Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

Role of Nanostructured Biomaterials in the Treatment and Diagnosis of Biological Disorder

Author(s): Sheetal Jha and Rishabha Malviya*

Volume 6, Issue 1, 2021

Published on: 27 October, 2020

Page: [23 - 30] Pages: 8

DOI: 10.2174/2405461505999201027214348

Price: $65

conference banner
Abstract

Background: In the last few decades, nanostructures like nanoparticles, dendrimers, quantum dots, nanotubes, etc., gain significant attention in the field of biomedicine. Recently, various modification techniques were employed for the generation of newly modified nanostructured biomaterials. Nowadays, these biomaterials are exploited for the treatment and diagnosis of various biological disorders.

Objective: The present manuscript aims to describe the various types of nanostructures along with the techniques of modification and their applications in the diagnosis and treatment of biological disorders.

Results and Conclusion: Various modification techniques involved in different reaction methodologies are described in the present manuscript. From the study, it is investigated that the modified nanostructured can be utilized in the diagnosis and treatment of biological disorders. Modification of nanostructured materials introduces superior properties and enables them as the detection tool and treatment kit for biological disorders.

Keywords: Nanomaterials, diagnostic material, nanoformulations, metallic nanoparticles, diagnosis, biomaterials.

Graphical Abstract
[1]
Guarino V, Iafisco M, Spriano S. Nanostructured biomaterials for regenerative medicine. Cambridge: Woodhead Publishing 2019; pp. 1-318.
[2]
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9(1): 1050-74.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[3]
Li Z, Mei S, Dong Y, et al. Functional nanofibrous biomaterials of tailored structures for drug delivery-a critical review. Pharmaceutics 2020; 12(6): 1-23.
[http://dx.doi.org/10.3390/pharmaceutics12060522] [PMID: 32521627]
[4]
Wei G, Ma PX. Nanostructured biomaterials for regeneration. Adv Funct Mater 2008; 18(22): 3566-82.
[http://dx.doi.org/10.1002/adfm.200800662] [PMID: 19946357]
[5]
Erol-Taygun M, Unalan I, Idris MIB, Mano JF, Boccaccini AR. Bioactıve glass-polymer nanocomposites for bone tissue regeneration applicatıons: a revıew. Adv Eng Mater 2019; 21(8): 1-24.
[http://dx.doi.org/10.1002/adem.201900287]
[6]
Tahriri M, Moztarzadeh F, Tahriri A, et al. Evaluation of the in vitro biodegradation and biological behavior of poly (lactic-co-glycolic acid)/nano-fluorhydroxyapatite composite microsphere-sintered scaffold for bone tissue engineering. J Bioact Compat Polym 2018; 33(2): 146-59.
[http://dx.doi.org/10.1177/0883911517720814]
[7]
Tan GZ, Zhou Y. Tunable 3D nanofiber architecture of polycaprolactone by divergence electrospinning for potential tissue engineering applications. Nano-Micro Lett 2018; 10(4): 73.
[http://dx.doi.org/10.1007/s40820-018-0226-0] [PMID: 30417005]
[8]
Wakuda Y, Nishimoto S, Suye SI, Fujita S. Native collagen hydrogel nanofibres with anisotropic structure using core-shell electrospinning. Sci Rep 2018; 8(1): 6248.
[http://dx.doi.org/10.1038/s41598-018-24700-9] [PMID: 29674743]
[9]
Baker WR. Membrane technology and applications. 3rd ed. New York: Wiley 2012.
[http://dx.doi.org/10.1002/9781118359686]
[10]
Tan X, Rodrigue D. A review on porous polymeric membrane preparation. Part I: production techniques with polysulfone and poly (vinylidene fluoride). Polymers (Basel) 2019; 11(7): 1-39.
[http://dx.doi.org/10.3390/polym11071160] [PMID: 31288433]
[11]
Foster JC, Varlas S, Couturaud B, Coe Z, O’Reilly RK. Getting into shape: reflections on a new generation of cylindrical nanostructures’ self-assembly using polymer building blocks. J Am Chem Soc 2019; 141(7): 2742-53.
[http://dx.doi.org/10.1021/jacs.8b08648] [PMID: 30689954]
[12]
Parratt K, Yao N. Nanostructured biomaterials and their applications. Nanomaterials (Basel) 2013; 3(2): 242-71.
[http://dx.doi.org/10.3390/nano3020242] [PMID: 28348334]
[13]
Jain A, Cheng K. The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. J Control Release 2017; 245: 27-40.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.016] [PMID: 27865853]
[14]
Bose S, Robertson SF, Bandyopadhyay A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater 2018; 66: 6-22.
[http://dx.doi.org/10.1016/j.actbio.2017.11.003] [PMID: 29109027]
[15]
Xu T, Zhang N, Nichols HL, Shi D, Wen X. Modification of nanostructured materials for biomedical applications. Mater Sci Eng C 2007; 27: 579-94.
[http://dx.doi.org/10.1016/j.msec.2006.05.029]
[16]
Xia S, Liu X, Wang J, et al. Role of poly (ethylene glycol) grafted silica nanoparticle shape in toughened PLA-matrix nanocomposites. Compos, Part B Eng 2019; 168: 398-405.
[http://dx.doi.org/10.1016/j.compositesb.2019.03.050]
[17]
Xu T, Nichols HL, Zhang N, Wen X. Modification of nano-sized materials for drug deliverynanoscience in biomedicine. Berlin, Heidelberg: Springer 2009; pp. 369-87.
[http://dx.doi.org/10.1007/978-3-540-49661-8_15]
[18]
Cheung KY, Gui S, Deng C, et al. Synthesis of armchair and chiral carbon nanobelts. Chem 2019; 5(4): 838-47.
[http://dx.doi.org/10.1016/j.chempr.2019.01.004]
[19]
Salvador MA, Sousa CP, Maciel CD, et al. Experimental and computational studies of the interactions between carbon nanotubes and ionic liquids used for detection of acetaminophen. Sens Actuators B Chem 2018; 277: 640-6.
[http://dx.doi.org/10.1016/j.snb.2018.09.017]
[20]
Shen Z, Wu J, Yu Y, et al. Comparison of cytotoxicity and membrane efflux pump inhibition in HepG2 cells induced by single-walled carbon nanotubes with different length and functional groups. Sci Rep 2019; 9(1): 7557.
[http://dx.doi.org/10.1038/s41598-019-43900-5] [PMID: 31101842]
[21]
Schneider NS, Darwish AD, Kroto HW, Taylor R, Walton DRM. Formation of fullerols via hydroboration of fullerene-CGO. J Chem Soc Chem Commun 1994; 4: 463-4.
[http://dx.doi.org/10.1039/C39940000463]
[22]
Jiang J, Oberdörster G, Elder A, Gelein R, Mercer P, Biswas P. Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2008; 2(1): 33-42.
[http://dx.doi.org/10.1080/17435390701882478] [PMID: 20827377]
[23]
Rogers NJ, Franklin NM, Apte SC, et al. Physico-chemical behaviour and algal toxicity of nanoparticle CeO2 in freshwater. Environ Chem 2010; 7: 50-60.
[http://dx.doi.org/10.1071/EN09123]
[24]
Wu YL, Fu S, Tok AIY, et al. A dual-colored bio-marker made of doped ZnO nanocrystals. Nanotechnology 2008; 19(34): 345605.
[http://dx.doi.org/10.1088/0957-4484/19/34/345605] [PMID: 21730654]
[25]
Duan Y, Duan R, Liu R, et al. Chitosan-stabilized self-assembled fluorescent gold nanoclusters for cell imaging and biodistribution in vivo . ACS Biomater Sci Eng 2018; 4(3): 1055-63.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00975]
[26]
Yan J, Hou S, Yu Y, et al. The effect of surface charge on the cytotoxicity and uptake of carbon quantum dots in human umbilical cord derived mesenchymal stem cells. Colloids Surf B Biointerfaces 2018; 171: 241-9.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.034] [PMID: 30036791]
[27]
Gunko VM, Turov VV, Chuiko AA. Fundamentals of nanosilica applications for human protection. Surface chemistry in biomedical and environmental 2006; 177-90.
[http://dx.doi.org/10.1007/1-4020-4741-X_16]
[28]
Fenga L, Hea L, Mab Y, Wanga Y. Grafting poly (methyl methacrylate) onto silica nanoparticle surfaces via a facile esterification reaction. Mater Chem Phys 2009; 116(1): 158-63.
[http://dx.doi.org/10.1016/j.matchemphys.2009.03.007]
[29]
Betelu S, Tijunelyte I, Boubekeur-Lecaque L, et al. Evidence of the grafting mechanisms of diazonium salts on gold nanostructures. J Phys Chem C 2016; 120(32): 18158-66.
[http://dx.doi.org/10.1021/acs.jpcc.6b06486]
[30]
Ni C, Wang W, Zhu C, Huang B, Yao B. Grafting polymerization of n-isopropylacrylamide on the surfaces of silica by ATRP and its application in HPLC. Soft Mater 2010; 8(1): 14-28.
[http://dx.doi.org/10.1080/15394451003598395]
[31]
Wu S, Shang Y, Cao A. Mechanical force-induced assembly of one-dimensional nanomaterials. Nano Res 2020; 13(5): 1191-204.
[http://dx.doi.org/10.1007/s12274-019-2560-z]
[32]
Tan SF, Chee SW, Lin G, Mirsaidov U. Direct observation of interactions between nanoparticles and nanoparticle self-assembly in solution. Acc Chem Res 2017; 50(6): 1303-12.
[http://dx.doi.org/10.1021/acs.accounts.7b00063] [PMID: 28485945]
[33]
Liu X, Zhu M, Chen S, et al. Organic-inorganic nanohybrids via directly grafting gold nanoparticles onto conjugated copolymers through the Diels-Alder reaction. Langmuir 2008; 24(20): 11967-74.
[http://dx.doi.org/10.1021/la8020639] [PMID: 18759505]
[34]
Talelli M, Aires A, Marciello M. Protein-modified magnetic nanoparticles for biomedical applications. Curr Org Chem 2016; 20: 1252-61.
[http://dx.doi.org/10.2174/1385272819666150810221009]
[35]
Liu J, Wang X, Zhang W. Atomic force microscopy imaging study of aligning dna by dumbbell-like au-Fe3o4 magnetic nanoparticles. Langmuir 2018; 34(49): 14875-81.
[http://dx.doi.org/10.1021/acs.langmuir.8b01784] [PMID: 30011364]
[36]
Mokari T, Sztrum CG, Salant A, Rabani E, Banin U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat Mater 2005; 4: 855-63.
[http://dx.doi.org/10.1038/nmat1505]
[37]
Li Y, Di Z, Gao J, et al. Heterodimers made of upconversion nanoparticles and metal-organic frameworks. J Am Chem Soc 2017; 139(39): 13804-10.
[http://dx.doi.org/10.1021/jacs.7b07302] [PMID: 28899098]
[38]
Ma X, Jang S, Popescu MN, et al. Reversed janus micro/nanomotors with internal chemical engine. ACS Nano 2016; 10(9): 8751-9.
[http://dx.doi.org/10.1021/acsnano.6b04358] [PMID: 27598543]
[39]
Akkerman QA, Martínez-Sarti L, Goldoni L, et al. Molecular iodine for a general synthesis of binary and ternary inorganic and hybrid organic-inorganic iodide nanocrystals. Chem Mater 2018; 30(19): 6915-21.
[http://dx.doi.org/10.1021/acs.chemmater.8b03295]
[40]
Wang J, Zhao H, Zhu Y, Song Y. Shape-controlled synthesis of CdSe nanocrystals via a programmed microfluidic process. J Phys Chem C 2017; 121(6): 3567-72.
[http://dx.doi.org/10.1021/acs.jpcc.6b10901]
[41]
Zhou J, Zhu M, Meng R, Qin H, Peng X. Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties. J Am Chem Soc 2017; 139(46): 16556-67.
[http://dx.doi.org/10.1021/jacs.7b07434] [PMID: 29094943]
[42]
Peng ZA, Peng X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc 2002; 124(13): 3343-53.
[http://dx.doi.org/10.1021/ja0173167] [PMID: 11916419]
[43]
Yan W, Burgos-Caminal A, Das Gupta T, Moser JE, Sorin F. Direct synthesis of selenium nanowire mesh on a solid substrate and insights into ultrafast photocarrier dynamics. J Phys Chem C 2018; 122(43): 25134-41.
[http://dx.doi.org/10.1021/acs.jpcc.8b08942]
[44]
Patsula V, Horák D, Kučka J, et al. Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model. Sci Rep 2019; 9(1): 10765.
[http://dx.doi.org/10.1038/s41598-019-47262-w] [PMID: 31341232]
[45]
Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 2007; 353(1): 26-32.
[http://dx.doi.org/10.1016/j.bbrc.2006.11.135] [PMID: 17184736]
[46]
Zou L, Peng Q, Wang P, Zhou B. Progress in research and application of HIV-1 TAT-derived cell-penetrating peptide. J Membr Biol 2017; 250(2): 115-22.
[http://dx.doi.org/10.1007/s00232-016-9940-z] [PMID: 27933338]
[47]
Meng LX, Ren Q, Meng Q, et al. Trastuzumab modified silica nanoparticles loaded with doxorubicin for targeted and synergic therapy of breast cancer. Artif Cells Nanomed Biotechnol 2018; 46(sup3): S556-63.
[http://dx.doi.org/10.1080/21691401.2018.1501380] [PMID: 30146920]
[48]
Hattori Y, Maitani Y. Folate-linked nanoparticle-mediated suicide gene therapy in human prostate cancer and nasopharyngeal cancer with herpes simplex virus thymidine kinase. Cancer Gene Ther 2005; 12(10): 796-809.
[http://dx.doi.org/10.1038/sj.cgt.7700844] [PMID: 15891776]
[49]
Crini G. Historical review on chitin and chitosan biopolymers. Environ Chem Lett 2019; 17(4): 1-21.
[http://dx.doi.org/10.1007/s10311-019-00901-0]
[50]
Amin AR, Amin HK. Lipoprotein nanoparticles in diagnosis and treatment of cancer. MOJ Drug Des Dev Ther 2018; 2: 1-4.
[51]
Koo KM, Mainwaring PN, Tomlins SA, Trau M. Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 2019; 16(5): 302-17.
[http://dx.doi.org/10.1038/s41585-019-0178-2] [PMID: 30962568]
[52]
Reinemann C, Strehlitz B. Aptamer-modified nanoparticles and their use in cancer diagnostics and treatment. Swiss Med Wkly 2014; 144: w13908.
[http://dx.doi.org/10.4414/smw.2014.13908] [PMID: 24395443]
[53]
Chung YC, Chen IH, Chen CJ. The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake. Biomaterials 2008; 29(12): 1807-16.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.032] [PMID: 18242693]
[54]
Xue Q, Zhang H, Zhu M, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater 2017; 29(15): 1-6.
[http://dx.doi.org/10.1002/adma.201604847] [PMID: 28185336]
[55]
Lu MY, Tsai CY, Chen HA, et al. Plasmonic enhancement of Au nanoparticle-embedded single-crystalline ZnO nanowire dye-sensitized solar cells. Nano Energy 2016; 20: 264-71.
[http://dx.doi.org/10.1016/j.nanoen.2015.12.026]
[56]
Lau GK, Shrestha M. Ink-jet printing of micro-electro-mechanical systems (MEMS). Micromachines (Basel) 2017; 8(6): 1-19.
[http://dx.doi.org/10.3390/mi8060194]
[57]
Roberto AS, Luz RM, Crespilho N. Nanomaterials for biosensors and implantable biodevices. Heidelberg: Springer 2013; pp. 27-48.
[58]
Ruiz-Sanchez AJ, Montañez MI, Mayorga C, et al. Dendrimer-modified solid supports: nanostructured materials with potential drug allergy diagnostic applications. Curr Med Chem 2012; 19(29): 4942-54.
[http://dx.doi.org/10.2174/0929867311209024942] [PMID: 22963628]
[59]
Lu H, Wang J, Wang T, Zhong J, Bao Y, Hao H. Recent progress on nanostructures for drug delivery applications. J Nanomater 2016; 2016: 1-12.
[http://dx.doi.org/10.1155/2016/5762431]
[60]
Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy