Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

General Review Article

Antioxidant and Anti-inflammatory Properties of Yttrium Oxide Nanoparticles: New Insights into Alleviating Diabetes

Author(s): Kim San Tang*

Volume 17, Issue 4, 2021

Published on: 12 October, 2020

Page: [496 - 502] Pages: 7

DOI: 10.2174/1573399816999201012201111

Price: $65

conference banner
Abstract

Background: Diabetes mellitus is a metabolic disease that requires immediate attention. Oxidative stress that leads to the generation of reactive oxygen species is a contributing factor to the disease progression. Yttrium oxide nanoparticles (Y2O3 NPs) have a profound effect on alleviating oxidative damage.

Methods: The literature related to Y2O3 NPs and oxidative stress has been thoroughly searched using PubMed and Scopus databases and relevant studies from inception until August 2020 were included in this scoping review.

Results: Y2O3 NPs altered oxidative stress-related biochemical parameters in different disease models including diabetes.

Conclusion: Although Y2O3 NPs are a promising antidiabetic agent due to their antioxidant and anti- inflammatory properties, more studies are required to further elucidate the pharmacological and toxicological properties of these nanoparticles.

Keywords: Antioxidants, diabetes mellitus, inflammation, nanoparticles, oxidative stress, reactive oxygen species, yttrium oxide.

[1]
Banerjee M, Vats P, Kushwah AS, Srivastava N. Interaction of antioxidant gene variants and susceptibility to type 2 diabetes mellitus. Br J Biomed Sci 2019; 76(4): 166-71.
[http://dx.doi.org/10.1080/09674845.2019.1595869] [PMID: 30900957]
[2]
Zimmet P, Alberti KG, Magliano DJ, Bennett PH. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat Rev Endocrinol 2016; 12(10): 616-22.
[http://dx.doi.org/10.1038/nrendo.2016.105] [PMID: 27388988]
[3]
Tang KS. The current and future perspectives of zinc oxide nanoparticles in the treatment of diabetes mellitus. Life Sci 2019; 239117011
[http://dx.doi.org/10.1016/j.lfs.2019.117011] [PMID: 31669241]
[4]
Ennerfelt H, Voithofer G, Tibbo M, et al. Disruption of peripheral nerve development in a zebrafish model of hyperglycemia. J Neurophysiol 2019; 122(2): 862-71.
[http://dx.doi.org/10.1152/jn.00318.2019] [PMID: 31268813]
[5]
Chaudhury A, Duvoor C, Reddy Dendi VS, et al. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol (Lausanne) 2017; 8: 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[6]
Francescato MP, Stel G, Geat M, Cauci S. Oxidative stress in patients with type 1 diabetes mellitus: is it affected by a single bout of prolonged exercise? PLoS One 2014; 9(6)e99062
[http://dx.doi.org/10.1371/journal.pone.0099062] [PMID: 24905823]
[7]
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058-70.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[8]
Tang KS, Tan JS. The protective mechanisms of polydatin in cerebral ischemia. Eur J Pharmacol 2019; 842: 133-8.
[http://dx.doi.org/10.1016/j.ejphar.2018.10.039] [PMID: 30385347]
[9]
Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PI Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 2016; 473(24): 4527-50.
[http://dx.doi.org/10.1042/BCJ20160503C] [PMID: 27941030]
[10]
Fiorentino TV, Prioletta A, Zuo P, Folli F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des 2013; 19(32): 5695-703.
[http://dx.doi.org/10.2174/1381612811319320005] [PMID: 23448484]
[11]
Holzerová E, Prokisch H. Mitochondria: Much ado about nothing? How dangerous is reactive oxygen species production? Int J Biochem Cell Biol 2015; 63: 16-20.
[http://dx.doi.org/10.1016/j.biocel.2015.01.021] [PMID: 25666559]
[12]
Apostolova N, Victor VM. Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid Redox Signal 2015; 22(8): 686-729.
[http://dx.doi.org/10.1089/ars.2014.5952] [PMID: 25546574]
[13]
Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances 2015; 5(35): 27986-8006.
[http://dx.doi.org/10.1039/C4RA13315C]
[14]
Panigrahy SK, Bhatt R, Kumar A. Reactive oxygen species: sources, consequences and targeted therapy in type 2 diabetes. J Drug Target 2017; 25(2): 93-101.
[http://dx.doi.org/10.1080/1061186X.2016.1207650] [PMID: 27356044]
[15]
Bagetta D, Maruca A, Lupia A, et al. Mediterranean products as promising source of multi-target agents in the treatment of metabolic syndrome. Eur J Med Chem 2020; 186111903
[http://dx.doi.org/10.1016/j.ejmech.2019.111903] [PMID: 31787360]
[16]
Morvaridzadeh M, Nachvak SM, Agah S, et al. Effect of soy products and isoflavones on oxidative stress parameters: A systematic review and meta-analysis of randomized controlled trials. Food Res Int 2020; 137109578
[http://dx.doi.org/10.1016/j.foodres.2020.109578]
[17]
Sepidarkish M, Akbari-Fakhrabadi M, Daneshzad E, et al. Effect of omega-3 fatty acid plus vitamin E Co-Supplementation on oxidative stress parameters: A systematic review and meta-analysis. Clin Nutr 2020; 39(4): 1019-25.
[http://dx.doi.org/10.1016/j.clnu.2019.05.004] [PMID: 31128941]
[18]
Faddladdeen KAJ. Ameliorating effect of pomegranate peel extract supplement against type 1 diabetes-induced hepatic changes in the rat: biochemical, morphological and ultrastructural microscopic studies. Folia Morphol (Warsz) 2020.
[http://dx.doi.org/10.5603/FM.a2020.0034] [PMID: 32207851]
[19]
Mohammed A, Islam MS. Antioxidant potential of Xylopia aethiopica fruit acetone fraction in a type 2 diabetes model of rats. Biomed Pharmacother 2017; 96: 30-6.
[http://dx.doi.org/10.1016/j.biopha.2017.09.116] [PMID: 28963948]
[20]
Panahi Y, Khalili N, Sahebi E, et al. Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: a randomized controlled trial. Inflammopharmacology 2017; 25(1): 25-31.
[http://dx.doi.org/10.1007/s10787-016-0301-4] [PMID: 27928704]
[21]
Yen CH, Chu YJ, Lee BJ, Lin YC, Lin PT. Effect of liquid ubiquinol supplementation on glucose, lipids and antioxidant capacity in type 2 diabetes patients: a double-blind, randomised, placebo-controlled trial. Br J Nutr 2018; 120(1): 57-63.
[http://dx.doi.org/10.1017/S0007114518001241] [PMID: 29936921]
[22]
Czernichow S, Couthouis A, Bertrais S, et al. Antioxidant supplementation does not affect fasting plasma glucose in the Supplementation with Antioxidant Vitamins and Minerals (SU.VI.MAX) study in France: association with dietary intake and plasma concentrations. Am J Clin Nutr 2006; 84(2): 395-9.
[PMID: 16895889]
[23]
Volf I, Ignat I, Neamtu M, Popa VI. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chem Pap 2014; 68(1): 121-9.
[http://dx.doi.org/10.2478/s11696-013-0417-6]
[24]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12: 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[25]
Ghaznavi H, Najafi R, Mehrzadi S, et al. Neuro-protective effects of cerium and yttrium oxide nanoparticles on high glucose-induced oxidative stress and apoptosis in undifferentiated PC12 cells. Neurol Res 2015; 37(7): 624-32.
[http://dx.doi.org/10.1179/1743132815Y.0000000037] [PMID: 25786672]
[26]
Hosseini A, Baeeri M, Rahimifard M, et al. Antiapoptotic effects of cerium oxide and yttrium oxide nanoparticles in isolated rat pancreatic islets. Hum Exp Toxicol 2013; 32(5): 544-53.
[http://dx.doi.org/10.1177/0960327112468175] [PMID: 23696423]
[27]
Khaksar MR, Rahimifard M, Baeeri M, et al. Protective effects of cerium oxide and yttrium oxide nanoparticles on reduction of oxidative stress induced by sub-acute exposure to diazinon in the rat pancreas. J Trace Elem Med Biol 2017; 41: 79-90.
[http://dx.doi.org/10.1016/j.jtemb.2017.02.013] [PMID: 28347467]
[28]
Zhang F, Wang Z, Wang S, et al. Physicochemical properties and ecotoxicological effects of yttrium oxide nanoparticles in aquatic media: Role of low molecular weight natural organic acids. Environ Pollut 2016; 212: 113-20.
[http://dx.doi.org/10.1016/j.envpol.2016.01.054] [PMID: 26840524]
[29]
Hosseini A, Sharifi AM, Abdollahi M, et al. Cerium and yttrium oxide nanoparticles against lead-induced oxidative stress and apoptosis in rat hippocampus. Biol Trace Elem Res 2015; 164(1): 80-9.
[http://dx.doi.org/10.1007/s12011-014-0197-z] [PMID: 25516117]
[30]
Zako T, Yoshimoto M, Hyodo H, et al. Cancer-targeted near infrared imaging using rare earth ion-doped ceramic nanoparticles. Biomater Sci 2015; 3(1): 59-64.
[http://dx.doi.org/10.1039/C4BM00232F] [PMID: 26214189]
[31]
Ma ZY, Dosev D, Nichkova M, Gee SJ, Hammock BD, Kennedy IM. Synthesis and bio-functionalization of multifunctional magnetic Fe(3)O(4)@Y(2)O(3):Eu nanocomposites. J Mater Chem 2009; 19(27): 4695-700.
[http://dx.doi.org/10.1039/b901427f] [PMID: 20357905]
[32]
Mitra RN, Merwin MJ, Han Z, Conley SM, Al-Ubaidi MR, Naash MI. Yttrium oxide nanoparticles prevent photoreceptor death in a light-damage model of retinal degeneration. Free Radic Biol Med 2014; 75: 140-8.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.07.013] [PMID: 25066531]
[33]
Schubert D, Dargusch R, Raitano J, Chan SW. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 2006; 342(1): 86-91.
[http://dx.doi.org/10.1016/j.bbrc.2006.01.129] [PMID: 16480682]
[34]
Chen J, Stimpson SE, Fernandez-Bueno GA, Mathews CE. Mitochondrial reactive oxygen species and type 1 diabetes. Antioxid Redox Signal 2018; 29(14): 1361-72.
[http://dx.doi.org/10.1089/ars.2017.7346] [PMID: 29295631]
[35]
Previte DM, Piganelli JD. Reactive oxygen species and their implications on CD4(+) T cells in type 1 diabetes. Antioxid Redox Signal 2018; 29(14): 1399-414.
[http://dx.doi.org/10.1089/ars.2017.7357] [PMID: 28990401]
[36]
Noble JA, Erlich HA. Genetics of type 1 diabetes. Cold Spring Harb Perspect Med 2012; 2(1): a007732.
[http://dx.doi.org/10.1101/cshperspect.a007732] [PMID: 22315720]
[37]
Khurana A, Anchi P, Allawadhi P, et al. Yttrium oxide nanoparticles reduce the severity of acute pancreatitis caused by cerulein hyperstimulation. Nanomedicine (Lond) 2019; 18: 54-65.
[http://dx.doi.org/10.1016/j.nano.2019.02.018] [PMID: 30851439]
[38]
Song X, Shang P, Sun Z, et al. Therapeutic effect of yttrium oxide nanoparticles for the treatment of fulminant hepatic failure. Nanomedicine (Lond) 2019; 14(19): 2519-33.
[http://dx.doi.org/10.2217/nnm-2019-0154] [PMID: 31317822]
[39]
Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014; 2014360438
[http://dx.doi.org/10.1155/2014/360438] [PMID: 24999379]
[40]
Davì G, Falco A, Patrono C. Lipid peroxidation in diabetes mellitus. Antiox Red Sign 2005; 7(1-2): 256-68.
[http://dx.doi.org/10.1089/ars.2005.7.256] [PMID: 15650413]
[41]
Mishra S, Mishra BB. Study of lipid peroxidation, nitric oxide end product, and trace element status in type 2 diabetes mellitus with and without complications. Int J Appl Basic Med Res 2017; 7(2): 88-93.
[http://dx.doi.org/10.4103/2229-516X.205813] [PMID: 28584737]
[42]
Malik A, Morya RK, Bhadada SK, Rana S. Type 1 diabetes mellitus: Complex interplay of oxidative stress, cytokines, gastrointestinal motility and small intestinal bacterial overgrowth. Eur J Clin Invest 2018; 48(11): e13021.
[http://dx.doi.org/10.1111/eci.13021] [PMID: 30155878]
[43]
Murunga AN, Miruka DO, Driver C, Nkomo FS, Cobongela SZ, Owira PM. Grapefruit derived flavonoid naringin improves ketoacidosis and lipid peroxidation in type 1 diabetes rat model. PLoS One 2016; 11(4): e0153241.
[http://dx.doi.org/10.1371/journal.pone.0153241] [PMID: 27073901]
[44]
Sheweita SA, Mashaly S, Newairy AA, Abdou HM, Eweda SM. Changes in oxidative stress and antioxidant enzyme activities in streptozotocin-induced diabetes mellitus in rats: role of Alhagi maurorum extracts. Oxid Med Cell Longev 2016; 20165264064
[http://dx.doi.org/10.1155/2016/5264064] [PMID: 26885249]
[45]
Ren B, Qin W, Wu F, et al. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats. Eur J Pharmacol 2016; 773: 13-23.
[http://dx.doi.org/10.1016/j.ejphar.2016.01.002] [PMID: 26801071]
[46]
Ahmadvand H. Amelioration of altered antioxidant enzyme activity by Satureja khuzistanica essential oil in alloxan-induced diabetic rats. Chin J Nat Med 2014; 12(9): 672-6.
[http://dx.doi.org/10.1016/S1875-5364(14)60102-3] [PMID: 25263978]
[47]
Yao Y, Zhao X, Xin J, Wu Y, Li H. Coumarins improved type 2 diabetes induced by high-fat diet and streptozotocin in mice via antioxidation. Can J Physiol Pharmacol 2018; 96(8): 765-71.
[http://dx.doi.org/10.1139/cjpp-2017-0612] [PMID: 29641229]
[48]
Gawlik K, Naskalski JW, Fedak D, et al. Markers of antioxidant defense in patients with type 2 diabetes. Oxid Med Cell Longev 2016; 20162352361
[http://dx.doi.org/10.1155/2016/2352361] [PMID: 26640613]
[49]
Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid Med Cell Longev 2016; 20167432797
[http://dx.doi.org/10.1155/2016/7432797] [PMID: 27738491]
[50]
Tang KS. The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer’s biomarkers. Life Sci 2019; 233116695
[http://dx.doi.org/10.1016/j.lfs.2019.116695] [PMID: 31351082]
[51]
Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP. Diabetes mellitus and inflammation. Curr Diab Rep 2013; 13(3): 435-44.
[http://dx.doi.org/10.1007/s11892-013-0375-y] [PMID: 23494755]
[52]
Mussbacher M, Salzmann M, Brostjan C, et al. Cell type-specific roles of NF-kappaB linking inflammation and thrombosis. Front Immunol 2019; 10: 85.
[http://dx.doi.org/10.3389/fimmu.2019.00085] [PMID: 30778349]
[53]
Meyerovich K, Ortis F, Cardozo AK. The non-canonical NF-κB pathway and its contribution to β-cell failure in diabetes. J Mol Endocrinol 2018; 61(2): F1-6.
[http://dx.doi.org/10.1530/JME-16-0183] [PMID: 29728424]
[54]
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017; 2: 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[55]
Ganesh Yerra V, Negi G, Sharma SS, Kumar A. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol 2013; 1: 394-7.
[http://dx.doi.org/10.1016/j.redox.2013.07.005] [PMID: 24024177]
[56]
David JA, Rifkin WJ, Rabbani PS, Ceradini DJ. The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type II diabetes mellitus. J Diabetes Res 2017; 20174826724
[http://dx.doi.org/10.1155/2017/4826724] [PMID: 28913364]
[57]
Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 2018; 36(6): 1738-67.
[http://dx.doi.org/10.1016/j.biotechadv.2017.12.015] [PMID: 29289692]
[58]
Liu X, Chen K, Zhu L, et al. Soyasaponin Ab protects against oxidative stress in HepG2 cells via Nrf2/HO-1/NQO1 signaling pathways. J Funct Foods 2018; 45: 110-7.
[http://dx.doi.org/10.1016/j.jff.2018.03.037]
[59]
Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol 2018; 9: 1162.
[http://dx.doi.org/10.3389/fphar.2018.01162] [PMID: 30405405]
[60]
Kawahara K, Hohjoh H, Inazumi T, Tsuchiya S, Sugimoto Y. Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors. Biochim Biophys Acta 2015; 1851(4): 414-21.
[http://dx.doi.org/10.1016/j.bbalip.2014.07.008] [PMID: 25038274]
[61]
Bapna M, Chauhan LS. The ambidextrous cyclooxygenase: an enduring target. Inflamm Allergy Drug Targets 2015; 13(6): 387-92.
[http://dx.doi.org/10.2174/1871528114666150401105545] [PMID: 25827631]
[62]
Anuradha R, Saraswati M, Kumar KG, Rani SH. Apoptosis of beta cells in diabetes mellitus. DNA Cell Biol 2014; 33(11): 743-8.
[http://dx.doi.org/10.1089/dna.2014.2352] [PMID: 25093391]
[63]
Tomita T. Apoptosis in pancreatic β-islet cells in Type 2 diabetes. Bosn J Basic Med Sci 2016; 16(3): 162-79.
[http://dx.doi.org/10.17305/bjbms.2016.919] [PMID: 27209071]
[64]
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2015; 22(4): 526-39.
[http://dx.doi.org/10.1038/cdd.2014.216] [PMID: 25526085]
[65]
Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 2007; 115(3): 403-9.
[http://dx.doi.org/10.1289/ehp.8497] [PMID: 17431490]
[66]
Selvaraj V, Bodapati S, Murray E, et al. Cytotoxicity and genotoxicity caused by yttrium oxide nanoparticles in HEK293 cells. Int J Nanomedicine 2014; 9: 1379-91.
[http://dx.doi.org/10.2147/IJN.S52625] [PMID: 24648735]
[67]
Moriyama A, Takahashi U, Mizuno Y, Takahashi J, Horie M, Iwahashi H. The truth of toxicity caused by yttrium oxide nanoparticles to yeast cells. J Nanosci Nanotechnol 2019; 19(9): 5418-25.
[http://dx.doi.org/10.1166/jnn.2019.16544] [PMID: 30961691]
[68]
Castro-Bugallo A, González-Fernández Á, Guisande C, Barreiro A. Comparative responses to metal oxide nanoparticles in marine phytoplankton. Arch Environ Contam Toxicol 2014; 67(4): 483-93.
[http://dx.doi.org/10.1007/s00244-014-0044-4] [PMID: 24908584]
[69]
Panyala A, Chinde S, Kumari SI, et al. Comparative study of toxicological assessment of yttrium oxide nano- and microparticles in Wistar rats after 28 days of repeated oral administration. Mutagenesis 2019; 34(2): 181-201.
[http://dx.doi.org/10.1093/mutage/gey044] [PMID: 30753658]
[70]
Panyala A, Chinde S, Kumari SI, Grover P. Assessment of genotoxicity and biodistribution of nano- and micron-sized yttrium oxide in rats after acute oral treatment. J Appl Toxicol 2017; 37(12): 1379-95.
[http://dx.doi.org/10.1002/jat.3505] [PMID: 28685832]
[71]
Parhofer KG. Interaction between glucose and lipid metabolism: More than diabetic dyslipidemia. Diabetes Metab J 2015; 39(5): 353-62.
[http://dx.doi.org/10.4093/dmj.2015.39.5.353] [PMID: 26566492]
[72]
Akbari-Fakhrabadi M, Heshmati J, Sepidarkish M, Shidfar F. Effect of sumac (Rhus Coriaria) on blood lipids: A systematic review and meta-analysis. Complement Ther Med 2018; 40: 8-12.
[http://dx.doi.org/10.1016/j.ctim.2018.07.001] [PMID: 30219474]
[73]
Darvish Damavandi R, Mousavi SN, Shidfar F, et al. Effects of daily consumption of cashews on oxidative stress and atherogenic indices in patients with type 2 diabetes: A randomized, controlled-feeding trial. Int J Endocrinol Metab 2019; 17(1): e70744.
[http://dx.doi.org/10.5812/ijem.70744] [PMID: 30881468]
[74]
Heshmati J, Morvaridzadeh M, Sepidarkish M, et al. Effects of Melissa officinalis (Lemon Balm) on cardio-metabolic outcomes: A systematic review and meta-analysis. Phytother Res 2020. [Online ahead of print].
[http://dx.doi.org/10.1002/ptr.6744] [PMID: 32614129]
[75]
Ravanan P, Srikumar IF, Talwar P. Autophagy: The spotlight for cellular stress responses. Life Sci 2017; 188: 53-67.
[http://dx.doi.org/10.1016/j.lfs.2017.08.029] [PMID: 28866100]
[76]
Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 2018; 9(2): 119.
[http://dx.doi.org/10.1038/s41419-017-0135-z] [PMID: 29371661]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy