Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Treatment for Lysosomal Storage Disorders

Author(s): Jayesh Sheth* and Aadhira Nair*

Volume 26 , Issue 40 , 2020

Page: [5110 - 5118] Pages: 9

DOI: 10.2174/1381612826666201015154932

Price: $65

Abstract

Lysosomal storage disorders comprise a group of approximately 70 types of inherited diseases resulting due to lysosomal gene defects. The outcome of the defect is a deficiency in either of the three: namely, lysosomal enzymes, activator protein, or transmembrane protein, as a result of which there is an unwanted accumulation of biomolecules inside the lysosomes. The pathophysiology of these conditions is complex affecting several organ systems and nervous system involvement in a majority of cases. Several research studies have well elucidated the mechanism underlying the disease condition leading to the development in devising the treatment strategies for the same. Currently, these approaches aim to reduce the severity of symptoms or delay the disease progression but do not provide a complete cure. The main treatment methods include Enzyme replacement therapy, Bone marrow transplantation, Substrate reduction therapy, use of molecular chaperones, and Gene therapy. This review article presents an elaborate description of these strategies and discusses the ongoing studies for the same.

Keywords: Lysosomes, Lysosomal storage disorders, enzyme, transplantation, chaperones, gene therapy, ERT, BMT, SRT.

[1]
Platt FM, d’Azzo A, Davidson BL, Neufeld EF, Tifft CJ. Lysosomal storage diseases. Nat Rev Dis Primers 2018; 4(1): 27.
[http://dx.doi.org/10.1038/s41572-018-0025-4] [PMID: 30275469]
[2]
Beck M. Treatment strategies for lysosomal storage disorders. Mainz, Germany: Institute of Human Genetics, University Medical Center, University of Mainz 2018; pp. 13-8.
[3]
Sato Y, Okuyama T. Novel enzyme replacement therapies for neuropathic mucopolysaccharidoses. Int J Mol Sci 2020; 21(2): 400. Available from: https://pubmed.ncbi.nlm.nih.gov/31936354
[http://dx.doi.org/10.3390/ijms21020400] [PMID: 31936354]
[4]
Fratantoni JC, Hall CW, Neufeld EF. Hurler and Hunter syndromes: Mutual correction of the defect in cultured fibroblasts. Science 1968; 162(3853): 570-2. Available from: https://pubmed.ncbi.nlm.nih.gov/4236721/
[http://dx.doi.org/10.1126/science.162.3853.570]
[5]
Hasilik A, Klein U, Waheed A, Strecker G, von Figura K. Phosphorylated oligosaccharides in lysosomal enzymes: Identification of α-N-acetylglucosamine (1)phospho(6)mannose diester groups. Proc Natl Acad Sci U S A 1980; 77(12 II): 7074-8. Available from: https://pubmed.ncbi.nlm.nih.gov/6938953/
[6]
Orchard PJ, Blazar BR, Wagner J, Charnas L, Krivit W, Tolar J. Hematopoietic Cell Therapy for Metabolic Disease. J Pediatr 2007; 151(4): 340-6. Available from: https://pubmed.ncbi.nlm.nih.gov/17889065/
[7]
Sly WS, Kaplan A, Achord DT, Brot FE, Bell CE. Receptor-mediated uptake of lysosomal enzymes. Prog Clin Biol Res 1978; 23: 547-51.
[PMID: 662919]
[8]
Brady RO. Enzyme replacement therapy: Conception, chaos and culmination. Philos Trans R Soc Lond B Biol Sci 2003; 358(1433): 915-9. Available from: https://pubmed.ncbi.nlm.nih.gov/12803925
[http://dx.doi.org/10.1098/rstb.2003.1269] [PMID: 12803925]
[9]
Brady RO. Enzyme replacement for lysosomal diseases. Annu Rev Med 2006; 57(1): 283-96.
[http://dx.doi.org/10.1146/annurev.med.57.110104.115650] [PMID: 16409150]
[10]
Pentchev PG, Brady RO, Hibbert SR, Gal AE, Shapiro D. Isolation and characterization of glucocerebrosidase from human placental tissue. J Biol Chem 1973; 248(15): 5256-61.
[PMID: 4768898]
[11]
Furbish FS, Steer CJ, Krett NL, Barranger JA. Uptake and distribution of placental glucocerebrosidase in rat hepatic cells and the effects of sequential deglycosylation. BBA - Gen Subj 1981; 673(C): 425-34. Available from: https://pubmed.ncbi.nlm.nih.gov/6784774/
[http://dx.doi.org/10.1016/0304-4165(81)90474-8]
[12]
Barton NW, Brady RO, Murray GJ, Argoff CE, Grewal RP. Replacement therapy for inherited enzyme deficiency - macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med 1991; 324(21): 1464-70. Available from: https://pubmed.ncbi.nlm.nih.gov/2023606/
[13]
Platt FM. Emptying the stores: Lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov 2018; 17(2): 133-50.
[http://dx.doi.org/10.1038/nrd.2017.214] [PMID: 29147032]
[14]
van Gelder CM, Hoogeveen-Westerveld M, Kroos MA, Plug I, van der Ploeg AT, Reuser AJJ. Enzyme therapy and immune response in relation to CRIM status: The Dutch experience in classic infantile Pompe disease. J Inherit Metab Dis 2015; 38(2): 305-14.
[http://dx.doi.org/10.1007/s10545-014-9707-6] [PMID: 24715333]
[15]
Angelini C, Semplicini C. Enzyme replacement therapy for Pompe disease. Curr Neurol Neurosci Rep 2012; 12(1): 70-5.
[http://dx.doi.org/10.1007/s11910-011-0236-5] [PMID: 22002767]
[16]
Rombach SM, Smid BE, Bouwman MG, Linthorst GE, Dijkgraaf MGW, Hollak CEM. Long term enzyme replacement therapy for Fabry disease: Effectiveness on kidney, heart and brain. Orphanet J Rare Dis 2013; 8: 47. Available from: https://pubmed.ncbi.nlm.nih.gov/23531228
[http://dx.doi.org/10.1186/1750-1172-8-47] [PMID: 23531228]
[17]
Arends M, Biegstraaten M, Wanner C, et al. Agalsidase alfa versus agalsidase beta for the treatment of Fabry disease: An international cohort study. J Med Genet 2018; 55(5): 351-8. Available from: https://pubmed.ncbi.nlm.nih.gov/29437868
[18]
Boado RJ, Ka-Wai Hui E, Zhiqiang Lu J, Pardridge WM. Insulin receptor antibody-iduronate 2-sulfatase fusion protein: Pharmacokinetics, anti-drug antibody, and safety pharmacology in Rhesus monkeys. Biotechnol Bioeng 2014; 111(11): 2317-5. Available from: https://pubmed.ncbi.nlm.nih.gov/24889100
[19]
Zhou Q-H, Boado RJ, Lu JZ, Hui EK-W, Pardridge WM. Brainpenetrating IgG-iduronate 2-sulfatase fusion protein for the mouse Drug Metab Dispos 2012; 40(2): 329. LP-35. Available from: http://dmd.aspetjournals.org/content/40/2/329
[20]
Sonoda H, Morimoto H, Yoden E, et al. A blood-brain-barrier-penetrating anti-human transferrin receptor antibody fusion protein for neuronopathic mucopolysaccharidosis II. Mol Ther 2018; 26(5): 1366-74. Available from: https://pubmed.ncbi.nlm.nih.gov/29606503
[http://dx.doi.org/10.1016/j.ymthe.2018.02.032]
[21]
Jolly RD, Marshall NR, Marshall J, Hartman A, Hemsley KMWL, Winner LK. Intracisternal enzyme replacement therapy in lysosomal storage diseases: Dispersal pathways, regional enzyme concentrations and the effect of posttreatment posture. Neuropathol Appl Neurobiol 2013; 39(6): 681-92.
[http://dx.doi.org/10.1111/nan.12010] [PMID: 23252616]
[22]
Muenzer J, Hendriksz CJ, Fan Z, et al. A phase I/II study of intrathecal idursulfase-IT in children with severe mucopolysaccharidosis II. Genet Med 2016; 18(1): 73-81.
[http://dx.doi.org/10.1038/gim.2015.36] [PMID: 25834948]
[23]
Eisengart JB, Pierpont EI, Kaizer AM, et al. Intrathecal enzyme replacement for Hurler syndrome: Biomarker association with neurocognitive outcomes. Genet Med 2019; 21(11): 2552-60. Available from: https://pubmed.ncbi.nlm.nih.gov/31019279
[http://dx.doi.org/10.1038/s41436-019-0522-1]
[24]
Sohn YB, Ko A-R, Seong MR, et al. The efficacy of intracerebroventricular idursulfase-beta enzyme replacement therapy in mucopolysaccharidosis II murine model: Heparan sulfate in cerebrospinal fluid as a clinical biomarker of neuropathology. J Inherit Metab Dis 2018; 41(6): 1235-46.
[http://dx.doi.org/10.1007/s10545-018-0221-0] [PMID: 29978271]
[25]
Dickson PI, Kaitila I, Harmatz P, et al. Data from subjects receiving intrathecal laronidase for cervical spinal stenosis due to mucopolysaccharidosis type I. Data Brief 2015; 5: 71-6. Available from: https://pubmed.ncbi.nlm.nih.gov/26484358/
[26]
Giugliani R, Villarreal MLS, Araceli Arellano Valdez C, et al. Guidelines for diagnosis and treatment of Hunter syndrome for clinicians in Latin America. Genet Mol Biol 2014; 37: 315-29. Available from: https://pubmed.ncbi.nlm.nih.gov/25071396/
[27]
Nestrasil I, Ahmed A, Utz JM, Rudser K, Whitley CB, Jarnes-Utz JR. Distinct progression patterns of brain disease in infantile and juvenile gangliosidoses: Volumetric quantitative MRI study. Mol Genet Metab 2017; 123(2): 97-104. Available from: https://pubmed.ncbi.nlm.nih.gov/29352662
[28]
Markham A. Cerliponase alfa: First global approval. Drugs 2017; 77(11): 1247-9.
[http://dx.doi.org/10.1007/s40265-017-0771-8] [PMID: 28589525]
[29]
Zimran A, Elstein D. Management of Gaucher disease: Enzyme replacement therapy. Pediatr Endocrinol Rev 2014; 12: 82-7. Available from: https://pubmed.ncbi.nlm.nih.gov/25345089/
[30]
Pastores GM, Weinreb NJ, Aerts H, et al. Therapeutic goals in the treatment of Gaucher disease. Semin Hematol 2004; 41(SUPPL. 5): 4-14. Available from: https://pubmed.ncbi.nlm.nih.gov/15468045/
[http://dx.doi.org/10.1053/j.seminhematol.2004.07.009]
[31]
Afroze B, Brown N. Ethical issues in managing Lysosomal storage disorders in children in low and middle income countries. Pak J Med Sci 2017; 33(4): 1036-41. Available from: https://pubmed.ncbi.nlm.nih.gov/29067088
[http://dx.doi.org/10.12669/pjms.334.12975] [PMID: 29067088]
[32]
Poe MD, Chagnon SLEM, Escolar ML. Early treatment is associated with improved cognition in Hurler syndrome. Ann Neurol 2014; 76(5): 747-53.
[http://dx.doi.org/10.1002/ana.24246] [PMID: 25103575]
[33]
McGill JJ, Inwood AC, Coman DJ, et al. Enzyme replacement therapy for mucopolysaccharidosis VI from 8 weeks of age--a sibling control study. Clin Genet 2010; 77(5): 492-8.
[http://dx.doi.org/10.1111/j.1399-0004.2009.01324.x] [PMID: 19968667]
[34]
Muranjan M, Karande S. Enzyme replacement therapy in India: Lessons and insights. J Postgrad Med 2018; 195-9. Available from: https://pubmed.ncbi.nlm.nih.gov/29848835/
[35]
Rappeport JM, Ginns EI. Bone-marrow transplantation in severe Gaucher’s disease. N Engl J Med 1984; 311(2): 84-8.
[http://dx.doi.org/10.1056/NEJM198407123110203] [PMID: 6377066]
[36]
Kumar L. Haematopoietic stem cell transplantation: current status. Natl Med J India 2007; 20(3): 128-37.
[PMID: 17867617]
[37]
Hobbs JR, Hugh-Jones K, Barrett AJ, et al. Reversal of clinical features of Hurler’s disease and biochemical improvement after treatment by bone-marrow transplantation. Lancet 1981; 2(8249): 709-12.
[http://dx.doi.org/10.1016/S0140-6736(81)91046-1] [PMID: 6116856]
[38]
Boelens JJ, Aldenhoven M, Purtill D, et al. Outcomes of transplantation using various hematopoietic cell sources in children with Hurler syndrome after myeloablative conditioning. Blood 2013; 121(19): 3981-7. Available from: https://pubmed.ncbi.nlm.nih.gov/23493783
[http://dx.doi.org/10.1182/blood-2012-09-455238]
[39]
Peters C, Steward CG. Hematopoietic cell transplantation for inherited metabolic diseases: An overview of outcomes and practice guidelines. Bone Marrow Transplant 2003; 31(4): 229-39.
[http://dx.doi.org/10.1038/sj.bmt.1703839] [PMID: 12621457]
[40]
Steward CG, Jarisch A. Haemopoietic stem cell transplantation for genetic disorders. Arch Dis Child 2005; 90(12): 1259-63. Available from: https://pubmed.ncbi.nlm.nih.gov/16301554
[http://dx.doi.org/10.1136/adc.2005.074278] [PMID: 16301554]
[41]
Starer F, Sargent JD, Hobbs JR. Regression of the radiological changes of Gaucher’s disease following bone marrow transplantation. Br J Radiol 1987; 60(720): 1189-95.
[http://dx.doi.org/10.1259/0007-1285-60-720-1189] [PMID: 3319001]
[42]
Ringdén O, Groth CG, Erikson A, et al. Long-term follow-up of the first successful bone marrow transplantation in Gaucher disease. Transplantation 1988; 46(1): 66-70.
[http://dx.doi.org/10.1097/00007890-198807000-00011] [PMID: 3134756]
[43]
Svennerholm L, Erikson A, Groth CG, Ringdén O, Månsson JE. Norrbottnian type of Gaucher disease--clinical, biochemical and molecular biology aspects: Successful treatment with bone marrow transplantation. Dev Neurosci 1991; 13(4-5): 345-51.
[http://dx.doi.org/10.1159/000112184] [PMID: 1817041]
[44]
Tsai P, Lipton JM, Sahdev I, et al. Allogenic bone marrow transplantation in severe Gaucher disease. Pediatr Res 1992; 31(5): 503-7.
[http://dx.doi.org/10.1203/00006450-199205000-00019] [PMID: 1603628]
[45]
Platt FMJM, Jeyakumar M. Substrate reduction therapy. Acta Paediatr 2008; 97(457): 88-93.
[http://dx.doi.org/10.1111/j.1651-2227.2008.00656.x] [PMID: 18339196]
[46]
Radin NS. Treatment of Gaucher disease with an enzyme inhibitor. Glycoconj J 1996; 13(2): 153-7.
[http://dx.doi.org/10.1007/BF00731489] [PMID: 8737239]
[47]
Sandhoff K, Kolter T. Biochemistry of glycosphingolipid degradation. Clin Chim Acta 1997; 266(1): 51-61.
[http://dx.doi.org/10.1016/S0009-8981(97)00166-6] [PMID: 9435988]
[48]
Walterfang M, Chien Y-H, Imrie J, Rushton D, Schubiger D, Patterson MC. Dysphagia as a risk factor for mortality in Niemann-Pick disease type C: systematic literature review and evidence from studies with miglustat. Orphanet J Rare Dis 2012; 7: 76. Available from: https://pubmed.ncbi.nlm.nih.gov/23039766
[http://dx.doi.org/10.1186/1750-1172-7-76] [PMID: 23039766]
[49]
Lyseng-Williamson KA. Miglustat: A review of its use in Niemann-Pick disease type C. Drugs 2014; 74(1): 61-74.
[http://dx.doi.org/10.1007/s40265-013-0164-6] [PMID: 24338084]
[50]
Malinowska M, Wilkinson FL, Bennett W, et al. Genistein reduces lysosomal storage in peripheral tissues of mucopolysaccharide IIIB mice. Mol Genet Metab 2009; 98(3): 235-42.
[http://dx.doi.org/10.1016/j.ymgme.2009.06.013] [PMID: 19632871]
[51]
Guérard N, Oder D, Nordbeck P, et al. Lucerastat, an iminosugar for substrate reduction therapy: tolerability, pharmacodynamics, and pharmacokinetics in patients with fabry disease on enzyme replacement. Clin Pharmacol Ther 2018; 103(4): 703-11.
[http://dx.doi.org/10.1002/cpt.790] [PMID: 28699267]
[52]
Belmatoug N, Di Rocco M, Fraga C, et al. Management and monitoring recommendations for the use of eliglustat in adults with type 1 Gaucher disease in Europe. Eur J Intern Med 2017; 37: 25-32.
[http://dx.doi.org/10.1016/j.ejim.2016.07.011] [PMID: 27522145]
[53]
Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum. Nature reviews molecular cell biology. Nat Rev Mol Cell Biol 2003; 4: 181-91. Available from: https://pubmed.ncbi.nlm.nih.gov/12612637/
[54]
Arakawa T, Ejima D, Kita Y, Tsumoto K. Small-molecule pharmacological chaperones: From thermodynamic stabilization to pharmaceutical drugs Biochimica et Biophysica Acta - Proteins and Proteomics Biochim Biophys Acta. 2006; pp. 1677-87. Available from: https://pubmed.ncbi.nlm.nih.gov/17046342/
[55]
Fan JQ, Ishii S, Asano N, Suzuki Y. Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med 1999; 5(1): 112-5. Available from: https://pubmed.ncbi.nlm.nih.gov/9883849/
[http://dx.doi.org/10.1038/4801]
[56]
Hughes DA, Nicholls K, Shankar SP, et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomized phase III ATTRACT study. J Med Genet 2016; 54(4): 288-96. Available from: https://pubmed.ncbi.nlm.nih.gov/27834756
[57]
Kishnani P, Tarnopolsky M, Roberts M, et al. Duvoglustat HCl increases systemic and tissue exposure of active acid α-glucosidase in pompe patients co-administered with alglucosidase α. Mol Ther 2017; 25(5): 1199-208. Available from: https://pubmed.ncbi.nlm.nih.gov/28341561
[http://dx.doi.org/10.1016/j.ymthe.2017.02.017]
[58]
Benjamin ER, Flanagan JJ, Schilling A, et al. The pharmacological chaperone 1-deoxygalactonojirimycin increases α-galactosidase A levels in Fabry patient cell lines. J Inherit Metab Dis 2009; 424-40. Available from: https://pubmed.ncbi.nlm.nih.gov/19387866/
[59]
Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. Associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302(5644): 415-9. Available from: http://science.sciencemag.org/content/302/5644/415
[60]
Dunbar CE, Kohn DB, Schiffmann R, et al. Retroviral transfer of the glucocerebrosidase gene into CD34+ cells from patients with Gaucher disease: In vivo detection of transduced cells without myeloablation. Hum Gene Ther 1998; 9(17): 2629-40.
[http://dx.doi.org/10.1089/hum.1998.9.17-2629] [PMID: 9853529]
[61]
Ohashi T. Gene therapy for lysosomal storage diseases and peroxisomal diseases. J Hum Genet 2019; 64(2): 139-43.
[http://dx.doi.org/10.1038/s10038-018-0537-5] [PMID: 30498239]
[62]
Worgall S, Sondhi D, Hackett NR, et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther 2008; 19(5): 463-74.
[http://dx.doi.org/10.1089/hum.2008.022] [PMID: 18473686]
[63]
Tardieu M, Zérah M, Husson B, et al. Intracerebral administration of adeno-associated viral vector serotype rh.10 carrying human SGSH and SUMF1 cDNAs in children with mucopolysaccharidosis type IIIA disease: Results of a phase I/II trial. Hum Gene Ther 2014; 25(6): 506-16.
[http://dx.doi.org/10.1089/hum.2013.238] [PMID: 24524415]
[64]
Tardieu M, Zérah M, Gougeon ML, et al. Intracerebral gene therapy in children with mucopolysaccharidosis type IIIB syndrome: An uncontrolled phase 1/2 clinical trial. Lancet Neurol 2017; 16(9): 712-20.
[http://dx.doi.org/10.1016/S1474-4422(17)30169-2] [PMID: 28713035]
[65]
Sevin C, Verot L, Benraiss A, et al. Partial cure of established disease in an animal model of metachromatic leukodystrophy after intracerebral adeno-associated virus-mediated gene transfer. Gene Ther 2007; 14(5): 405-14.
[http://dx.doi.org/10.1038/sj.gt.3302883] [PMID: 17093507]
[66]
Lattanzi A, Neri M, Maderna C, et al. Widespread enzymatic correction of CNS tissues by a single intracerebral injection of therapeutic lentiviral vector in leukodystrophy mouse models. Hum Mol Genet 2010; 19(11): 2208-27.
[http://dx.doi.org/10.1093/hmg/ddq099] [PMID: 20203170]
[67]
Nagree MS, Scalia S, McKillop WM, Medin JA. An update on gene therapy for lysosomal storage disorders. Expert Opin Biol Ther 2019; 19(7): 655-70.
[http://dx.doi.org/10.1080/14712598.2019.1607837] [PMID: 31056978]
[68]
Takahashi H, Hirai Y, Migita M, et al. Long-term systemic therapy of Fabry disease in a knockout mouse by adeno-associated virus-mediated muscle-directed gene transfer. Proc Natl Acad Sci USA 2002; 99(21): 13777-82. Available from: https://pubmed.ncbi.nlm.nih.gov/12370426
[http://dx.doi.org/10.1073/pnas.222221899]
[69]
Louis Jeune V, Joergensen JA, Hajjar RJ, Weber T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum Gene Ther Methods 2013; 24(2): 59-67. Available from: https://pubmed.ncbi.nlm.nih.gov/23442094
[http://dx.doi.org/10.1089/hgtb.2012.243]
[70]
Ruiz de Garibay AP, Solinís MÁ, Rodríguez-Gascón A. Gene therapy for fabry disease: A review of the literature. BioDrugs 2013; 27(3): 237-46.
[http://dx.doi.org/10.1007/s40259-013-0032-7] [PMID: 23575647]
[71]
Biffi A, De Palma M, Quattrini A, et al. Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J Clin Invest 2004; 113(8): 1118-29. Available from: https://pubmed.ncbi.nlm.nih.gov/15085191
[http://dx.doi.org/10.1172/JCI200419205] [PMID: 15085191]
[72]
Biffi A, Capotondo A, Fasano S, et al. Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J Clin Invest 2006; 116(11): 3070-82. Available from: https://pubmed.ncbi.nlm.nih.gov/17080200
[http://dx.doi.org/10.1172/JCI28873] [PMID: 17080200]
[73]
Biffi A, Montini E, Lorioli L, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013; 341(6148)1233158 Available from: http://science.sciencemag.org/content/341/6148/1233158
[http://dx.doi.org/10.1126/science.1233158]
[74]
Sessa M, Lorioli L, Fumagalli F, et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: An ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet 2016; 388(10043): 476-87.
[http://dx.doi.org/10.1016/S0140-6736(16)30374-9] [PMID: 27289174]
[75]
Gentner B, Visigalli I, Hiramatsu H, et al. Identification of hematopoietic stem cell-specific miRNAs enables gene therapy of globoid cell leukodystrophy. Sci Transl Med 2010; 2(58): 58ra84-4. Available from: http://stm.sciencemag.org/content/2/58/58ra84
[http://dx.doi.org/10.1126/scitranslmed.3001522]
[76]
Maga JA, Zhou J, Kambampati R, et al. Glycosylation-independent lysosomal targeting of acid α-glucosidase enhances muscle glycogen clearance in pompe mice. J Biol Chem 2012; 288(3): 1428-38. Available from: https://pubmed.ncbi.nlm.nih.gov/23188827
[77]
Byrne BJ, Geberhiwot T, Barshop BA, et al. A study on the safety and efficacy of reveglucosidase alfa in patients with late-onset Pompe disease. Orphanet J Rare Dis 2017; 12(1): 144. Available from: https://pubmed.ncbi.nlm.nih.gov/28838325
[http://dx.doi.org/10.1186/s13023-017-0693-2] [PMID: 28838325]
[78]
Keating A. Mesenchymal stromal cells: New directions. Cell Stem Cell 2012; 10(6): 709-16.
[http://dx.doi.org/10.1016/j.stem.2012.05.015] [PMID: 22704511]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy