamom oil against aluminum induced neurotoxicity in rats. Front Neurol 2019; 10: 399.
[http://dx.doi.org/10.3389/fneur.2019.00399] [PMID: 31114535]
[126]
Justin Thenmozhi A, William Raja TR, Manivasagam T, Janakiraman U, Essa MM. Hesperidin ameliorates cognitive dysfunction, oxidative stress and apoptosis against aluminium chloride induced rat model of Alzheimer’s disease. Nutr Neurosci 2017; 20(6): 360-8.
[http://dx.doi.org/10.1080/1028415X.2016.1144846] [PMID: 26878879]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy