Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Research Article

Nanobiocatalysts: Cu/TiO2-SiO2 Nanoparticles as Tissue-Regeneration Treatment for Diabetic Foot Ulcers: In Vivo Studies

Author(s): Tessy López-Goerne*, Francisco J. Padilla-Godínez, Luis Pérez-Dávalos, Paola Ramírez-Olivares and Daniela Arellano

Volume 9 , Issue 3 , 2020

Page: [230 - 239] Pages: 10

DOI: 10.2174/2211550109999201026085353

Price: $65

Abstract

Background: Diabetic foot ulcers (DFUs) exhibit 80% of prevalence in Mexico. Efficient tissue regeneration therapies are the key factors to avoid amputations.

Objective: In this study, the healing properties of a Cu/TiO2-SiO2 nanobiocatalyst applied in DFUs were analyzed. Furthermore, the morphology and crystalline structures were characterized.

Methods: The nanobiocatalyst was synthesized by a sol-gel patented method proposed by López et al. The compound was characterized by scanning and transmission electron microscopies and Xray diffraction. The nanoparticles were embedded in a polymeric gel matrix (nanogel), which was utilized as a conservative therapy for chronic non-healing DFU in 8 patients with several comorbidities and chronic complications of diabetes. Wound debridement was performed prior to the nanogel administration. The nanogel was applied over the ulcers on alternate days for different periods of time, depending on the case.

Results: Significant improvement in terms of enhanced epithelialization was observed in the wound healing process after a few applications. Infection spread was limited, and tissue regeneration was enhanced, with significant healing of the ulcers observed in each case. Furthermore, the successful outcome allowed to avoid the amputations that were proposed to some of the patients.

Conclusion: The study proved the efficiency of the nanobiocatalyst as a safe, conservative therapy for chronic non-healing DFUs. Further investigation must be carried out to fully elucidate the wound-healing mechanisms of the nanoparticles.

Keywords: Nanobiocatalyst, diabetic foot ulcer, catalytic nanomedicine, Cu/TiO2-SiO2, nanobiomaterial, tissue regeneration, epithelialization.

« Previous
Graphical Abstract
[1]
Gojka R. Diabetes. Available from: WHO 2018.https://www.who.int/health-topics/diabetes#tab=tab_1
[2]
Mora-Morales E. Estado actual de la diabetes mellitus en el mundo. Acta Med Costarric 2014; 56(2): 44-6.
[3]
Méndola J, Mediavilla Bravo J. Principales estudios de intervención (ensayos clínicos) en la diabetes tipo 2: Implicaciones en atención primaria. Aten Primaria 2001; 28(7): 478-83.
[http://dx.doi.org/10.1016/S0212-6567(01)70425-8] [PMID: 11718644]
[4]
Cortés-Peñaloza JL. Diabetes-educación-pobreza: El trinomio en que se debate la sociedad mexicana. Horizonte Sanitario 2010; 9(1): 4-8.
[http://dx.doi.org/10.19136/hs.a9n1.157]
[5]
Riveros A, Cortázar-Palapa J, Alcázar LF, Sánchez-Sosa JJ. Efectos de una intervención cognitivo-conductual en la calidad de vida, ansiedad, depresión y condición médica de pacientes diabéticos e hipertensos esenciales. Int J Clin Health Psychol 2004; 5(3): 445-62.
[6]
Salcedo-Álvarez RA, Rivas-Herrera JC, González-Caamaño BC, Zárate-Grajales RA, Villalobos-San-Luis S. Per capita expenditures in health, nursery coverage and diabetes in Mexico. Revista CONAMED 2016; 21(3): 120-5.
[7]
García-Barrado MJ, Iglesias MC, Mortinos J. Fármacos antidiabéticos Insulinas y antidiabéticos oralesVelázquez Farmacología básica y clínica. (18th ed). Buenos Aires: Editorial Médica Panamericana. 2008; pp. 621-44.
[8]
Brouwer RJ, Lalieu RC, Hoencamp R, van Hulst RA, Ubbink DT. A systematic review and meta-analysis of hyperbaric oxygen therapy for diabetic foot ulcers with arterial insufficiency. J Vasc Surg 2020; 71(2): 682-692.e1.
[http://dx.doi.org/10.1016/j.jvs.2019.07.082] [PMID: 32040434]
[9]
Sun JJ, Chowdhury MM, Sadat U, Hayes PD, Tang TY. Mechanochemical ablation for treatment of truncal venous insufficiency: A review of the current literature. J Vasc Interv Radiol 2017; 28(10): 1422-31.
[http://dx.doi.org/10.1016/j.jvir.2017.07.002] [PMID: 28811080]
[10]
Lichota A, Gwozdzinski L, Gwozdzinski K. Therapeutic potential of natural compounds in inflammation and chronic venous insufficiency. Eur J Med Chem 2019; 176: 68-91.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.075] [PMID: 31096120]
[11]
Álvarez-Lezama NG, Sánchez-Cataneo A, Pérez-Quiroga CL. Prevalence of venous insufficiency in university students and risk factors correlated with clinical stage (ceap c 1 and 2). Dermatología CMQ 2017; 15(4): 222-6.
[12]
Pérez-Rodríguez MC, Cruz-Ortíz M, Reyes-Laris P, Mendoza-Zapata JG, Hernández-Ibarra LE. Care knowledge and habits effect of an educational intervention to reduce the risk of diabetic foot. Cienc Enferm 2015; 21(3): 22-36.
[13]
Martínez de Jesús FR, Guerrero-Torres G, Ochoa-Herrera P, Anaya-Prado R. Diagnosis, classification, and treatment of infections in the diabetic foot. Cir Gen 2012; 34(3): 199-205.
[14]
Nanomedicina H-GA. INCyTU 2019; 32: 1-6. Available from: https://www.foroconsultivo.org.mx/INCyTU/index.php/notas/137-32-nanomedicina-2
[15]
Gupta AS. Nanomedicine approaches in vascular disease: A review. Nanomedicine (Lond) 2011; 7(6): 763-79.
[http://dx.doi.org/10.1016/j.nano.2011.04.001] [PMID: 21601009]
[16]
Gu Z, Aimetti AA, Wang Q, et al. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano 2013; 7(5): 4194-201.
[http://dx.doi.org/10.1021/nn400630x] [PMID: 23638642]
[17]
Li C, Liu X, Liu Y, et al. Glucose and H2O2 dual-sensitive nanogels for enhanced glucose-responsive insulin delivery. Nanoscale 2019; 11(18): 9163-75.
[http://dx.doi.org/10.1039/C9NR01554J] [PMID: 31038150]
[18]
Lemmerman LR, Das D, Higuita-Castro N, Mirmira RG, Gallego-Pérez D. Nanomedicine-based strategies for diabetes: Diagnostics, monitoring and treatment. Trends Endocrinol Metab 2020; 31(6): 448-58.
[http://dx.doi.org/10.1016/j.tem.2020.02.001] [PMID: 32396845]
[19]
López-Goerne T, Ramírez P, Álvarez D, et al. Physicochemical properties and in vivo evaluation of Pt/TiO2-SiO2 nanopowders. Nanomedicine (Lond) 2018; 13(17): 2171-85.
[http://dx.doi.org/10.2217/nnm-2018-0078] [PMID: 30277422]
[20]
Lopez T. Sol-gel nanostructured and biocompatible platinum-titania and platinum-silica biocatalysts nanostructured and biocompatible for use in cancer treatment. J Nanomater Mol Nanotechnol 2017; 6(4.)
[http://dx.doi.org/10.4172/2324-8777.1000227]
[21]
López T, Larraza P, Gómez E. Platinum and copper supported in functionalized titania nanoparticles for the treatment of cervical and prostate cancer. J Nanomater Mol Nanotechnol. 2017; 6(4).
[22]
López T, Cuevas JL, Ilharco L, Ramírez P, Rodríguez-Reinoso F, Rodríguez-Castellón E. XPS characterization and E. coli DNA degradation using functionalized Cu/TiO2 nanobiocatalysts. Mol Catal 2018; 449: 62-71.
[23]
López T, Ortiz-Islas E, Guevara P, Ríos JV. Preparation and characterization of copper compounds co-gelled with nanostructured TiO2 materials to be used in cancer treatment. Sci Adv Mater 2012; 4(5): 579-83.
[http://dx.doi.org/10.1166/sam.2012.1322]
[24]
International Diabetes Federation; Clinical practice recommendation on the diabetic foot: A guide for health care professionals. Brussels: International Diabetes Federation. 2017; pp. 42-61.
[25]
Embil JM, Papp K, Sibbald G, et al. Recombinant human platelet-derived growth factor-BB (becaplermin) for healing chronic lower extremity diabetic ulcers: An open-label clinical evaluation of efficacy. Wound Repair Regen 2000; 8(3): 162-8.
[http://dx.doi.org/10.1046/j.1524-475x.2000.00162.x] [PMID: 10886806]
[26]
Frykberg RG, Zgonis T, Armstrong DG, et al. American College of Foot and Ankle Surgeons. Diabetic foot disorders. A clinical practice guideline (2006 revision). J Foot Ankle Surg 2006; 45(5)(Suppl.): S1-S66.
[http://dx.doi.org/10.1016/S1067-2516(07)60001-5] [PMID: 17280936]
[27]
American Diabetes Association. Consensus development conference on diabetic foot wound care: 7-8 April 1999, Boston, Massachusetts. Diabetes Care 1999; 22(8): 1354-60.
[http://dx.doi.org/10.2337/diacare.22.8.1354] [PMID: 10480782]
[28]
Castro G, Liceaga G, Arrioja A, et al. Guía clínica basada en evidencia para el manejo del pie diabético. Med Int Mex 2009; 26(6): 481-526.
[29]
Contreras-Fariñas R. Compresión inelástica en una paciente con úlcera mixta. Rev Enferm Vasc 2017; 1(1): 11-4.
[http://dx.doi.org/10.35999/rdev.v1i1.19]
[30]
Banu A, Noorul Hassan MM, Rajkumar J, Srinivasa S. Spectrum of bacteria associated with diabetic foot ulcer and biofilm formation: A prospective study. Australas Med J 2015; 8(9): 280-5.
[http://dx.doi.org/10.4066/AMJ.2015.2422] [PMID: 26464584]
[31]
López-Goerne T, Rodríguez-Pérez CE, Álvarez-Cordero R. Uso de la nanopartícula de SiO2-TiO2 en el tratamiento de úlceras en pie diabético: comunicación preliminar. Rev Fac Med UNAM 2015; 58(3): 5-12.
[32]
López-Goerne T, Arévalo A, Ramírez P, Larraza P. Copper nanoparticles as treatment of diabetic foot ulcers: A case report. Glob Adv Res J Med Med Sci 2017; 6(10): 267-70.
[33]
López-Goerne TM, Álvarez-Lemus MA, Ángeles-Morales V, Gómez-López E, Castillo-Ocampo P. Study of bacterial sensitiviy to Ag-TiO2 nanoparticles. J Nanomed Nanotechnol 2012; S5: 1-7.
[34]
López T, Figueras F, Manjarrez J, et al. Catalytic nanomedicine: A new field in antitumor treatment using supported platinum nanoparticles. In vitro DNA degradation and in vivo tests with C6 animal model on Wistar rats. Eur J Med Chem 2010; 45(5): 1982-90.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.043] [PMID: 20153564]
[35]
ALGhanem A. Fernandes G, Visser M, Dziak R, Renné WG, Sabatini C. Biocompatibility and bond degradation of poly-acrylic acid coated copper iodide-adhesives. Dent Mater 2017; 33(9): e336-47.
[http://dx.doi.org/10.1016/j.dental.2017.06.010] [PMID: 28712739]
[36]
Carvalho SM, Leonel AG, Mansur AAP, Carvalho IC, Krambrock K, Mansur HS. Bifunctional magnetopolymersomes of iron oxide nanoparticles and carboxymethylcellulose conjugated with doxorubicin for hyperthermo-chemotherapy of brain cancer cells. Biomater Sci 2019; 7(5): 2102-22.
[http://dx.doi.org/10.1039/C8BM01528G] [PMID: 30869664]
[37]
Chang CC, Yang Y, Gao DY, et al. Docetaxel-carboxymethylcellulose nanoparticles ameliorate CCl4-induced hepatic fibrosis in mice. J Drug Target 2018; 26(5-6): 516-24.
[http://dx.doi.org/10.1080/1061186X.2017.1419358] [PMID: 29251522]
[38]
Pettignano A, Charlot A, Fleury E. Carboxyl-functionalized derivatives of carboxymethyl cellulose: Towards advanced biomedical applications. Polym Rev (Phila Pa) 2019; 59(3): 510-60.
[http://dx.doi.org/10.1080/15583724.2019.1579226]
[39]
Sabatini C, Mennito AS, Wolf BJ, Pashley DH, Renné WG. Incorporation of bactericidal poly-acrylic acid modified copper iodide particles into adhesive resins. J Dent 2015; 43(5): 546-55.
[http://dx.doi.org/10.1016/j.jdent.2015.02.012] [PMID: 25731156]
[40]
Zheng LL, Vanchinathan V, Dalal R, et al. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea. J Biomed Mater Res A 2015; 103(10): 3157-65.
[http://dx.doi.org/10.1002/jbm.a.35453] [PMID: 25778285]
[41]
Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem Soc Rev 2017; 46(14): 4218-44.
[http://dx.doi.org/10.1039/C6CS00636A] [PMID: 28585944]
[42]
Hunt TK, Niinikoski J, Zederfeldt B. Role of oxygen in repair processes. Acta Chir Scand 1972; 138(28): 109-10.
[43]
Siddiqui A, Galiano RD, Connors D, Gruskin E, Wu L, Mustoe TA. Differential effects of oxygen on human dermal fibroblasts: Acute versus chronic hypoxia. Wound Repair Regen 1996; 4(2): 211-8.
[http://dx.doi.org/10.1046/j.1524-475X.1996.40207.x] [PMID: 17177815]
[44]
Rabkin JM, Hunt TK. Infection and oxygen. In: In: Problem wounds: The role of oxygen New York: Elsevier. 1998; pp. 1-16.
[45]
Saaristo A, Tammela T, Farkkilā A, et al. Vascular endothelial growth factor-C accelerates diabetic wound healing. Am J Pathol 2006; 169(3): 1080-7.
[http://dx.doi.org/10.2353/ajpath.2006.051251] [PMID: 16936280]
[46]
Gianino E, Miller C, Gilmore J. Smart wound dressings for diabetic chronic wounds. Bioengineering (Basel) 2018; 5(3): 51.
[http://dx.doi.org/10.3390/bioengineering5030051] [PMID: 29949930]
[47]
Skocaj M, Filipic M, Petkovic J, Novak S. Titanium dioxide in our everyday life; is it safe? Radiol Oncol 2011; 45(4): 227-47.
[http://dx.doi.org/10.2478/v10019-011-0037-0] [PMID: 22933961]
[48]
Piszczek P, Lewandowska Ż, Radtke A, et al. Biocompatibility of titania nanotube coatings enriched with silver nanograins by chemical vapor deposition. Nanomaterials (Basel) 2017; 7(9): 274.
[http://dx.doi.org/10.3390/nano7090274] [PMID: 28914821]
[49]
Sidane D, Rammal H, Beljebbar A, et al. Biocompatibility of sol-gel hydroxyapatite-titania composite and bilayer coatings. Mater Sci Eng C 2017; 72: 650-8.
[http://dx.doi.org/10.1016/j.msec.2016.11.129] [PMID: 28024634]
[50]
Pecoraro RE, Reiber GE, Burgess EM. Pathways to diabetic limb amputation. Basis for prevention. Diabetes Care 1990; 13(5): 513-21.
[http://dx.doi.org/10.2337/diacare.13.5.513] [PMID: 2351029]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy