Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Review Article

The Perfect Storm: A Rheumatologist's Point of View on COVID-19 Infection

Author(s): Senol Kobak*

Volume 17 , Issue 2 , 2021

Published on: 29 October, 2020

Page: [141 - 152] Pages: 12

DOI: 10.2174/1573397116666201029155105

Price: $65

Abstract

The new coronavirus infection (Covid-19) is a pandemic that has affected the whole world and progresses with high morbidity and mortality. It has a high contagion rate and a course capable of rapid lung involvement with severe acute respiratory distress syndrome (ARDS) and pulmonary insufficiency. A severe clinical picture develops as a result of a “perfect cytokine storm” which results from possible immunological mechanisms triggered by the viral infection. Immune system dysregulation and possible autoinflammatory and autoimmune mechanisms are responsible for a higher amount of cytokines release from immune cells. Although no clear treatment of Covid-19 infection has emerged yet, it is argued that some disease-modifying anti-rheumatic drugs (DMARDs) may be effective in addition to anti-viral treatments. These drugs (anti-malarial drugs, colchicum dispert, biologics) have been well known to rheumatologists for years because they are used in the treatment of many inflammatory rheumatologic diseases. Another important issue is whether DMARDs, which can cause severe immunosuppression, pose a risk for Covid-19 infection and whether they have been discontinued beforehand. Although there are insufficient data on this subject, considering the risk of disease reactivation, patients may continue their DMARDs treatment under the supervision of a rheumatologist.

In this article, the possible immunological mechanisms in the pathogenesis of Covid-19 infection and the efficacy and safety of various DMARDs used in the treatment are discussed from a rheumatologist’s perspective in the light of recent literature data.

Keywords: Covid-19, infection, DMARDs use, rheumatologist’s point of view, SARS-CoV-2, WHO.

Graphical Abstract
[1]
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497. e506.
[2]
Clinical management of severe acute respiratory infection when Novel coronavirus (nCoV) infection is suspected: interim guidance Jan 11 2020.https://wwwwhoint/internal publications detail/clinical management of severe acute
[3]
Lee PI, Hsueh PR. Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019 n-CoV J Microbiol Immunol Infect 2019; 53(3): 365-7.
[4]
Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents 2020; 55(3): 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924]
[5]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[6]
Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the common cold. JAMA 2020; 323(8): 707-8.
[7]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia inWuhan, China: a descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7]
[8]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[9]
Yang Y, Lu Q, Liu M, Wang Y, Zhang A, Jalali N. Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. medRxiv 2019.
[10]
Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis 2020; 94(91): 5.
[11]
Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA 2020; 323(14): 1406-7.
[http://dx.doi.org/10.1001/jama.2020.2565] [PMID: 32083643]
[12]
Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med 2020; 382(10): 970-1.
[http://dx.doi.org/10.1056/NEJMc2001468] [PMID: 32003551]
[13]
Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis 2020; 34: 101623.
[http://dx.doi.org/10.1016/j.tmaid.2020.101623] [PMID: 32179124]
[14]
Yang Y, Peng F, Wang R, et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun 2020; 109: 102434.
[http://dx.doi.org/10.1016/j.jaut.2020.102434] [PMID: 32143990]
[15]
Malik YS, Sircar S, Bhat S, et al. Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Vet Q 2020; 40(1): 68-76.
[http://dx.doi.org/10.1080/01652176.2020.1727993] [PMID: 32036774]
[16]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[17]
Gasmi A, Noor S, Tippairote T, Dadar M, Menzel A, Bjørklund G. Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clin Immunol 2020; 215: 108409.
[http://dx.doi.org/10.1016/j.clim.2020.108409] [PMID: 32276137]
[18]
Cunningham AC, Goh HP, Koh D. Treatment of COVID-19: old tricks for new challenges. Crit Care 2020; 24(1): 91.
[http://dx.doi.org/10.1186/s13054-020-2818-6] [PMID: 32178711]
[19]
Chiu YM, Chen DY. Infection risk in patients undergoing treatment for inflammatory arthritis: non-biologics versus biologics. Expert Rev Clin Immunol 2020; 16(2): 207-28.
[http://dx.doi.org/10.1080/1744666X.2019.1705785] [PMID: 31852268]
[20]
Ibrahim A, Ahmed M, Conway R, Carey JJ. Risk of infection with methotrexate therapy in inflammatory diseases: a systematic review and meta-analysis. J Clin Med 2018; 8(1): E15.
[http://dx.doi.org/10.3390/jcm8010015] [PMID: 30583473]
[21]
Shimabukuro-Vornhagen A, Gödel P, Subklewe M, et al. Cytokine release syndrome. J Immunother Cancer 2018; 6(1): 56.
[http://dx.doi.org/10.1186/s40425-018-0343-9] [PMID: 29907163]
[22]
Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014; 124(2): 188-95.
[http://dx.doi.org/10.1182/blood-2014-05-552729]
[23]
Al-Samkari H, Berliner N. Hemophagocytic Lymphohistiocytosis. Annu Rev Pathol 2018; 13: 27-49.
[http://dx.doi.org/10.1146/annurev-pathol-020117-043625] [PMID: 28934563]
[24]
Ferreira RM, Ganhão S, Mariz E, Pimenta S, Costa L. Haemophagocytic syndrome in Systemic Lupus Erythematosus - clues to an early diagnosis. Acta Reumatol Port 2018; 43(4): 318-20.
[PMID: 30641543]
[25]
Zhang Y, Yang Y, Bai Y, Yang D, Xiong Y, Zeng X. Clinical characteristics and follow-up analysis of adult-onset Still’s disease complicated by hemophagocytic lymphohistiocytosis. Clin Rheumatol 2016; 35(5): 1145-51.
[http://dx.doi.org/10.1007/s10067-016-3178-0] [PMID: 26809798]
[26]
García-Montoya L, Sáenz-Tenorio CN, Janta I, et al. Hemophagocytic lymphohistiocytosis in a patient with Sjögren’s syndrome: case report and review. Rheumatol Int 2017; 37(4): 663-9.
[http://dx.doi.org/10.1007/s00296-016-3601-5] [PMID: 27853859]
[27]
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[28]
Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Adv Virus Res 2011; 81: 85-164.
[http://dx.doi.org/10.1016/B978-0-12-385885-6.00009-2] [PMID: 22094080]
[29]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[30]
Chakraborti S, Prabakaran P, Xiao X, Dimitrov DS. The SARS coronavirus S glycoprotein receptor binding domain: fine mapping and functional characterization. Virol J 2005; 2: 73.
[http://dx.doi.org/10.1186/1743-422X-2-73] [PMID: 16122388]
[31]
Chappell MC, Marshall AC, Alzayadneh EM, Shaltout HA, Diz DI. Update on the Angiotensin converting enzyme 2-Angiotensin (1-7)-MAS receptor axis: fetal programing, sex differences, and intracellular pathways. Front Endocrinol (Lausanne) 2014; 4: 201.
[http://dx.doi.org/10.3389/fendo.2013.00201] [PMID: 24409169]
[32]
Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005; 11(8): 875-9.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[33]
Bernstein KE, Khan Z, Giani JF, Cao DY, Bernstein EA, Shen XZ. Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol 2018; 14(5): 325-36.
[http://dx.doi.org/10.1038/nrneph.2018.15] [PMID: 29578208]
[34]
Recinos A III, LeJeune WS, Sun H, et al. Angiotensin II induces IL-6 expression and the Jak-STAT3 pathway in aortic adventitia of LDL receptor-deficient mice. Atherosclerosis 2007; 194(1): 125-33.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.10.013] [PMID: 17109863]
[35]
Danser AHJ, Epstein M, Batlle D. Renin-angiotensin system blockers and the COVID-19 pandemic: at present there is no evidence to abandon renin-angiotensin system blockers. In: Hypertens. 2020; 75: pp. 1382-5.
[36]
Kuster GM, Pfister O, Burkard T, et al. SARS-CoV2: should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19? Eur Heart J 2020; 41(19): 1801-3.
[http://dx.doi.org/10.1093/eurheartj/ehaa235] [PMID: 32196087]
[37]
Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19. N Engl J Med 2020; 382(17): 1653-9.
[http://dx.doi.org/10.1056/NEJMsr2005760] [PMID: 32227760]
[38]
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237-61.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[39]
Wrapp D, et al. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation bioRxiv 2019.
[40]
Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol 2001; 9(3): 113-4.
[http://dx.doi.org/10.1016/S0966-842X(00)01936-3] [PMID: 11303500]
[41]
Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory syndrome coronavirus Viroporin 3a activates the NLRP3 inflammasome. Front Microbiol 2019; 10: 50.
[http://dx.doi.org/10.3389/fmicb.2019.00050] [PMID: 30761102]
[42]
Adam Monteagudo L, Boothby A, Gertner E. Continuous Intravenous Anakinra Infusion to Calm the Cytokine Storm in Macrophage Activation Syndrome ACR Open Rheumatol 2020; 2(5): 276-82.
[43]
Chatenoud L, Ferran C, Legendre C, et al. In vivo cell activation following OKT3 administration. Systemic cytokine release and modulation by corticosteroids. Transplantation 1990; 49(4): 697-702.
[http://dx.doi.org/10.1097/00007890-199004000-00009] [PMID: 2109379]
[44]
Ferro F, Elefante E, Baldini C, et al. COVID-19: the new challenge for rheumatologists. Clin Exp Rheumatol 2020; 38(2): 175-80.
[PMID: 32207680]
[45]
Suntharalingam G, Perry MR, Ward S, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 2006; 355(10): 1018-28.
[http://dx.doi.org/10.1056/NEJMoa063842] [PMID: 16908486]
[46]
Winkler U, Jensen M, Manzke O, Schulz H, Diehl V, Engert A. Cytokine-release syndrome in patients with B-cell chronic lymphocytic leukemia and high lymphocyte counts after treatment with an anti-CD20 monoclonal antibody (rituximab, IDEC-C2B8). Blood 1999; 94(7): 2217-24.
[http://dx.doi.org/10.1182/blood.V94.7.2217.419k02_2217_2224] [PMID: 10498591]
[47]
Rose S. First-Ever CAR T-cell Therapy Approved in U.S. Cancer Discov 2017; 7(10): OF1.
[http://dx.doi.org/10.1158/2159-8290.CD-NB2017-126] [PMID: 28887358]
[48]
McGonagle D, Sharif K, O’Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev 2020; 19(6): 102537.
[http://dx.doi.org/10.1016/j.autrev.2020.102537] [PMID: 32251717]
[49]
Teachey DT, Rheingold SR, Maude SL, et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 2013; 121(26): 5154-7.
[http://dx.doi.org/10.1182/blood-2013-02-485623] [PMID: 23678006]
[50]
Hay KA, Hanafi L-A, Li D, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 2017; 130(21): 2295-306.
[http://dx.doi.org/10.1182/blood-2017-06-793141] [PMID: 28924019]
[51]
Quirch M, Lee J, Rehman S. Hazards of the cytokine storm and cytokine-targeted therapy in COVID-19 patients: A Review. J Med Internet Res 2020; 22(8): e20193.
[http://dx.doi.org/10.2196/20193] [PMID: 32707537]
[52]
Chellapandian D. Hemophagocytic Lymphohistiocytosis: Lessons Learned from the Dark Side. Immunol Allergy Clin North Am 2020; 40(3): 485-97.
[http://dx.doi.org/10.1016/j.iac.2020.04.003] [PMID: 32654694]
[53]
Grom AA, Horne A, De Benedetti F. Macrophage activation syndrome in the era of biologic therapy. Nat Rev Rheumatol 2016; 12(5): 259-68.
[http://dx.doi.org/10.1038/nrrheum.2015.179] [PMID: 27009539]
[54]
Carter SJ, Tattersall RS, Ramanan AV. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment. Rheumatology (Oxford) 2019; 58(1): 5-17.
[http://dx.doi.org/10.1093/rheumatology/key006] [PMID: 29481673]
[55]
van der Ven AJ, Netea MG, van der Meer JW, de Mast Q. Ebola virus disease has features of hemophagocytic lymphohistiocytosis syndrome. Front Med (Lausanne) 2015; 2: 4.
[http://dx.doi.org/10.3389/fmed.2015.00004] [PMID: 25699258]
[56]
Cron RQ, Behrens EM, Shakoory B, Ramanan AV, Chatham WW. Does viral hemorrhagic fever represent reactive hemophagocytic syndrome? J Rheumatol 2015; 42(7): 1078-80.
[http://dx.doi.org/10.3899/jrheum.150108] [PMID: 26136549]
[57]
Dunmire SK, Odumade OA, Porter JL, et al. Primary EBV infection induces an expression profile distinct from other viruses but similar to hemophagocytic syndromes. PLoS One 2014; 9(1): e85422.
[http://dx.doi.org/10.1371/journal.pone.0085422] [PMID: 24465555]
[58]
Lipworth B, Chan R, Lipworth S, RuiWen Kuo C. Weathering the cytokine storm in susceptible patients with severe SARS-CoV-2 infection. J Allergy Clin Immunol Pract 2020; 8(6): 1798-801.
[http://dx.doi.org/10.1016/j.jaip.2020.04.014] [PMID: 32311489]
[59]
Gratton SM, Powell TR, Theeler BJ, Hawley JS, Amjad FS, Tornatore C. Neurological involvement and characterization in acquired hemophagocytic lymphohistiocytosis in adulthood. J Neurol Sci 2015; 357(1-2): 136-42.
[http://dx.doi.org/10.1016/j.jns.2015.07.017] [PMID: 26198020]
[60]
Aulagnon F, Lapidus N, Canet E, et al. Acute kidney injury in adults with hemophagocytic lymphohistiocytosis. Am J Kidney Dis 2015; 65(6): 851-9.
[http://dx.doi.org/10.1053/j.ajkd.2014.10.012] [PMID: 25480521]
[61]
Fardet L, Galicier L, Lambotte O, et al. Development and validation of the HScore, a score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheumatol 2014; 66(9): 2613-20.
[http://dx.doi.org/10.1002/art.38690] [PMID: 24782338]
[62]
Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr 2020; 87(4): 281-6.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[63]
Badawi A, Ryoo SG. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. Int J Infect Dis 2016; 49: 129-33.
[http://dx.doi.org/10.1016/j.ijid.2016.06.015] [PMID: 27352628]
[64]
Doran MF, Crowson CS, Pond GR, O’Fallon WM, Gabriel SE. Frequency of infection in patients with rheumatoid arthritis compared with controls: a population-based study. Arthritis Rheum 2002; 46(9): 2287-93.
[http://dx.doi.org/10.1002/art.10524] [PMID: 12355475]
[65]
Yamada T, Nakajima A, Inoue E, et al. Increased risk of tuberculosis in patients with rheumatoid arthritis in Japan. Ann Rheum Dis 2006; 65(12): 1661-3.
[http://dx.doi.org/10.1136/ard.2005.047274] [PMID: 16837491]
[66]
Baddley JW, Cantini F, Goletti D, et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [I]: anti-tumor necrosis factor-α agents). Clin Microbiol Infect 2018; 24(Suppl. 2): S10-20.
[http://dx.doi.org/10.1016/j.cmi.2017.12.025] [PMID: 29459143]
[67]
Memoli MJ, Athota R, Reed S, et al. The natural history of influenza infection in the severely immunocompromised vs nonimmunocompromised hosts. Clin Infect Dis 2014; 58(2): 214-24.
[http://dx.doi.org/10.1093/cid/cit725] [PMID: 24186906]
[68]
Noreña I, Fernández-Ruiz M, Aguado JM. Viral infections in the biologic therapy era. Expert Rev Anti Infect Ther 2018; 16(10): 781-91.
[http://dx.doi.org/10.1080/14787210.2018.1521270] [PMID: 30198355]
[69]
D’Antiga L. Coronaviruses and immunosuppressed patients. The facts during the third epidemic. Liver Transpl 2020; 26(6): 832-4.
[http://dx.doi.org/10.1002/lt.25756] [PMID: 32196933]
[70]
Monti S, Balduzzi S, Delvino P, Bellis E, Quadrelli VS, Montecucco C. Clinical course of COVID-19 in a series of patients with chronic arthritis treated with immunosuppressive targeted therapies. Ann Rheum Dis 2020; 79(5): 667-8.
[71]
Mihai C, Dobrota R, Schröder M, Garaiman A, Jordan S, Becker MO, et al. COVID-19 in a patient with systemic sclerosis treated with tocilizumab for SSc-ILD. Ann Rheum Dis 2020; 79(5): 668-9.
[72]
Russell B, Moss C, George G, et al. Associations between immune-suppressive and stimulating drugs and novel COVID-19-a systematic review of current evidence. Ecancermedicalscience 2020; 14: 1022.
[http://dx.doi.org/10.3332/ecancer.2020.1022] [PMID: 32256705]
[73]
Zhu L, Xu X, Ma K, et al. Successful recovery of COVID-19 pneumonia in a renal transplant recipient with long-term immunosuppression. Am J Transplant 2020; 20(7): 1859-63.
[http://dx.doi.org/10.1111/ajt.15869] [PMID: 32181990]
[74]
Wolfe F, Caplan L, Michaud K. Treatment for rheumatoid arthritis and the risk of hospitalization for pneumonia: associations with prednisone, disease-modifying antirheumatic drugs, and anti-tumor necrosis factor therapy. Arthritis Rheum 2006; 54(2): 628-34.
[http://dx.doi.org/10.1002/art.21568] [PMID: 16447241]
[75]
Sepriano A, Kerschbaumer A, Smolen JS, et al. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2019 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis 2020; 79(6): 760-70.
[http://dx.doi.org/10.1136/annrheumdis-2019-216653] [PMID: 32033941]
[76]
Rutherford AI, Subesinghe S, Hyrich KL, Galloway JB. Serious infection across biologic-treated patients with rheumatoid arthritis: results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Ann Rheum Dis 2018; 77(6): 905-10.
[http://dx.doi.org/10.1136/annrheumdis-2017-212825] [PMID: 29592917]
[77]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[78]
Lai CC, Liu YH, Wang CY, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J Microbiol Immunol Infect 2020; 53(3): 404-12.
[http://dx.doi.org/10.1016/j.jmii.2020.02.012] [PMID: 32173241]
[79]
Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis 2020.
[80]
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020; 55(5): 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[81]
Michot JM, Albiges L, Chaput N, Saada V, Pommeret F, Griscelli F, et al. Tocilizumab, an anti-IL6 receptor antibody, to treat COVID-19-related respiratory failure: a case report. Ann Oncol 2020; 31(7): 961-4.
[82]
Feldmann M, Maini RN, Woody JN, Holgate ST, Winter G, Rowland M, et al. Trials of anti-tumour necrosis factor therapy for covid-19 are urgently needed. Lancet 2020; 395(10234): 1407-9.
[83]
Favalli EG, Biggioggero M, Maioli G, Caporali R. Baricitinib for COVID-19: a suitable treatment? Lancet Infect Dis 2020; 20(9): 1012-3.
[84]
ACR Announcement: Coronavirus Disease (COVID-19). Available from: https://www. rheumatology.org/announcements
[85]
EULAR Guidance for patients COVID-19 outbreak. Available from: https://www.eular.org/eular guidance for patients covid 19 outbreak.cfm
[86]
Turkish Society for Rheumatology recommendations for patients Covid-19 outbreak. Available from: http://www.romatoloji.org
[87]
Habibzadeh P, Stoneman EK. The novel coronavirus: a Bird’s eye view. Int J Occup Environ Med 2020; 11(2): 65-71.
[http://dx.doi.org/10.15171/ijoem.2020.1921] [PMID: 32020915]
[88]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[89]
Cao B, Wang Y, Wen D, et al. A trial of Lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[90]
Cai Q, Yang M, Liu D, et al. Experimental treatment with Favipiravir for COVID-19: an open-label control study. Engineering (Beijing) 2020; 6(10): 1192-8.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[91]
Baden LR, Rubin EJ. Covid-19 — the search for effective therapy. N Engl J Med 2020; 382(19): 1851-2.
[http://dx.doi.org/10.1056/NEJMe2005477] [PMID: 32187463]
[92]
Phadke M, Saunik S. COVID-19 treatment by repurposing drugs until the vaccine is in sight. Drug Dev Res 2020; 81(5): 541-3.
[http://dx.doi.org/10.1002/ddr.21666] [PMID: 32227357]
[93]
Wang LF, Lin YS, Huang NC, et al. Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery. J Interferon Cytokine Res 2015; 35(3): 143-56.
[http://dx.doi.org/10.1089/jir.2014.0038] [PMID: 25321315]
[94]
Akpovwa H. Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity. Cell Biochem Funct 2016; 34(4): 191-6.
[http://dx.doi.org/10.1002/cbf.3182] [PMID: 27001679]
[95]
Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2: 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[96]
Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 2020; 16(3): 155-66.
[http://dx.doi.org/10.1038/s41584-020-0372-x] [PMID: 32034323]
[97]
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14(1): 72-3.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[98]
Colson P, Rolain JM, Raoult D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Agents 2020; 55(3): 105923.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105923] [PMID: 32070753]
[99]
Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020; 57: 279-83.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[100]
Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020; 55(4): 105932.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105932] [PMID: 32145363]
[101]
Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[102]
Mason JW. Antimicrobials and QT prolongation. J Antimicrob Chemother 2017; 72(5): 1272-4.
[http://dx.doi.org/10.1093/jac/dkw591] [PMID: 28160473]
[103]
Indian Council of Medical Research guidelines for use of empirical use of hydroxychloquine prophylaxis in COVID-19. 2020. Available from: https://icmr. n i c. i n/s i t e s/d e faul t/f i l e s/upload_documents/HCQ_ Recommendation_22March_final_MM_V2.pdf.
[104]
Scott LJ. Tocilizumab: A Review in Rheumatoid Arthritis. Drugs 2017; 77(17): 1865-79.
[http://dx.doi.org/10.1007/s40265-017-0829-7] [PMID: 29094311]
[105]
Michaud M, Lidove O, Bienvenu B, Chiche L, Urbanski G. Effectiveness and tolerance of off-label use of tocilizumab in autoimmune diseases: A Multicenter Study. Joint Bone Spine 2020; 87(2): 179-80.
[http://dx.doi.org/10.1016/j.jbspin.2019.08.002] [PMID: 31521792]
[106]
Kotch C, Barrett D, Teachey DT. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Rev Clin Immunol 2019; 15(8): 813-22.
[http://dx.doi.org/10.1080/1744666X.2019.1629904] [PMID: 31219357]
[107]
Ulhaq ZS, Soraya GV. Interleukin-6 as a potential biomarker of COVID-19 progression. Med Mal Infect 2020; ciaa449.
[108]
Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y, et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin Infect Dis 2020.
[109]
Kalil AC. Treating COVID-19 - Off-Label Drug Use, Compassionate Use, and Randomized Clinical Trials During Pandemics. JAMA 2020; 233(19): 1897-8.
[110]
Liu B, Li M, Zhou Z, Guan X, Xiang Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun 2020; 111: 102452.
[http://dx.doi.org/10.1016/j.jaut.2020.102452] [PMID: 32291137]
[111]
Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA 2020; 117(20): 10970-5.
[112]
O’Shea JJ, Gadina M. Selective Janus kinase inhibitors come of age. Nat Rev Rheumatol 2019; 15(2): 74-5.
[http://dx.doi.org/10.1038/s41584-018-0155-9] [PMID: 30622297]
[113]
Choy EH. Clinical significance of Janus Kinase inhibitor selectivity. Rheumatology (Oxford) 2019; 58(6): 953-62.
[http://dx.doi.org/10.1093/rheumatology/key339] [PMID: 30508136]
[114]
Favalli EG, Biggioggero M, Maioli G, Caporali R. Baricitinib for COVID-19: a suitable treatment? Lancet Infect Dis 2020.
[115]
Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020; 395(10223): e30-1.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[116]
Ramírez J, Cañete JD. Anakinra for the treatment of rheumatoid arthritis: a safety evaluation. Expert Opin Drug Saf 2018; 17(7): 727-32.
[http://dx.doi.org/10.1080/14740338.2018.1486819] [PMID: 29883212]
[117]
Castañeda S, Atienza-Mateo B, Martín-Varillas JL, Serra López-Matencio JM, González-Gay MA. Anakinra for the treatment of adult-onset Still’s disease. Expert Rev Clin Immunol 2018; 14(12): 979-92.
[http://dx.doi.org/10.1080/1744666X.2018.1536548] [PMID: 30324816]
[118]
Sarzi-Puttini P, Giorgi V, Sirotti S, et al. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol 2020; 38(2): 337-42.
[PMID: 32202240]
[119]
Sönmez HE, Demir S, Bilginer Y, Özen S. Anakinra treatment in macrophage activation syndrome: a single center experience and systemic review of literature. Clin Rheumatol 2018; 37(12): 3329-35.
[http://dx.doi.org/10.1007/s10067-018-4095-1] [PMID: 29663156]
[120]
Monteagudo LA, Boothby A, Gertner E. Continuous intravenous Anakinra infusion to calm the cytokine storm in macrophage activation syndrome. ACR Open Rheumatol 2020; 2(5): 276-82.
[http://dx.doi.org/10.1002/acr2.11135]
[121]
Slobodnick A, Shah B, Pillinger MH, Krasnokutsky S. Colchicine: old and new. Am J Med 2015; 128(5): 461-70.
[http://dx.doi.org/10.1016/j.amjmed.2014.12.010] [PMID: 25554368]
[122]
Slobodnick A, Shah B, Krasnokutsky S, Pillinger MH. Update on colchicine: 2017. Rheumatology (Oxford) 2018; 57(suppl_1): i4-i11.
[123]
Levy M, Spino M, Read SE. Colchicine: a state-of-the-art review. Pharmacotherapy 1991; 11(3): 196-211.
[PMID: 1862011]
[124]
Aksentijevich I, McDermott MF. Lessons from characterization and treatment of the autoinflammatory syndromes. Curr Opin Rheumatol 2017; 29(2): 187-94.
[http://dx.doi.org/10.1097/BOR.0000000000000362] [PMID: 27906774]
[125]
van den Berg DF, Te Velde AA. Severe COVID-19: NLRP3 inflammasome dysregulated. Front Immunol 2020; 11: 1580.
[126]
Kobak S. COVID-19 infection in a patient with FMF: does colchicine have a protective effect? Ann Rheum Dis 2020; (April): annrheumdis-2020-217882.
[http://dx.doi.org/10.1136/annrheumdis-2020-217882] [PMID: 32503853]
[127]
Montealegre-Gómez G, Garavito E, Gómez-López A, Rojas-Villarraga A, Parra-Medina R. Colchicine: a potential therapeutic tool against COVID-19. Experience of 5 patients. Reumatol Clin 2020.
[http://dx.doi.org/10.1016/j.reuma.2020.05.001] [PMID: 32426001]
[128]
Deftereos SG, Siasos G, Giannopoulos G, Vrachatis DA, Angelidis C, Giotaki SG, et al. The Greek study in the effects of colchicine in COvid-19 complications prevention (GRECCO-19 study): Rationale and study design. Hellenic J Cardiol 2020; 61(1): 42-5.
[129]
Caporali R, Pallavicini FB, Filippini M, et al. Treatment of rheumatoid arthritis with anti-TNF-alpha agents: a reappraisal. Autoimmun Rev 2009; 8(3): 274-80.
[http://dx.doi.org/10.1016/j.autrev.2008.11.003] [PMID: 19017546]
[130]
Valesini G, Iannuccelli C, Marocchi E, Pascoli L, Scalzi V, Di Franco M. Biological and clinical effects of anti-TNFalpha treatment. Autoimmun Rev 2007; 7(1): 35-41.
[http://dx.doi.org/10.1016/j.autrev.2007.03.003] [PMID: 17967723]
[131]
Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunologic features in severe and moderate Coronavirus Disease. J Clin Invest 2019; pii: 137244.
[132]
McDermott JE, Mitchell HD, Gralinski LE, et al. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus. BMC Syst Biol 2016; 10(1): 93.
[http://dx.doi.org/10.1186/s12918-016-0336-6] [PMID: 27663205]
[133]
Chinese Clinical Trial Registry (ChiCTR). Available from: http://www.chictr.org.cn/abouten.aspx.
[134]
Mulhearn B, Bruce IN. Indications for IVIG in rheumatic diseases. Rheumatology (Oxford) 2015; 54(3): 383-91.
[http://dx.doi.org/10.1093/rheumatology/keu429] [PMID: 25406359]
[135]
Galeotti C, Kaveri SV, Bayry J. IVIG-mediated effector functions in autoimmune and inflammatory diseases. Int Immunol 2017; 29(11): 491-8.
[http://dx.doi.org/10.1093/intimm/dxx039] [PMID: 28666326]
[136]
Krause I, Wu R, Sherer Y, Patanik M, Peter JB, Shoenfeld Y. In vitro antiviral and antibacterial activity of commercial intravenous immunoglobulin preparations--a potential role for adjuvant intravenous immunoglobulin therapy in infectious diseases. Transfus Med 2002; 12(2): 133-9.
[http://dx.doi.org/10.1046/j.1365-3148.2002.00360.x] [PMID: 11982967]
[137]
Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect 2020; 9(1): 727-32.
[http://dx.doi.org/10.1080/22221751.2020.1746199] [PMID: 32196410]
[138]
Cao W, Liu X, Bai T, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus Disease 2019. Open Forum Infect Dis 2020; 7(3): a102.
[http://dx.doi.org/10.1093/ofid/ofaa102] [PMID: 32258207]
[139]
Xie Y, Cao S, Li Q, Chen E, Dong H, Zhang W, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect 2020.
[140]
Shi H, Zhou C, He P, Huang S, Duan Y, Wang X, et al. Successful treatment of plasma exchange followed by intravenous immunogloblin in a critically ill patient with 2019 novel coronavirus infection. Int J Antimicrob Agents 2020; 105974.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105974] [PMID: 32298745]
[141]
Jawhara S. Could intravenous immunoglobulin collected from recovered coronavirus patients protect against COVID-19 and strengthen the immune system of new patients? Int J Mol Sci 2020; 21(7): E2272.
[http://dx.doi.org/10.3390/ijms21072272] [PMID: 32218340]
[142]
Shen C, Wang Z, Zhao F, et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA 2020; 323(16): 1582-9.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[143]
Valk SJ, Piechotta V, Chai KL, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a rapid review. Cochrane Database Syst Rev 2020; 5(5): CD013600.
[http://dx.doi.org/10.1002/14651858.CD013600] [PMID: 32406927]
[144]
Gianfrancesco MA, Hyrich KL, Gossec L, et al. Rheumatic disease and COVID-19: initial data from the COVID-19 Global Rheumatology Alliance provider registries. Lancet Rheumatol 2020; 2(5): e250-3.
[http://dx.doi.org/10.1016/S2665-9913(20)30095-3] [PMID: 32309814]
[145]
Gianfrancesco M, Hyrich KL, Al-Adely S, et al. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis 2020; 79(7): 859-66.
[http://dx.doi.org/10.1136/annrheumdis-2020-217871] [PMID: 32471903]
[146]
Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020; 395(10223): 473-5.
[http://dx.doi.org/10.1016/S0140-6736(20)30317-2] [PMID: 32043983]
[147]
Guilpain P, Le Bihan C, Foulongne V, Taourel P, Pansu N, Maria ATJ, et al. Rituximab for granulomatosis with polyangiitis in the pandemic of covid-19: lessons from a case with severe pneumonia. Ann Rheum Dis 2021; 80(1): e10.
[148]
Casillo GM, Mansour AA, Raucci F, et al. Could IL-17 represent a new therapeutic target for the treatment and/or management of COVID-19-related respiratory syndrome? Pharmacol Res 2020; 156: 104791.
[http://dx.doi.org/10.1016/j.phrs.2020.104791] [PMID: 32302707]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy