Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Overview: Enzyme-catalyzed Enantioselective Biotransformation of Chiral Active Compounds Used in Hypertension Treatment

Author(s): Joanna Chałupka, Adam Sikora*, Aleksandra Kozicka and Michał Piotr Marszałł

Volume 24, Issue 23, 2020

Page: [2782 - 2791] Pages: 10

DOI: 10.2174/1385272824999201020204256

Price: $65

conference banner
Abstract

Enzymatic kinetic resolution is one of the methods which allows for the synthesis of enantiomerically pure various active pharmaceutical ingredients. In contrast to chemical routes, enzymatic reactions have characteristics, including mild reaction conditions, a few byproducts, and relatively high activity of the used enzymes. β-adrenolytic drugs are widely used in the treatment of hypertension and cardiovascular disorders. Due to the fact that β- blockers possess an asymmetric carbon atom in their structure, they are presented in two enantiomeric forms. It was reported by many studies that only the (S)-enantiomers of these drugs possess the desired therapeutic effect, whereas the administration of the racemate may cause dangerous side effects, such as bronchoconstriction or diabetes. Nevertheless, β- blockers are still commercially available drugs mainly used in medicine as racemates, whereas there are several methods that are widely used in order to obtain enantiomerically pure compounds.

Keywords: Enzyme, kinetic resolution, lipase, cardiology, chiral compounds, β-blockers.

Graphical Abstract
[1]
Ghanem, A. Trends in lipase-catalyzed asymmetric access to enantiomerically pure/enriched compounds. Tetrahedron, 2007, 63(8), 1721-1754.
[http://dx.doi.org/10.1016/j.tet.2006.09.110]
[2]
Tahir, H.M.; Abd Rahman, R.; Leow, A.T.C.; Ali, M.S.M. Expression, characterisation and homology modelling of a novel Hormone-Sensitive Lipase (HSL)-like esterase from Glaciozyma antarctica. Catalysts, 2020, 10(1), 58.
[http://dx.doi.org/10.3390/catal10010058]
[3]
Liu, Y.Q.; Liu, J.G.; Kong, J.; Wang, R.; Liu, M.; Strappe, P.; Blanchard, C.; Zhou, Z.K. Citrate esterification of debranched waxy maize starch: structural, physicochemical and amylolysis properties. Food Hydrocoll., 2020, 2020105704
[http://dx.doi.org/10.1016/j.foodhyd.2020.105704]
[4]
Grajales-Hernández, D.A.; Velasco-Lozano, S.; Armendáriz-Ruiz, M.A.; Rodríguez-González, J.A.; Camacho-Ruíz, R.M.; Asaff-Torres, A.; López-Gallego, F.; Mateos-Díaz, J.C. Carrier-bound and carrier-free immobilization of type A feruloyl esterase from Aspergillus niger: searching for an operationally stable heterogeneous biocatalyst for the synthesis of butyl hydroxycinnamates. J. Biotechnol., 2020, 316, 6-16.
[http://dx.doi.org/10.1016/j.jbiotec.2020.04.004] [PMID: 32305629]
[5]
Sannino, F.; Costantini, A.; Ruffo, F.; Aronne, A.; Venezia, V.; Califano, V. Covalent immobilization of β-glucosidase into mesoporous silica nanoparticles from anhydrous acetone enhances its catalytic performance. Nanomaterials (Basel), 2020, 10(1)e108
[http://dx.doi.org/10.3390/nano10010108] [PMID: 31948120]
[6]
Malar, C.G.; Seenuvasan, M.; Kumar, K.S.; Kumar, A.; Parthiban, R. Review on surface modification of nanocarriers to overcome diffusion limitations: an enzyme immobilization aspect. Biochem. Eng. J., 2020, 2020157574
[http://dx.doi.org/10.1016/j.bej.2020.107574]
[7]
Bezerra, R.M.; Monteiro, R.R.C.; Neto, D.M.A.; da Silva, F.F.M.; de Paula, R.C.M.; de Lemos, T.L.G.; Fechine, P.B.A.; Correa, M.A.; Bohn, F.; Gonçalves, L.R.B.; Dos Santos, J.C.S. A new heterofunctional support for enzyme immobilization: PEI functionalized Fe3O4 MNPs activated with divinyl sulfone. Application in the immobilization of lipase from Thermomyces lanuginosus. Enzyme Microb. Technol., 2020, 138109560
[http://dx.doi.org/10.1016/j.enzmictec.2020.109560] [PMID: 32527529]
[8]
Can, H.; Yildiz, T.; Onar, H.C. Synthesis of chiral 1,3-keto-acetates through enzymatic kinetic resolution with amano lipase from Pseudomonas fluorescens. ChemistrySelect, 2020, 5(25), 7543-7547.
[http://dx.doi.org/10.1002/slct.202001987]
[9]
Wang, B.; Zhu, B.L.; Gong, J.; Weng, J.S.; Xia, F.F.; Liu, W.Q. Resolution of racemic1-(4-methoxyphenyl) ethanol using immobilized lipase with high substrate tolerance. Biochem. Eng. J., 2020, 2020107559
[http://dx.doi.org/10.1016/j.bej.2020.107559]
[10]
Blaszczyk, J.; Kielbasinski, P. Quarter of a century after: a glimpse at the conformation and mechanism of Candida antarctica Lipase B. Crystals (Basel), 2020, 10(5), 404.
[http://dx.doi.org/10.3390/cryst10050404]
[11]
Liu, D.M.; Dong, C. Recent advances in nano-carrier immobilized enzymes and their applications. Process Biochem., 2020, 92, 464-475.
[http://dx.doi.org/10.1016/j.procbio.2020.02.005]
[12]
Zhang, Y.Y.; Sun, Y.J.; Tang, H.; Zhao, Q.X.; Ren, W.J.; Lv, K.Y.; Yang, F.K.; Wang, F.Y.; Liu, J.H. One-pot enzymatic synthesis of enantiopure 1,3-oxathiolanes using Trichosporon laibachii lipase and the kinetic model. Org. Process Res. Dev., 2020, 24(4), 579-587.
[http://dx.doi.org/10.1021/acs.oprd.0c00010]
[13]
Feng, X.; Guo, J.; Zhang, R.; Liu, W.; Cao, Y.; Xian, M.; Liu, H. An aminotransferase from Enhydrobacter aerosaccus to obtain optically pure β-phenylalanine. ACS Omega, 2020, 5(14), 7745-7750.
[http://dx.doi.org/10.1021/acsomega.9b03416] [PMID: 32309682]
[14]
Sirén, S.; Dahlström, K.M.; Puttreddy, R.; Rissanen, K.; Salminen, T.A.; Scheinin, M.; Li, X.G.; Liljeblad, A. Candida antarctica Lipase A-based enantiorecognition of a highly strained 4-Dibenzocyclooctynol (DIBO) used for PET imaging. Molecules, 2020, 25(4)e879
[http://dx.doi.org/10.3390/molecules25040879] [PMID: 32079253]
[15]
Diaz-Vidal, T.; Rosales-Rivera, L.C.; Mateos-Diaz, J.C.; Rodriguez, J.A. A series of novel esters of capsaicin analogues catalyzed by Candida antarctica lipases. Biotechnol. Bioprocess Eng., 2020, 25(1), 94-103.
[http://dx.doi.org/10.1007/s12257-019-0290-4]
[16]
Hegyesi, N.; Hodosi, E.; Polyák, P.; Faludi, G.; Balogh-Weiser, D.; Pukánszky, B. Controlled degradation of poly-ε-caprolactone for resorbable scaffolds. Colloids Surf. B Biointerf., 2020, 186110678
[http://dx.doi.org/10.1016/j.colsurfb.2019.110678] [PMID: 31812078]
[17]
Lokha, Y.; Arana-Peña, S.; Rios, N.S.; Mendez-Sanchez, C.; Gonçalves, L.R.B.; Lopez-Gallego, F.; Fernandez-Lafuente, R. Modulating the properties of the lipase from Thermomyces lanuginosus immobilized on octyl agarose beads by altering the immobilization conditions. Enzyme Microb. Technol., 2020, 133109461
[http://dx.doi.org/10.1016/j.enzmictec.2019.109461] [PMID: 31874681]
[18]
Su, A.; Kiokekli, S.; Naviwala, M.; Shirke, A.N.; Pavlidis, I.V.; Gross, R.A. Cutinases as stereoselective catalysts: specific activity and enantioselectivity of cutinases and lipases for menthol and its analogs. Enzyme Microb. Technol., 2020, 133109467
[http://dx.doi.org/10.1016/j.enzmictec.2019.109467] [PMID: 31874689]
[19]
Shin, M.; Seo, J.; Baek, Y.; Lee, T.; Jang, M.; Park, C. Novel and efficient synthesis of phenethyl formate via enzymatic esterification of formic acid. Biomolecules, 2020, 10(1)e70
[http://dx.doi.org/10.3390/biom10010070] [PMID: 31906270]
[20]
Nagaroor, V.; Gummadi, S.N. Biochemical characterization of an esterase from Clostridium acetobutylicum with novel GYSMG pentapeptide motif at the catalytic domain. J. Ind. Microbiol. Biotechnol., 2020, 47(2), 169-181.
[http://dx.doi.org/10.1007/s10295-019-02253-8] [PMID: 31807968]
[21]
Ma, Z.; Mi, Y.; Han, X.; Li, H.; Tian, M.; Duan, Z.; Fan, D.; Ma, P. Transformation of ginsenoside via deep eutectic solvents based on choline chloride as an enzymatic reaction medium. Bioprocess Biosyst. Eng., 2020, 43(7), 1195-1208.
[http://dx.doi.org/10.1007/s00449-020-02314-8] [PMID: 32140900]
[22]
Marchut-Mikolajczyk, O.; Drożdżyński, P.; Struszczyk-Świta, K. Biodegradation of slop oil by endophytic Bacillus cereus EN18 coupled with lipase from Rhizomucor miehei (Palatase®). Chemosphere, 2020, 250126203
[http://dx.doi.org/10.1016/j.chemosphere.2020.126203] [PMID: 32092570]
[23]
Kim, T.H.; Kang, S.H.; Han, J.E.; Seo, E.J.; Jeon, E.Y.; Choi, G.E.; Park, J.B.; Oh, D.K. Multilayer engineering of enzyme cascade catalysis for one-pot preparation of nylon monomers from renewable fatty acids. ACS Catal., 2020, 10(9), 4871-4878.
[http://dx.doi.org/10.1021/acscatal.9b05426]
[24]
Jiang, Y.; Li, Z.; Zheng, S.; Xu, H.; Zhou, Y.J.J.; Gao, Z.; Meng, C.; Li, S. Establishing an enzyme cascade for one-pot production of α-olefins from low-cost triglycerides and oils without exogenous H2O2 addition. Biotechnol. Biofuels, 2020, 13(1), 52.
[http://dx.doi.org/10.1186/s13068-020-01684-1] [PMID: 32190117]
[25]
Gomes, A.; Brito, M.V.; Marques, R.A.; Lima, L.B.; Cavalcante, I.M.; Vieira, T.D.N.; Nunes, F.M.; Lima, M.A.S.; Uchoa, D.E.; Lima, C.S.; Silva, G.S.; Candido, J.R.; Lima-Neto, P.; Mattos, M.C.; de Oliveira, F.L.S.; Zanatta, G.; Oliveira, M.C.F. Multi-step bioconversion of annonalide by Fusarium oxysporum f. sp. tracheiphilum and theoretical investigation of the decarboxylase pathway. J. Mol. Struct., 2020, 1204127514
[http://dx.doi.org/10.1016/j.molstruc.2019.127514]
[26]
Elgharbawy, A.A.M.; Moniruzzaman, M.; Goto, M. Recent advances of enzymatic reactions in ionic liquids: part II. Biochem. Eng. J., 2020, 2020, 154.
[http://dx.doi.org/10.1016/j.bej.2019.107426]
[27]
Zhang, F.; Zhu, C.T.; Peng, Q.M.; Wang, F.Q.; Sheng, S.; Wu, Q.Y.; Wang, J. Enhanced permeability of recombinant E. coli cells with deep eutectic solvent for transformation of rutin. J. Chem. Technol. Biotechnol., 2020, 95(2), 384-393.
[http://dx.doi.org/10.1002/jctb.5949]
[28]
Perez-Venegas, M.; Tellez-Cruz, M.M.; Solorza-Feria, O.; Lopez-Munguia, A.; Castillo, E.; Juaristi, E. Thermal and mechanical stability of immobilized Candida antarctica Lipase B: an approximation to mechanochemical energetics in enzyme catalysis. ChemCatChem, 2020, 12(3), 803-811.
[http://dx.doi.org/10.1002/cctc.201901714]
[29]
Lima, R.N.; dos Anjos, C.S.; Orozco, E.V.M.; Porto, A.L.M. Versatility of Candida antarctica lipase in the amide bond formation applied in organic synthesis and biotechnological processes. Molecular Catalysis, 2019, 466, 75-105.
[http://dx.doi.org/10.1016/j.mcat.2019.01.007]
[30]
Lindeque, R.M.; Woodley, J.M. Reactor selection for effective continuous biocatalytic production of pharmaceuticals. Catalysts, 2019, 9(3), 262.
[http://dx.doi.org/10.3390/catal9030262]
[31]
Xing, X.; Jia, J.Q.; Zhang, J.F.; Zhou, Z.W.; Li, J.; Wang, N.; Yu, X.Q. CALB Immobilized onto magnetic nanoparticles for efficient kinetic resolution of racemic secondary alcohols: long-term stability and reusability. Molecules, 2019, 24(3)e490
[http://dx.doi.org/10.3390/molecules24030490] [PMID: 30704049]
[32]
Zhao, Z.P.; Zhou, M.C.; Liu, R.L. Recent developments in carriers and non-aqueous solvents for enzyme immobilization. Catalysts, 2019, 9(8), 647.
[http://dx.doi.org/10.3390/catal9080647]
[33]
Craveiro, R.; Meneses, L.; Durazzo, L.; Rocha, A.; Silva, J.M.; Reis, R.L.; Barreiros, S.; Duarte, A.R.C.; Paiva, A. Deep eutectic solvents for enzymatic esterification of racemic menthol. ACS Sustain. Chem. Eng., 2019, 7(24), 19943-19950.
[http://dx.doi.org/10.1021/acssuschemeng.9b05434]
[34]
Rios, N.S.; Morais, E.G.; Dos Santos Galvão, W.; Neto, D.M.A.; Dos Santos, J.C.S.; Bohn, F.; Correa, M.A.; Fechine, P.B.A.; Fernandez-Lafuente, R.; Gonçalves, L.R.B. Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents. Int. J. Biol. Macromol., 2019, 141, 313-324.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.003] [PMID: 31491511]
[35]
Nadar, S.S.; Rathod, V.K. One pot synthesis of α-amylase metal organic framework (MOF)-sponge via dip-coating technique. Int. J. Biol. Macromol., 2019, 138, 1035-1043.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.099] [PMID: 31325508]
[36]
Falcone, N.; Shao, T.; Rashid, R.; Kraatz, H.B. Enzyme entrapment in amphiphilic myristyl-phenylalanine hydrogels. Molecules, 2019, 24(16)e2884
[http://dx.doi.org/10.3390/molecules24162884] [PMID: 31398913]
[37]
Suman, S.K.; Patnam, P.L.; Ghosh, S.; Jain, S.L. Chicken feather derived novel support material for immobilization of laccase and its application in oxidation of veratryl alcohol. ACS Sustain. Chem.& Eng., 2019, 7(3), 3464-3474.
[http://dx.doi.org/10.1021/acssuschemeng.8b05679]
[38]
Cha, H.J.; Park, J.B.; Park, S. Esterification of secondary alcohols and multi-hydroxyl compounds by Candida antarctica Lipase B and subtilisin. Biotechnol. Bioprocess Eng., 2019, 24(1), 41-47.
[http://dx.doi.org/10.1007/s12257-018-0379-1]
[39]
Xu, Y.; Li, F.; Yang, K.X.; Qiao, Y.G.; Yan, Y.J.; Yan, J.Y. A facile and robust non-natural three enzyme biocatalytic cascade based on Escherichia coli surface assembly for fatty alcohol production. Energy Convers. Manage., 2019, 181, 501-506.
[http://dx.doi.org/10.1016/j.enconman.2018.12.042]
[40]
Oelschlägel, M.; Zimmerling, J.; Tischler, D.; Review, A. A review: the styrene metabolizing cascade of side-chain oxygenation as biotechnological basis to gain various valuable compounds. Front. Microbiol., 2018, 9, 490.
[http://dx.doi.org/10.3389/fmicb.2018.00490] [PMID: 29623070]
[41]
Fraatz, M.A.; Goldmann, M.; Geissler, T.; Gross, E.; Backes, M.; Hilmer, J.M.; Ley, J.; Rost, J.; Francke, A.; Zorn, H. Biotechnological production of methyl-branched aldehydes. J. Agric. Food Chem., 2018, 66(10), 2387-2392.
[http://dx.doi.org/10.1021/acs.jafc.6b04793] [PMID: 29534574]
[42]
Seo, E.J.; Yeon, Y.J.; Seo, J.H.; Lee, J.H.; Boñgol, J.P.; Oh, Y.; Park, J.M.; Lim, S.M.; Lee, C.G.; Park, J.B. Enzyme/whole-cell biotransformation of plant oils, yeast derived oils, and microalgae fatty acid methyl esters into n-nonanoic acid, 9-hydroxynonanoic acid, and 1,9-nonanedioic acid. Bioresour. Technol., 2018, 251, 288-294.
[http://dx.doi.org/10.1016/j.biortech.2017.12.036] [PMID: 29288957]
[43]
García-Silvera, E.E.; Martínez-Morales, F.; Bertrand, B.; Morales-Guzmán, D.; Rosas-Galván, N.S.; León-Rodríguez, R.; Trejo-Hernández, M.R. Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production. Biotechnol. Appl. Biochem., 2018, 65(2), 156-172.
[http://dx.doi.org/10.1002/bab.1565] [PMID: 28444972]
[44]
Memarpoor-Yazdi, M.; Karbalaei-Heidari, H.R.; Doroodmand, M.M. Enantioselective hydrolysis of ibuprofen ethyl ester by a thermophilic immobilized lipase, ELT, from Rhodothermus marinus. Biochem. Eng. J., 2018, 130, 55-65.
[http://dx.doi.org/10.1016/j.bej.2017.11.016]
[45]
Sharma, A.; Meena, K.R.; Kanwar, S.S. Molecular characterization and bioinformatics studies of a lipase from Bacillus thermoamylovorans BHK67. Int. J. Biol. Macromol., 2018, 107(Pt B), 2131-2140.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.092] [PMID: 29051101]
[46]
Xie, W.L.; Huang, M.Y. Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: characterization and application for biodiesel production. Energy Convers. Manage., 2018, 159, 42-53.
[http://dx.doi.org/10.1016/j.enconman.2018.01.021]
[47]
Aghababaie, M.; Beheshti, M.; Bordbar, A.K.; Razmjou, A. Novel approaches to immobilize Candida rugosa lipase on nanocomposite membranes prepared by covalent attachment of magnetic nanoparticles on poly acrylonitrile membrane. RSC Adv., 2018, 8(9), 4561-4570.
[http://dx.doi.org/10.1039/C7RA11866J]
[48]
Arana-Pena, S.; Lokha, Y.; Fernandez-Lafuente, R. Immobilization of eversa lipase on octyl agarose beads and preliminary characterization of stability and activity features. Catalysts, 2018, 8(11), 511.
[http://dx.doi.org/10.3390/catal8110511]
[49]
Adnan, M.; Li, K.; Xu, L.; Yan, Y.J. X-Shaped ZIF-8 for immobilization Rhizomucor miehei lipase via encapsulation and its application toward biodiesel production. Catalysts, 2018, 8(3), 96.
[http://dx.doi.org/10.3390/catal8030096]
[50]
Rahmayetty; Whulanza, Y.; Sukirno; Rahman, S. F.; Suyono, E. A.; Yohda, M.; Gozan, M., Use of Candida rugosa lipase as a biocatalyst for L-lactide ring-opening polymerization and polylactic acid production. Biocatal. Agric. Biotechnol., 2018, 16, 683-691.
[http://dx.doi.org/10.1016/j.bcab.2018.09.015]
[51]
Wang, F.Q.; He, S.; Zhu, C.T.; Rabausch, U.; Streit, W.; Wang, J. The combined use of a continuous-flow microchannel reactor and ionic liquid cosolvent for efficient biocatalysis of unpurified recombinant enzyme. J. Chem. Technol. Biotechnol., 2018, 93(9), 2671-2680.
[http://dx.doi.org/10.1002/jctb.5621]
[52]
Musa, N.; Latip, W.; Abd Rahman, R.N.Z.; Salleh, A.; Ali, M.S.M. Immobilization of an antarctic pseudomonas AMS8 lipase for low temperature ethyl hexanoate synthesis. Catalysts, 2018, 8(6), 234.
[http://dx.doi.org/10.3390/catal8060234]
[53]
Kianmehr, A.; Oladnabi, M.; Mahrooz, A.; Ansari, J.; Mahdizadeh, R. Enzymatic characterization of a NADH-dependent diaphorase from Lysinibacillus sp. strain PAD-91. Protein Expr. Purif., 2018, 146, 1-7.
[http://dx.doi.org/10.1016/j.pep.2018.01.005] [PMID: 29414067]
[54]
Tian, K.; Tai, K.; Chua, B.J.W.; Li, Z.; Li, Z. Directed evolution of Thermomyces lanuginosus lipase to enhance methanol tolerance for efficient production of biodiesel from waste grease. Bioresour. Technol., 2017, 245(Pt B), 1491-1497.
[http://dx.doi.org/10.1016/j.biortech.2017.05.108] [PMID: 28571627]
[55]
Bento, H.B.S.; de Castro, H.F.; de Oliveira, P.C.; Freitas, L. Magnetized poly(STY-co-DVB) as a matrix for immobilizing microbial lipase to be used in biotransformation. J. Magn. Magn. Mater., 2017, 426, 95-101.
[http://dx.doi.org/10.1016/j.jmmm.2016.11.061]
[56]
Tarczykowska, A.; Sikora, A.; Marszall, M.P. Lipases - valuable biocatalysts in kinetic resolution of racemates. Mini Rev. Org. Chem., 2018, 15(5), 374-381.
[http://dx.doi.org/10.2174/1570193X15666171228145012]
[57]
Leśniarek, A.; Chojnacka, A.; Drozd, R.; Szymańska, M.; Gładkowski, W. Free and immobilized lecitase™ ultra as the biocatalyst in the kinetic resolution of (E)-4-arylbut-3-en-2-yl esters. Molecules, 2020, 25(5)e1067
[http://dx.doi.org/10.3390/molecules25051067] [PMID: 32120991]
[58]
Mendoza-Ortiz, P.A.; Gama, R.S.; Gomez, O.C.; Luiz, J.H.H.; Fernandez-Lafuente, R.; Cren, E.C.; Mendes, A.A. Sustainable enzymatic synthesis of a solketal ester-process optimization and evaluation of its antimicrobial activity. Catalysts, 2020, 10(2), 218.
[http://dx.doi.org/10.3390/catal10020218]
[59]
Liu, G.Y.; Zhang, P.L.; Xu, W.F.; Wang, L.J.; Tang, K.W. Lipase-catalyzed hydrolysis of (plus, -)-2-(4-methylphenyl) propionic methyl ester enhanced by hydroxypropyl-beta-cyclodextrin. J. Chem. Technol. Biotechnol., 2019, 94(1), 147-158.
[http://dx.doi.org/10.1002/jctb.5756]
[60]
Toro, E.C.; Rodriguez, D.F.; Morales, N.; Garcia, L.M.; Godoy, C.A. Novel Combi-lipase systems for fatty acid ethyl esters production. Catalysts, 2019, 9(6), 546.
[http://dx.doi.org/10.3390/catal9060546]
[61]
Dwivedee, B.P.; Soni, S.; Sharma, M.; Bhaumik, J.; Laha, J.K.; Banerjee, U.C. Promiscuity of lipase-catalyzed reactions for organic synthesis: a recent update. ChemistrySelect, 2018, 3(9), 2441-2466.
[http://dx.doi.org/10.1002/slct.201702954]
[62]
Siódmiak, T.; Mangelings, D.; Vander Heyden, Y.; Ziegler-Borowska, M.; Marszałł, M.P. High enantioselective Novozym 435-catalyzed esterification of (R,S)-flurbiprofen monitored with a chiral stationary phase. Appl. Biochem. Biotechnol., 2015, 175(5), 2769-2785.
[http://dx.doi.org/10.1007/s12010-014-1455-4] [PMID: 25561056]
[63]
Ghanem, A.; Aboul-Enein, H.Y. Application of lipases in kinetic resolution of racemates. Chirality, 2005, 17(1), 1-15.
[http://dx.doi.org/10.1002/chir.20089] [PMID: 15515046]
[64]
Siodmiak, T.; Ziegler-Borowska, M.; Marszall, M.P. Lipase-immobilized magnetic chitosan nanoparticles for kinetic resolution of (R,S)-ibuprofen. J. Mol. Catal., B Enzym., 2013, 94, 7-14.
[http://dx.doi.org/10.1016/j.molcatb.2013.04.008]
[65]
Nishihara, T.; Shiomi, A.; Kadotani, S.; Nokami, T.; Itoh, T. Remarkably improved stability and enhanced activity of a Burkholderia cepacia lipase by coating with a triazolium alkyl-PEG sulfate ionic liquid. Green Chem., 2017, 19(21), 5250-5256.
[http://dx.doi.org/10.1039/C7GC02319G]
[66]
Agranat, I.; Wainschtein, S.R.; Zusman, E.Z. The predicated demise of racemic new molecular entities is an exaggeration. Nat. Rev. Drug Discov., 2012, 11(12), 972-973.
[http://dx.doi.org/10.1038/nrd3657-c1] [PMID: 23197042]
[67]
Ågesen, F.N.; Weeke, P.E.; Tfelt-Hansen, P.; Tfelt-Hansen, J.; Escape, N.E.T. for ESCAPE‐NET. Pharmacokinetic variability of beta-adrenergic blocking agents used in cardiology. Pharmacol. Res. Perspect., 2019, 7(4)e00496
[http://dx.doi.org/10.1002/prp2.496] [PMID: 31338197]
[68]
Carlberg, B.; Samuelsson, O.; Lindholm, L.H. Atenolol in hypertension: is it a wise choice? Lancet, 2004, 364(9446), 1684-1689.
[http://dx.doi.org/10.1016/S0140-6736(04)17355-8] [PMID: 15530629]
[69]
Zelaszczyk, D.; Kieć-Kononowicz, K. Biocatalytic approaches to optically active beta-blockers. Curr. Med. Chem., 2007, 14(1), 53-65.
[http://dx.doi.org/10.2174/092986707779313480] [PMID: 17266567]
[70]
Agustian, J.; Kamaruddin, A.H.; Aboul-Enein, H.Y. Enantio-conversion and -selectivity of racemic atenolol kinetic resolution using free Pseudomonas fluorescens lipase (Amano) conducted via transesterification reaction. RSC Adv., 2016, 6(31), 26077-26085.
[http://dx.doi.org/10.1039/C6RA01942K]
[71]
Barbosa, O.; Ortiz, C.; Torres, R.; Fernandez-Lafuente, R. Effect of the immobilization protocol on the properties of lipase B from Candida antarctica in organic media: enantiospecifc production of atenolol acetate. J. Mol. Catal., B Enzym., 2011, 71(3-4), 124-132.
[http://dx.doi.org/10.1016/j.molcatb.2011.04.008]
[72]
Dwivedee, B.P.; Ghosh, S.; Bhaumik, J.; Banoth, L.; Banerjee, U.C. Lipase-catalyzed green synthesis of enantiopure atenolol. RSC Adv., 2015, 5(21), 15850-15860.
[http://dx.doi.org/10.1039/C4RA16365F]
[73]
Lund, I.T.; Bockmann, P.L.; Jacobsen, E.E. Highly enantioselective CALB-catalyzed kinetic resolution of building blocks for beta-blocker atenolol. Tetrahedron, 2016, 72(46), 7288-7292.
[http://dx.doi.org/10.1016/j.tet.2016.02.018]
[74]
Sikora, A.; Chełminiak-Dudkiewicz, D.; Siódmiak, T.; Tarczykowska, A.; Sroka, W.D.; Ziegler-Borowska, M.; Marszałł, M.P. Enantioselective acetylation of (R,S)-atenolol: the use of Candida rugosa lipases immobilized onto magnetic chitosan nanoparticles in enzyme-catalyzed biotransformation. J. Mol. Catal. B: Enzym., 2016, 134(A), 43-50.
[http://dx.doi.org/10.1016/j.molcatb.2016.09.017]
[75]
Sikora, A.; Chelminiak-Dudkiewicz, D.; Ziegler-Borowska, M.; Marszall, M.P. Enantioseparation of (RS)-atenolol with the use of lipases immobilized onto new-synthesized magnetic nanoparticles. Tetrahedron Asymmetry, 2017, 28(2), 374-380.
[http://dx.doi.org/10.1016/j.tetasy.2017.01.012]
[76]
Sikora, A.; Sroka, W.D.; Siodmiak, T.; Marszall, M.P. Kinetic resolution of (R,S)-atenolol with the use of lipases in various organic solvents. Curr. Org. Synth., 2017, 14(5), 747-754.
[http://dx.doi.org/10.2174/1570179414666161230120414]
[77]
Chiou, T.W.; Chang, C.C.; Lai, C.T.; Tai, D.F. Kinetic resolution of propranolol by a lipase-catalyzed N-acetylation. Bioorg. Med. Chem. Lett., 1997, 7(4), 433-436.
[http://dx.doi.org/10.1016/S0960-894X(97)00028-0]
[78]
Barbosa, O.; Ariza, C.; Ortiz, C.; Torres, R. Kinetic resolution of (R/S)-propranolol (1-isopropylamino-3-(1-naphtoxy)-2-propanolol) catalyzed by immobilized preparations of Candida antarctica lipase B (CAL-B). N. Biotechnol., 2010, 27(6), 844-850.
[http://dx.doi.org/10.1016/j.nbt.2010.07.015] [PMID: 20667519]
[79]
Escorcia, A.M.; Daza, M.C.; Doerr, M. Computational study of the enantioselectivity of the O-acetylation of (R,S)-propranolol catalyzed by Candida antarctica lipase B. J. Mol. Catal., B Enzym., 2014, 108, 21-31.
[http://dx.doi.org/10.1016/j.molcatb.2014.06.010]
[80]
Escorcia, A.M.; Molina, D.; Daza, M.C.; Doerr, M. Acetylation of (R,S)-propranolol catalyzed by Candida antarctica lipase B: an experimental and computational study. J. Mol. Catal., B Enzym., 2013, 98, 21-29.
[http://dx.doi.org/10.1016/j.molcatb.2013.09.019]
[81]
Osuna, Y.; Sandoval, J.; Saade, H.; López, R.G.; Martinez, J.L.; Colunga, E.M.; de la Cruz, G.; Segura, E.P.; Arévalo, F.J.; Zon, M.A.; Fernández, H.; Ilyina, A. Immobilization of Aspergillus niger lipase on chitosan-coated magnetic nanoparticles using two covalent-binding methods. Bioprocess Biosyst. Eng., 2015, 38(8), 1437-1445.
[http://dx.doi.org/10.1007/s00449-015-1385-8] [PMID: 25759161]
[82]
Carvalho, P.O.; Contesini, F.J.; Ikegaki, M. Enzymatic resolution of (R,S)-ibuprofen and (R,S)-ketoprofen by microbial lipases from native and commercial sources. Braz. J. Microbiol., 2006, 37(3), 329-337.
[http://dx.doi.org/10.1590/S1517-83822006000300024]
[83]
Yun, I.; Park, J.Y.; Park, J.; Kim, M.J. Base-free dynamic kinetic resolution of secondary alcohols with a ruthenium-lipase couple. J. Org. Chem., 2019, 84(24), 16293-16298.
[http://dx.doi.org/10.1021/acs.joc.9b02510] [PMID: 31778067]
[84]
Serafin-Lewańczuk, M.; Klimek-Ochab, M.; Brzezińska-Rodak, M.; Żymańczyk-Duda, E. Fungal synthesis of chiral phosphonic synthetic platform - scope and limitations of the method. Bioorg. Chem., 2018, 77, 402-410.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.027] [PMID: 29427855]
[85]
Reddy, U.C.; Manheri, M.K. 1-Hydroxymethyl-7-oxabicyclo[2.2.1]hept-2-ene skeleton in enantiopure form through enzymatic kinetic resolution. Chirality, 2019, 31(4), 336-347.
[http://dx.doi.org/10.1002/chir.23060] [PMID: 30753757]
[86]
Aguillon, A.R.; Avelar, M.N.; Gotardo, L.E.; de Souza, S.P.; Leao, R.A.C., Jr II; Miranda, L.S.M.; de Souza, R., Immobilized lipase screening towards continuous-flow kinetic resolution of (+/-)-1,2-propanediol. Mol. Catal., 2019, 467, 128-134.
[http://dx.doi.org/10.1016/j.mcat.2019.01.034]
[87]
Xu, J.T.; Hu, L. Asymmetric one-pot synthesis of five- and six-membered lactones via dynamic covalent kinetic resolution: exploring the regio- and stereoselectivities of lipase. Tetrahedron Lett., 2019, 60(12), 868-871.
[http://dx.doi.org/10.1016/j.tetlet.2019.02.030]
[88]
Moustafa, G.A.I.; Kasama, K.; Higashio, K.; Akai, S. Base-promoted lipase-catalyzed kinetic resolution of atropisomeric 1,1 '-biaryl-2,2 '-diols. RSC Adv., 2019, 9(3), 1165-1175.
[http://dx.doi.org/10.1039/C8RA09070J]
[89]
Moisa, M.E.; Bencze, L.C.; Paizs, C.; Tosa, M.I. Continuous-flow enzymatic kinetic resolution mediated by a lipase nanobioconjugate. Stud. Univ. Babes-Bolyai Chem., 2019, 64(2), 79-86.
[http://dx.doi.org/10.24193/subbchem.2019.2.07]
[90]
Farkas, E.; Oláh, M.; Földi, A.; Kóti, J.; Éles, J.; Nagy, J.; Gal, C.A.; Paizs, C.; Hornyánszky, G.; Poppe, L. Chemoenzymatic dynamic kinetic resolution of amines in fully continuous-flow mode. Org. Lett., 2018, 20(24), 8052-8056.
[http://dx.doi.org/10.1021/acs.orglett.8b03676] [PMID: 30543299]
[91]
Kovacs, B.; Forro, E.; Fulop, F. Candida antarctica lipase B catalysed kinetic resolution of 1,2,3,4-tetrahydro-beta-carbolines: substrate specificity. Tetrahedron, 2018, 74(48), 6873-6877.
[http://dx.doi.org/10.1016/j.tet.2018.10.034]
[92]
Kmecz, I.; Varga, Z.; Szekely, E. One pot kinetic resolution and product separation with corn germ oil and supercritical carbon dioxide. J. Supercrit. Fluids, 2018, 141, 218-223.
[http://dx.doi.org/10.1016/j.supflu.2018.01.014]
[93]
Belkacemi, F.Z.; Merabet-Khelassi, M.; Aribi-Zouioueche, L.; Riant, O. Production of l-menthyl acetate through kinetic resolution by Candida cylindracea lipase: effects of alkaloids as additives. Res. Chem. Intermed., 2018, 44(11), 6847-6860.
[http://dx.doi.org/10.1007/s11164-018-3525-7]
[94]
Perez-Venegas, M.; Juaristi, E. Mechanoenzymatic resolution of racemic chiral amines, a green technique for the synthesis of pharmaceutical building blocks. Tetrahedron, 2018, 74(44), 6453-6458.
[http://dx.doi.org/10.1016/j.tet.2018.09.029]
[95]
Bassut, J.; Rocha, A.M.R.; Franca, A.D.; Leao, R.A.C.; Monteiro, C.; Afonso, C.A.M.; de Souza, R. PEG(600)-carboxylates as acylating agents for the continuous enzymatic kinetic resolution of alcohols and amines. Mol. Catal., 2018, 459, 89-96.
[http://dx.doi.org/10.1016/j.mcat.2018.08.019]
[96]
Mathpati, A.C.; Bhanage, B.M. Prediction of enantioselectivity of lipase catalyzed kinetic resolution using umbrella sampling. J. Biotechnol., 2018, 283, 70-80.
[http://dx.doi.org/10.1016/j.jbiotec.2018.07.024] [PMID: 30031094]
[97]
Ou, Z.; Pan, J.; Du, L.; Tang, L. Kinetic resolution of 1-phenylethanamine in a solvent-free system by free and immobilized lipase. N. Biotechnol., 2018, 44, S73-S73.
[http://dx.doi.org/10.1016/j.nbt.2018.05.884]
[98]
Shivaprasad, P.; Jones, M.D.; Patterson, D.A.; Emanuelsson, E.A.C. Kinetic resolution of 1-phenylethanol in the spinning mesh disc reactor: investigating the reactor performance using immobilised lipase catalyst. Chem. Eng. Process. Intens., 2018, 132, 56-64.
[http://dx.doi.org/10.1016/j.cep.2018.08.012]
[99]
de Gonzalo, G. Lipase catalysed kinetic resolution of racemic 1,2-diols containing a chiral quaternary center. Molecules, 2018, 23(10), 2503.
[http://dx.doi.org/10.3390/molecules23102503] [PMID: 30274321]
[100]
Moisa, M.E.; Poppe, L.; Gal, C.A.; Bencze, L.C.; Irimie, F.D.; Paizs, C.; Peter, F.; Tosa, M.I. Click reaction- aided enzymatic kinetic resolution of secondary alcohols. React. Chem. Eng., 2018, 3(5), 790-798.
[http://dx.doi.org/10.1039/C8RE00091C]
[101]
Lesniarek, A.; Chojnacka, A.; Gladkowski, W. Application of Lecitase (R) ultra-catalyzed hydrolysis to the kinetic resolution of (E)-4-phenylbut-3-en-2-yl esters. Catalysts, 2018, 8(10), 432.
[http://dx.doi.org/10.3390/catal8100423]
[102]
Sikora, A.; Siódmiak, T.; Marszałł, M.P. Kinetic resolution of profens by enantioselective esterification catalyzed by Candida antarctica and Candida rugosa lipases. Chirality, 2014, 26(10), 663-669.
[http://dx.doi.org/10.1002/chir.22362] [PMID: 25080075]
[103]
de Almeida, D.K.C.; da Silva, M.R.; de Mattos, M.C.; Nunes, F.M.; Ballereau, S.; Genisson, Y.; Maraval, V.; Chauvin, R.; Oliveira, M.C.F. Lipase-catalysed enantioselective kinetic resolution of rac-lipidic alkynylcarbinols and a C-5 synthon thereof via a hydrolysis approach. Mol. Catal., 2020, 2020110926
[http://dx.doi.org/10.1016/j.mcat.2020.110926]
[104]
Kühn, F.; Katsuragi, S.; Oki, Y.; Scholz, C.; Akai, S.; Gröger, H. Dynamic kinetic resolution of a tertiary alcohol. Chem. Commun. (Camb.), 2020, 56(19), 2885-2888.
[http://dx.doi.org/10.1039/C9CC09103C] [PMID: 32037430]
[105]
Zhang, Y.; Cheng, F.; Yan, H.; Zheng, J.; Wang, Z. The enzymatic resolution of 1-(4-chlorophenyl)ethylamine by Novozym 435 to prepare a novel triazolopyrimidine herbicide. Chirality, 2018, 30(11), 1225-1232.
[http://dx.doi.org/10.1002/chir.23016] [PMID: 30238626]
[106]
Wu, J.C.; Low, H.R.; Leng, Y.; Chow, Y.; Li, R.; Talukder, M.M.R.; Choi, W.J. Ketoprofen resolution by enzymatic esterification and hydrolysis of the ester product. Biotechnol. Bioprocess Eng., 2006, 11(3), 211-214.
[http://dx.doi.org/10.1007/BF02932032]
[107]
Duleba, J.; Siodmiak, T.; Marszall, M.P. Amano lipase PS from Burkholderia cepacia - evaluation of the effect of substrates and reaction media on the catalytic activity. Curr. Org. Chem., 2020, 24(7), 798-807.
[http://dx.doi.org/10.2174/1385272824666200408092305]
[108]
Pascale, N.C.; Chastinet, J.J.; Bila, D.M.; Sant Anna, G.L., Jr; Quitério, S.L.; Vendramel, S.M.R. Enzymatic hydrolysis of floatable fatty wastes from dairy and meat food-processing industries and further anaerobic digestion. Water Sci. Technol., 2019, 79(5), 985-992.
[http://dx.doi.org/10.2166/wst.2018.508] [PMID: 31025978]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy