Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Elucidation of the Mechanisms and Molecular Targets of Qishen Yiqi Formula for the Treatment of Pulmonary Arterial Hypertension using a Bioinformatics/Network Topology-based Strategy

Author(s): Peiliang Wu, Xiaona Xie, Mayun Chen, Junwei Sun, Luqiong Cai, Jinqiu Wei, Lin Yang, Xiaoying Huang* and Liangxing Wang*

Volume 24, Issue 5, 2021

Published on: 19 October, 2020

Page: [701 - 715] Pages: 15

DOI: 10.2174/1386207323666201019145354

open access plus

conference banner
Abstract

Background and Objective: Qishen Yiqi formula (QSYQ) is used to treat cardiovascular disease in the clinical practice of traditional Chinese medicine. However, few studies have explored whether QSYQ affects pulmonary arterial hypertension (PAH), and the mechanisms of action and molecular targets of QSYQ for the treatment of PAH are unclear. A bioinformatics/network topology-based strategy was used to identify the bioactive ingredients, putative targets, and molecular mechanisms of QSYQ in PAH.

Methods: A network pharmacology-based strategy was employed by integrating active component gathering, target prediction, PAH gene collection, network topology, and gene enrichment analysis to systematically explore the multicomponent synergistic mechanisms.

Results: In total, 107 bioactive ingredients of QSYQ and 228 ingredient targets were identified. Moreover, 234 PAH-related differentially expressed genes with a |fold change| >2 and an adjusted P value < 0.005 were identified between the PAH patient and control groups, and 266 therapeutic targets were identified. The pathway enrichment analysis indicated that 85 pathways, including the PI3K-Akt, MAPK, and HIF-1 signaling pathways, were significantly enriched. TP53 was the core target gene, and 7 other top genes (MAPK1, RELA, NFKB1, CDKN1A, AKT1, MYC, and MDM2) were the key genes in the gene-pathway network based on the effects of QSYQ on PAH.

Conclusion: An integrative investigation based on network pharmacology may elucidate the multicomponent synergistic mechanisms of QSYQ in PAH and lay a foundation for further animal experiments, human clinical trials and rational clinical applications of QSYQ.

Keywords: Qishen Yiqi formula, pulmonary arterial hypertension, network pharmacology, bioinformatics, mechanism, gene ontology.

[1]
Rabinovitch, M. Molecular pathogenesis of pulmonary arterial hypertension. J. Clin. Invest., 2012, 122(12), 4306-4313.
[http://dx.doi.org/10.1172/JCI60658] [PMID: 23202738]
[2]
He, Y.; Zuo, C.; Jia, D.; Bai, P.; Kong, D.; Chen, D.; Liu, G.; Li, J.; Wang, Y.; Chen, G.; Yan, S.; Xiao, B.; Zhang, J.; Piao, L.; Li, Y.; Deng, Y.; Li, B.; Roux, P.P.; Andreasson, K.I.; Breyer, R.M.; Su, Y.; Wang, J.; Lyu, A.; Shen, Y.; Yu, Y. Loss of DP1 Aggravates Vascular Remodeling in Pulmonary Arterial Hypertension via mTORC1 Signaling. Am. J. Respir. Crit. Care Med., 2020, 201(10), 1263-1276.
[http://dx.doi.org/10.1164/rccm.201911-2137OC] [PMID: 31917615]
[3]
Song, S.; Lee, S.E.; Oh, S.K.; Jeon, S.A.; Sung, J.M.; Park, J.H.; Chang, H.J. Demographics, treatment trends, and survival rate in incident pulmonary artery hypertension in Korea: A nationwide study based on the health insurance review and assessment service database. PLoS One, 2018, 13(12)e0209148
[http://dx.doi.org/10.1371/journal.pone.0209148] [PMID: 30566510]
[4]
Dodson, M.W.; Brown, L.M.; Elliott, C.G. Pulmonary Arterial Hypertension. Heart Fail. Clin., 2018, 14(3), 255-269.
[http://dx.doi.org/10.1016/j.hfc.2018.02.003] [PMID: 29966625]
[5]
Sommer, N.; Richter, M.J.; Tello, K.; Grimminger, F.; Seeger, W.; Ghofrani, H.A.; Gall, H. Update pulmonary arterial hypertension: Definitions, diagnosis, therapy. Internist (Berl.), 2017, 58(9), 937-957.
[http://dx.doi.org/10.1007/s00108-017-0301-5] [PMID: 28819824]
[6]
Ali, I. Nano anti-cancer drugs: pros and cons and future perspectives. Curr. Cancer Drug Targets, 2011, 11(2), 131-134.
[http://dx.doi.org/10.2174/156800911794328457] [PMID: 21062238]
[7]
Ali, I.; Saleem, K.; Wesselinova, D.; Haque, A. Synthesis, DNA binding, hemolytic, and anti-cancer assays of curcumin I-based ligands and their ruthenium(III) complexes. Med. Chem. Res., 2012, 22(3), 1386-1398.
[http://dx.doi.org/10.1007/s00044-012-0133-8]
[8]
Ali, I.; Wani, W.A.; Saleem, K.; Hseih, M-F. Design and synthesis of thalidomide based dithiocarbamate Cu(II), Ni(II) and Ru(III) complexes as anticancer agents. Polyhedron, 2013, 56, 134-143.
[http://dx.doi.org/10.1016/j.poly.2013.03.056]
[9]
Ali, I.; Lone, M.N.; Aboul-Enein, H.Y. Imidazoles as potential anticancer agents. MedChemComm, 2017, 8(9), 1742-1773.
[http://dx.doi.org/10.1039/C7MD00067G] [PMID: 30108886]
[10]
Saleem, K.; Wani, W.A.; Haque, A.; Lone, M.N.; Hsieh, M.F.; Jairajpuri, M.A.; Ali, I. Synthesis, DNA binding, hemolysis assays and anticancer studies of copper(II), nickel(II) and iron(III) complexes of a pyrazoline-based ligand. Future Med. Chem., 2013, 5(2), 135-146.
[http://dx.doi.org/10.4155/fmc.12.201] [PMID: 23360139]
[11]
Ali, I.; Lone, M.N.; Al-Othman, Z.A.; Al-Warthan, A.; Sanagi, M.M. Heterocyclic scaffolds: centrality in anticancer drug development. Curr. Drug Targets, 2015, 16(7), 711-734.
[http://dx.doi.org/10.2174/1389450116666150309115922] [PMID: 25751009]
[12]
Huang, Y.F.; Liu, M.L.; Dong, M.Q.; Yang, W.C.; Zhang, B.; Luan, L.L.; Dong, H.Y.; Xu, M.; Wang, Y.X.; Liu, L.L.; Gao, Y.Q.; Li, Z.C. Effects of sodium tanshinone II A sulphonate on hypoxic pulmonary hypertension in rats in vivo and on Kv2.1 expression in pulmonary artery smooth muscle cells in vitro. J. Ethnopharmacol., 2009, 125(3), 436-443.
[http://dx.doi.org/10.1016/j.jep.2009.07.020] [PMID: 19635545]
[13]
Huang, X.; Wu, P.; Huang, F.; Xu, M.; Chen, M.; Huang, K.; Li, G.P.; Xu, M.; Yao, D.; Wang, L. Baicalin attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2A receptor-induced SDF-1/CXCR4/PI3K/AKT signaling. J. Biomed. Sci., 2017, 24(1), 52.
[http://dx.doi.org/10.1186/s12929-017-0359-3] [PMID: 28774332]
[14]
Chen, Y.; Lu, W.; Yang, K.; Duan, X.; Li, M.; Chen, X.; Zhang, J.; Kuang, M.; Liu, S.; Wu, X.; Zou, G.; Liu, C.; Hong, C.; He, W.; Liao, J.; Hou, C.; Zhang, Z.; Zheng, Q.; Chen, J.; Zhang, N.; Tang, H.; Vanderpool, R.R.; Desai, A.A.; Rischard, F.; Black, S.M.; Garcia, J.G.N.; Makino, A.; Yuan, J.X.; Zhong, N.; Wang, J. Tetramethylpyrazine: A promising drug for the treatment of pulmonary hypertension. Br. J. Pharmacol., 2020, 177(12), 2743-2764.
[http://dx.doi.org/10.1111/bph.15000] [PMID: 31976548]
[15]
Han, J.Y.; Li, Q.; Pan, C.S.; Sun, K.; Fan, J.Y. Effects and mechanisms of QiShenYiQi pills and major ingredients on myocardial microcirculatory disturbance, cardiac injury and fibrosis induced by ischemia-reperfusion. Pharmacol. Res., 2019, 147104386
[http://dx.doi.org/10.1016/j.phrs.2019.104386] [PMID: 31377222]
[16]
Wang, Y.; Zhao, X.; Gao, X.; Nie, X.; Yang, Y.; Fan, X. Development of fluorescence imaging-based assay for screening cardioprotective compounds from medicinal plants. Anal. Chim. Acta, 2011, 702(1), 87-94.
[http://dx.doi.org/10.1016/j.aca.2011.06.020] [PMID: 21819864]
[17]
Chen, Y.Y.; Li, Q.; Pan, C.S.; Yan, L.; Fan, J.Y.; He, K.; Sun, K.; Liu, Y.Y.; Chen, Q.F.; Bai, Y.; Wang, C.S.; He, B.; Lv, A.P.; Han, J.Y. QiShenYiQi Pills, a compound in Chinese medicine, protects against pressure overload-induced cardiac hypertrophy through a multi-component and multi-target mode. Sci. Rep., 2015, 5, 11802.
[http://dx.doi.org/10.1038/srep11802] [PMID: 26136154]
[18]
Chen, J.R.; Wei, J.; Wang, L.Y.; Zhu, Y.; Li, L.; Olunga, M.A.; Gao, X.M.; Fan, G.W. Cardioprotection against ischemia/reperfusion injury by QiShenYiQi Pill® via ameliorate of multiple mitochondrial dysfunctions. Drug Des. Devel. Ther., 2015, 9, 3051-3066.
[http://dx.doi.org/10.2147/DDDT.S82146] [PMID: 26109848]
[19]
Wang, Y.; Wang, J.; Guo, L.; Gao, X. Antiplatelet effects of qishen yiqi dropping pill in platelets aggregation in hyperlipidemic rabbits.Evidence-based complementary and alternative medicine : eCAM,, 2012.
[20]
Mitsuhashi, T.; Ikata, T.; Morimoto, K.; Tonai, T.; Katoh, S. Increased production of eicosanoids, TXA2, PGI2 and LTC4 in experimental spinal cord injuries. Paraplegia, 1994, 32(8), 524-530.
[PMID: 7970857]
[21]
Poornima, P.; Kumar, J.D.; Zhao, Q.; Blunder, M.; Efferth, T. Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature. Pharmacol. Res., 2016, 111, 290-302.
[http://dx.doi.org/10.1016/j.phrs.2016.06.018] [PMID: 27329331]
[22]
Hopkins, A.L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol., 2008, 4(11), 682-690.
[http://dx.doi.org/10.1038/nchembio.118] [PMID: 18936753]
[23]
Berger, S.I.; Iyengar, R. Network analyses in systems pharmacology. Bioinformatics, 2009, 25(19), 2466-2472.
[http://dx.doi.org/10.1093/bioinformatics/btp465] [PMID: 19648136]
[24]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6, 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[25]
Pan, B.; Shi, X.; Ding, T.; Liu, L. Unraveling the action mechanism of polygonum cuspidatum by a network pharmacology approach. Am. J. Transl. Res., 2019, 11(11), 6790-6811.
[PMID: 31814888]
[26]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[27]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7)e47
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[28]
Martin, A.; Ochagavia, M.E.; Rabasa, L.C.; Miranda, J.; Fernandez-de-Cossio, J.; Bringas, R. BisoGenet: a new tool for gene network building, visualization and analysis. BMC Bioinformatics, 2010, 11, 91.
[http://dx.doi.org/10.1186/1471-2105-11-91] [PMID: 20163717]
[29]
Willis, R.C.; Hogue, C.W. Searching, viewing, and visualizing data in the Biomolecular Interaction Network Database (BIND). Current protocols in bioinformatics, 2006.
[30]
Salwinski, L.; Eisenberg, D. The MiSink Plugin: Cytoscape as a graphical interface to the Database of Interacting Proteins. Bioinformatics, 2007, 23(16), 2193-2195.
[http://dx.doi.org/10.1093/bioinformatics/btm304] [PMID: 17553858]
[31]
Oughtred, R.; Stark, C.; Breitkreutz, B.J.; Rust, J.; Boucher, L.; Chang, C.; Kolas, N.; O’Donnell, L.; Leung, G.; McAdam, R.; Zhang, F.; Dolma, S.; Willems, A.; Coulombe-Huntington, J.; Chatr-Aryamontri, A.; Dolinski, K.; Tyers, M. The BioGRID interaction database: 2019 update. Nucleic Acids Res., 2019, 47(D1), D529-D541.
[http://dx.doi.org/10.1093/nar/gky1079] [PMID: 30476227]
[32]
Licata, L.; Briganti, L.; Peluso, D.; Perfetto, L.; Iannuccelli, M.; Galeota, E.; Sacco, F.; Palma, A.; Nardozza, A.P.; Santonico, E.; Castagnoli, L.; Cesareni, G. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res., 2012, 40(Database issue), D857-D861.
[http://dx.doi.org/10.1093/nar/gkr930] [PMID: 22096227]
[33]
Kerrien, S.; Aranda, B.; Breuza, L.; Bridge, A.; Broackes-Carter, F.; Chen, C.; Duesbury, M.; Dumousseau, M.; Feuermann, M.; Hinz, U.; Jandrasits, C.; Jimenez, R.C.; Khadake, J.; Mahadevan, U.; Masson, P.; Pedruzzi, I.; Pfeiffenberger, E.; Porras, P.; Raghunath, A.; Roechert, B.; Orchard, S.; Hermjakob, H. The IntAct molecular interaction database in 2012. Nucleic Acids Res., 2012, 40(Database issue), D841-D846.
[http://dx.doi.org/10.1093/nar/gkr1088] [PMID: 22121220]
[34]
Goel, R.; Harsha, H.C.; Pandey, A.; Prasad, T.S. Human Protein Reference Database and Human Proteinpedia as resources for phosphoproteome analysis. Mol. Biosyst., 2012, 8(2), 453-463.
[http://dx.doi.org/10.1039/C1MB05340J] [PMID: 22159132]
[35]
Zhang, Y.; Li, Z.; Yang, M.; Wang, D.; Yu, L.; Guo, C.; Guo, X.; Lin, N. Identification of GRB2 and GAB1 coexpression as an unfavorable prognostic factor for hepatocellular carcinoma by a combination of expression profile and network analysis. PLoS One, 2013, 8(12)e85170
[http://dx.doi.org/10.1371/journal.pone.0085170] [PMID: 24391994]
[36]
Liu, X.; Wu, J.; Zhang, D.; Wang, K.; Duan, X.; Zhang, X. Network Pharmacology Approach to Uncover the Multiple Mechanisms of Hedyotis diffusa Willd. on Colorectal Cancer. Evidence-based complementary and alternative medicine : eCAM,2018, 65, 17034..
[37]
The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res., 2019, 47(D1), D330-D338.
[http://dx.doi.org/10.1093/nar/gky1055] [PMID: 30395331]
[38]
Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 2017, 45(D1), D353-D361.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[39]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[40]
Rao, V.S.; Srinivas, K.; Sujini, G.N.; Kumar, G.N. Protein-protein interaction detection: methods and analysis. Int. J. Proteomics, 2014, 2014147648
[http://dx.doi.org/10.1155/2014/147648] [PMID: 24693427]
[41]
Li, S.; Zhang, Z.Q.; Wu, L.J.; Zhang, X.G.; Li, Y.D.; Wang, Y.Y. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network. IET Syst. Biol., 2007, 1(1), 51-60.
[http://dx.doi.org/10.1049/iet-syb:20060032] [PMID: 17370429]
[42]
Senthilkumar, K.; Arunkumar, R.; Elumalai, P.; Sharmila, G.; Gunadharini, D.N.; Banudevi, S.; Krishnamoorthy, G.; Benson, C.S.; Arunakaran, J. Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3). Cell Biochem. Funct., 2011, 29(2), 87-95.
[http://dx.doi.org/10.1002/cbf.1725] [PMID: 21308698]
[43]
Kundur, S.; Prayag, A.; Selvakumar, P.; Nguyen, H.; McKee, L.; Cruz, C.; Srinivasan, A.; Shoyele, S.; Lakshmikuttyamma, A. Synergistic anticancer action of quercetin and curcumin against triple-negative breast cancer cell lines. J. Cell. Physiol., 2019, 234(7), 11103-11118.
[http://dx.doi.org/10.1002/jcp.27761] [PMID: 30478904]
[44]
Farzaei, M.H.; Rahimi, R.; Abdollahi, M. The role of dietary polyphenols in the management of inflammatory bowel disease. Curr. Pharm. Biotechnol., 2015, 16(3), 196-210.
[http://dx.doi.org/10.2174/1389201016666150118131704] [PMID: 25601607]
[45]
He, Y.; Cao, X.; Liu, X.; Li, X.; Xu, Y.; Liu, J.; Shi, J. Quercetin reverses experimental pulmonary arterial hypertension by modulating the TrkA pathway. Exp. Cell Res., 2015, 339(1), 122-134.
[http://dx.doi.org/10.1016/j.yexcr.2015.10.013] [PMID: 26476374]
[46]
He, Y.; Cao, X.; Guo, P.; Li, X.; Shang, H.; Liu, J.; Xie, M.; Xu, Y.; Liu, X. Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia. Free Radic. Biol. Med., 2017, 103, 165-176.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.12.016] [PMID: 27979659]
[47]
Cao, X.; He, Y.; Li, X.; Xu, Y.; Liu, X. The IRE1α-XBP1 pathway function in hypoxia-induced pulmonary vascular remodeling, is upregulated by quercetin, inhibits apoptosis and partially reverses the effect of quercetin in PASMCs. Am. J. Transl. Res., 2019, 11(2), 641-654.
[PMID: 30899368]
[48]
Su, D.; Li, H.Y.; Yan, H.R.; Liu, P.F.; Zhang, L.; Cheng, J.H. Astragalus Improved Cardiac Function of Adriamycin-Injured Rat Hearts by Upregulation of SERCA2a Expression. Am. J. Chin. Med., 2009, 37(3), 519-529.
[http://dx.doi.org/10.1142/S0192415X09007028] [PMID: 19606512]
[49]
Liu, C.H.; Tsai, C.H.; Li, T.C.; Yang, Y.W.; Huang, W.S.; Lu, M.K.; Tseng, C.H.; Huang, H.C.; Chen, K.F.; Hsu, T.S.; Hsu, Y.T.; Tsai, C.H.; Hsieh, C.L. Effects of the traditional Chinese herb Astragalus membranaceus in patients with poststroke fatigue: A double-blind, randomized, controlled preliminary study. J. Ethnopharmacol., 2016, 194, 954-962.
[http://dx.doi.org/10.1016/j.jep.2016.10.058] [PMID: 27773802]
[50]
Krenn, L.; Paper, D.H. Inhibition of angiogenesis and inflammation by an extract of red clover (Trifolium pratense L.). Phytomedicine, 2009, 16(12), 1083-1088.
[http://dx.doi.org/10.1016/j.phymed.2009.05.017] [PMID: 19665361]
[51]
Yang, S.; Wei, L.; Xia, R.; Liu, L.; Chen, Y.; Zhang, W.; Li, Q.; Feng, K.; Yu, M.; Zhang, W.; Qu, J.; Xu, S.; Mao, J.; Fan, G.; Ma, C. Formononetin ameliorates cholestasis by regulating hepatic SIRT1 and PPARα. Biochem. Biophys. Res. Commun., 2019, 512(4), 770-778.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.131] [PMID: 30928103]
[52]
Wang, R.; Zhang, H.; Wang, Y.; Song, F.; Yuan, Y. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-small ka, CyrillicB/Ismall ka, CyrillicBalpha, p38 MAPK, and Bcl-2/Bax signaling. Int. Immunopharmacol., 2017, 47, 126-133.
[http://dx.doi.org/10.1016/j.intimp.2017.03.029] [PMID: 28391159]
[53]
Cui, S.; Tang, J.; Wang, S.; Li, L. Kaempferol protects lipopolysaccharide-induced inflammatory injury in human aortic endothelial cells (HAECs) by regulation of miR-203. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2019,115, 108888..
[54]
Sommer, N.; Ghofrani, H.A.; Pak, O.; Bonnet, S.; Provencher, S.; Sitbon, O.; Rosenkranz, S.; Hoeper, M.M.; Kiely, D.G. Current and future treatments of pulmonary arterial hypertension. Br. J. Pharmacol., 2020.
[http://dx.doi.org/10.1111/bph.15016] [PMID: 32034759]
[55]
Zhao, Y.; Wang, B.; Zhang, J.; He, D.; Zhang, Q.; Pan, C.; Yuan, Q.; Shi, Y.; Tang, H.; Xu, F.; Wei, S.; Chen, Y. ALDH2 (Aldehyde Dehydrogenase 2) Protects Against Hypoxia-Induced Pulmonary Hypertension. Arterioscler. Thromb. Vasc. Biol., 2019, 39(11), 2303-2319.
[http://dx.doi.org/10.1161/ATVBAHA.119.312946] [PMID: 31510791]
[56]
Lampron, M.C.; Vitry, G.; Nadeau, V.; Grobs, Y.; Paradis, R.; Samson, N.; Tremblay, E.; Boucherat, O.; Meloche, J.; Bonnet, S.; Provencher, S.; Potus, F.; Paulin, R. PIM1 (Moloney Murine Leukemia Provirus Integration Site) Inhibition Decreases the Nonhomologous End-Joining DNA Damage Repair Signaling Pathway in Pulmonary Hypertension. Arteriosclerosis, thrombosis, and vascular biology,, 2020.
[57]
Smukowska-Gorynia, A.; Rzymski, P.; Marcinkowska, J.; Poniedziałek, B.; Komosa, A.; Cieslewicz, A.; Slawek-Szmyt, S.; Janus, M.; Araszkiewicz, A.; Jankiewicz, S.; Tomaszewska-Krajniak, I.; Mularek-Kubzdela, T. Prognostic Value of Oxidative Stress Markers in Patients with Pulmonary Arterial or Chronic Thromboembolic Pulmonary Hypertension. Oxid. Med. Cell. Longev., 2019, 20193795320
[http://dx.doi.org/10.1155/2019/3795320] [PMID: 31929853]
[58]
Sofer, A.; Lee, S.; Papangeli, I.; Adachi, T.; Hwangbo, C.; Comhair, S.; DaSilva-Jardine, P.; Kim, J.; Schwarz, J.J.; Erzurum, S.C.; Chun, H.J. Therapeutic Engagement of the Histone Deacetylase IIA-Myocyte Enhancer Factor 2 Axis Improves Experimental Pulmonary Hypertension. Am. J. Respir. Crit. Care Med., 2018, 198(10), 1345-1348.
[http://dx.doi.org/10.1164/rccm.201805-0817LE] [PMID: 30106596]
[59]
Schultz, A.; Olorundami, O.A.; Teng, R.J.; Jarzembowski, J.; Shi, Z.Z.; Kumar, S.N.; Pritchard, K., Jr; Konduri, G.G.; Afolayan, A.J. Decreased OLA1 (Obg-Like ATPase-1) Expression Drives Ubiquitin-Proteasome Pathways to Downregulate Mitochondrial SOD2 (Superoxide Dismutase) in Persistent Pulmonary Hypertension of the Newborn. Hypertension, 2019, 74(4), 957-966.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.13430] [PMID: 31476900]
[60]
Novoyatleva, T.; Kojonazarov, B.; Owczarek, A.; Veeroju, S.; Rai, N.; Henneke, I.; Böhm, M.; Grimminger, F.; Ghofrani, H.A.; Seeger, W.; Weissmann, N.; Schermuly, R.T. Evidence for the Fucoidan/P-Selectin axis as a therapeutic target in hypoxia-induced pulmonary hypertension. Am. J. Respir. Crit. Care Med., 2019, 199(11), 1407-1420.
[http://dx.doi.org/10.1164/rccm.201806-1170OC] [PMID: 30557519]
[61]
Leisegang, M.S.; Fork, C.; Josipovic, I.; Richter, F.M.; Preussner, J.; Hu, J.; Miller, M.J.; Epah, J.; Hofmann, P.; Günther, S.; Moll, F.; Valasarajan, C.; Heidler, J.; Ponomareva, Y.; Freiman, T.M.; Maegdefessel, L.; Plate, K.H.; Mittelbronn, M.; Uchida, S.; Künne, C.; Stellos, K.; Schermuly, R.T.; Weissmann, N.; Devraj, K.; Wittig, I.; Boon, R.A.; Dimmeler, S.; Pullamsetti, S.S.; Looso, M.; Miller, F.J., Jr; Brandes, R.P.; Long Noncoding, R.N.A. Long Noncoding RNA MANTIS Facilitates Endothelial Angiogenic Function. Circulation, 2017, 136(1), 65-79.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.026991] [PMID: 28351900]
[62]
Marshall, J.D.; Bazan, I.; Zhang, Y.; Fares, W.H.; Lee, P.J. Mitochondrial dysfunction and pulmonary hypertension: cause, effect, or both. Am. J. Physiol. Lung Cell. Mol. Physiol., 2018, 314(5), L782-L796.
[http://dx.doi.org/10.1152/ajplung.00331.2017] [PMID: 29345195]
[63]
Chelladurai, P.; Boucherat, O.; Stenmark, K.; Kracht, M.; Seeger, W.; Bauer, U.M.; Bonnet, S.; Pullamsetti, S.S. Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy. Br. J. Pharmacol., 2019.
[PMID: 31749139]
[64]
Egom, E.E. Pulmonary Arterial Hypertension Due to NPR-C Mutation: A Novel Paradigm for Normal and Pathologic Remodeling? Int. J. Mol. Sci., 2019, 20(12)E3063
[http://dx.doi.org/10.3390/ijms20123063] [PMID: 31234560]
[65]
Chichger, H.; Rounds, S.; Harrington, E.O. Endosomes and Autophagy: Regulators of Pulmonary Endothelial Cell Homeostasis in Health and Disease. Antioxid. Redox Signal., 2019, 31(13), 994-1008.
[http://dx.doi.org/10.1089/ars.2019.7817] [PMID: 31190562]
[66]
Budas, G.R.; Boehm, M.; Kojonazarov, B.; Viswanathan, G.; Tian, X.; Veeroju, S.; Novoyatleva, T.; Grimminger, F.; Hinojosa-Kirschenbaum, F.; Ghofrani, H.A.; Weissmann, N.; Seeger, W.; Liles, J.T.; Schermuly, R.T. ASK1 Inhibition Halts Disease Progression in Preclinical Models of Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med., 2018, 197(3), 373-385.
[http://dx.doi.org/10.1164/rccm.201703-0502OC] [PMID: 28910144]
[67]
Wei, L.; Zhang, B.; Cao, W.; Xing, H.; Yu, X.; Zhu, D. Inhibition of CXCL12/CXCR4 suppresses pulmonary arterial smooth muscle cell proliferation and cell cycle progression via PI3K/Akt pathway under hypoxia. J. Recept. Signal Transduct. Res., 2015, 35(4), 329-339.
[http://dx.doi.org/10.3109/10799893.2014.984308] [PMID: 25421526]
[68]
Fang, X.; Chen, X.; Zhong, G.; Chen, Q.; Hu, C. Mitofusin 2 downregulation triggers pulmonary artery smooth muscle cell proliferation and apoptosis imbalance in rats with hypoxic pulmonary hypertension via the PI3K/Akt and mitochondrial apoptosis pathways. J. Cardiovasc. Pharmacol., 2016, 67(2), 164-174.
[http://dx.doi.org/10.1097/FJC.0000000000000333] [PMID: 26485208]
[69]
Xiao, Y.; Peng, H.; Hong, C.; Chen, Z.; Deng, X.; Wang, A.; Yang, F.; Yang, L.; Chen, C.; Qin, X. PDGF Promotes the Warburg Effect in Pulmonary Arterial Smooth Muscle Cells via Activation of the PI3K/AKT/mTOR/HIF-1alpha Signaling Pathway. Cellular Physiol. Biochem.: Int. J. Experi. Cellular Physiol. Biochemi. Pharmacol., 2017, 42(2), 1603-1613.
[70]
Ahmed, L.A.; Rizk, S.M.; El-Maraghy, S.A. Pinocembrin ex vivo preconditioning improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats. Biochem. Pharmacol., 2017, 138, 193-204.
[http://dx.doi.org/10.1016/j.bcp.2017.04.024] [PMID: 28450224]
[71]
Kim, H.D.; Chun, K.J.; Choi, S.; Cho, J.R.; Lee, N.; Kang, M.K. Reversible pulmonary hypertension with unclear etiology associated with suspected viral infection. J. Thorac. Dis., 2017, 9(12), E1074-E1078.
[http://dx.doi.org/10.21037/jtd.2017.11.114] [PMID: 29312769]
[72]
Cool, C.D.; Voelkel, N.F.; Bull, T. Viral infection and pulmonary hypertension: is there an association? Expert Rev. Respir. Med., 2011, 5(2), 207-216.
[http://dx.doi.org/10.1586/ers.11.17] [PMID: 21510731]
[73]
Zhou, S.; Li, M.T.; Jia, Y.Y.; Liu, J.J.; Wang, Q.; Tian, Z.; Liu, Y.T.; Chen, H.Z.; Liu, D.P.; Zeng, X.F. Regulation of cell cycle regulators by SIRT1 contributes to resveratrol-mediated prevention of pulmonary arterial hypertension. BioMed Res. Int., 2015, 2015762349
[http://dx.doi.org/10.1155/2015/762349] [PMID: 26273643]
[74]
van der Feen, D.E.; Berger, R.M.F.; Bartelds, B. Converging paths of pulmonary arterial hypertension and cellular senescence. Am. J. Respir. Cell Mol. Biol., 2019, 61(1), 11-20.
[http://dx.doi.org/10.1165/rcmb.2018-0329TR] [PMID: 30758225]
[75]
Mouraret, N.; Marcos, E.; Abid, S.; Gary-Bobo, G.; Saker, M.; Houssaini, A.; Dubois-Rande, J.L.; Boyer, L.; Boczkowski, J.; Derumeaux, G.; Amsellem, V.; Adnot, S. Activation of lung p53 by Nutlin-3a prevents and reverses experimental pulmonary hypertension. Circulation, 2013, 127(16), 1664-1676.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002434] [PMID: 23513067]
[76]
Mizuno, S.; Bogaard, H.J.; Kraskauskas, D.; Alhussaini, A.; Gomez-Arroyo, J.; Voelkel, N.F.; Ishizaki, T. p53 Gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am. J. Physiol. Lung Cell. Mol. Physiol., 2011, 300(5), L753-L761.
[http://dx.doi.org/10.1152/ajplung.00286.2010] [PMID: 21335523]
[77]
Momand, J.; Zambetti, G.P.; Olson, D.C.; George, D.; Levine, A.J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 1992, 69(7), 1237-1245.
[http://dx.doi.org/10.1016/0092-8674(92)90644-R] [PMID: 1535557]
[78]
Chen, J.; Marechal, V.; Levine, A.J. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell. Biol., 1993, 13(7), 4107-4114.
[http://dx.doi.org/10.1128/MCB.13.7.4107] [PMID: 7686617]
[79]
Shinohara, T.; Uesugi, M. In-vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Tanpakushitsu kakusan koso. Protein Nucleic Acid Enz., 2007, 52(13), 1816-1817.
[80]
Momcilovic, M.; Hong, S.P.; Carlson, M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J. Biol. Chem., 2006, 281(35), 25336-25343.
[http://dx.doi.org/10.1074/jbc.M604399200] [PMID: 16835226]
[81]
Chen, M.; Cai, H.; Yu, C.; Wu, P.; Fu, Y.; Xu, X.; Fan, R.; Xu, C.; Chen, Y.; Wang, L.; Huang, X. Salidroside exerts protective effects against chronic hypoxia-induced pulmonary arterial hypertension via AMPKα1-dependent pathways. Am. J. Transl. Res., 2016, 8(1), 12-27.
[PMID: 27069536]
[82]
Yang, X.M.; Wang, Y.S.; Zhang, J.; Li, Y.; Xu, J.F.; Zhu, J.; Zhao, W.; Chu, D.K.; Wiedemann, P. Role of PI3K/Akt and MEK/ERK in mediating hypoxia-induced expression of HIF-1alpha and VEGF in laser-induced rat choroidal neovascularization. Invest. Ophthalmol. Vis. Sci., 2009, 50(4), 1873-1879.
[http://dx.doi.org/10.1167/iovs.08-2591] [PMID: 19098317]
[83]
Jin, J.; Yuan, F.; Shen, M.Q.; Feng, Y.F.; He, Q.L. Vascular endothelial growth factor regulates primate choroid-retinal endothelial cell proliferation and tube formation through PI3K/Akt and MEK/ERK dependent signaling. Mol. Cell. Biochem., 2013, 381(1-2), 267-272.
[http://dx.doi.org/10.1007/s11010-013-1710-y] [PMID: 23749166]
[84]
Lei, W.; He, Y.; Shui, X.; Li, G.; Yan, G.; Zhang, Y.; Huang, S.; Chen, C.; Ding, Y. Expression and analyses of the HIF-1 pathway in the lungs of humans with pulmonary arterial hypertension. Mol. Med. Rep., 2016, 14(5), 4383-4390.
[http://dx.doi.org/10.3892/mmr.2016.5752] [PMID: 27667582]
[85]
Siomek, A. NF-κB signaling pathway and free radical impact. Acta Biochim. Pol., 2012, 59(3), 323-331.
[http://dx.doi.org/10.18388/abp.2012_2116] [PMID: 22855720]
[86]
Hayden, M.S.; Ghosh, S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev., 2012, 26(3), 203-234.
[http://dx.doi.org/10.1101/gad.183434.111] [PMID: 22302935]
[87]
Feng, S.; Chen, S.; Yu, W.; Zhang, D.; Zhang, C.; Tang, C.; Du, J.; Jin, H. H2S inhibits pulmonary arterial endothelial cell inflammation in rats with monocrotaline-induced pulmonary hypertension. Lab. Invest., 2017, 97(3), 268-278.
[http://dx.doi.org/10.1038/labinvest.2016.129] [PMID: 27941756]
[88]
Steiner, M.K.; Syrkina, O.L.; Kolliputi, N.; Mark, E.J.; Hales, C.A.; Waxman, A.B. Interleukin-6 overexpression induces pulmonary hypertension. Circ. Res., 2009, 104(2), 236-244.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.182014]
[89]
Tang, H.; Chen, J.; Fraidenburg, D.R.; Song, S.; Sysol, J.R.; Drennan, A.R.; Offermanns, S.; Ye, R.D.; Bonini, M.G.; Minshall, R.D.; Garcia, J.G.; Machado, R.F.; Makino, A.; Yuan, J.X. Deficiency of Akt1, but not Akt2, attenuates the development of pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 308(2), L208-L220.
[http://dx.doi.org/10.1152/ajplung.00242.2014] [PMID: 25416384]
[90]
Li, Y.; Liu, S.; Zhang, Y.; Gao, Q.; Sun, W.; Fu, L.; Cao, J. Histone demethylase JARID1B regulates proliferation and migration of pulmonary arterial smooth muscle cells in mice with chronic hypoxia-induced pulmonary hypertension via nuclear factor-kappa B (NFkB). Cardiovasc. Pathol., 2018, 37, 8-14.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy